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Abstract: Freshwater reservoirs are widely recognized as methane (CH4) emission hotspots. Existing
research has shown that temperature and hydrological conditions significantly affect wetland CH4

cycling processes. However, the feedback of the CH4 cycle to climate warming remains unclear for
deep reservoirs where seasonal water thermal stratification exists. This study combined a reservoir
CH4 cycling model and a Statistical DownScaling Model (SDSM) to evaluate reservoir CH4 cycling
feedbacks under multiple climate change scenarios while accounting for hydrological uncertainty.
Daily air temperatures in 2100 were predicted by the combination of the CanESM5 model and a
SDSM. To address hydrological uncertainty, we selected three representative hydrological years
(i.e., wet, normal, and dry) to create hydrological scenarios. Results showed that annual sediment
CH4 production increased with warming, ranging 323.1–413.7 × 103 t C year−1 among multiple
scenarios. Meanwhile, the CH4 oxidation percentage decreased with warming, which meant warming
promoted sediment CH4 release non-linearly; 67.8–84.6% of sediment ebullient flux was ultimately
emitted to the atmosphere (51.3–137.7 × 103 t C year−1), which showed ebullition was the dominant
emission pathway. Higher air temperatures and drier conditions generally promote reservoir emis-
sions. This study is helpful for predicting reservoir emissions while directing decision-making for
reservoir sustainability.

Keywords: carbon emission; climate change; hydrological uncertainty; mechanistic model; biogeochemical
process

1. Introduction

Methane (CH4) is a typical greenhouse gas (GHG), contributing to approximately
21% of the increase in radiative forcing since pre-industrial times [1]. Compared to carbon
dioxide (CO2), the climate warming potential of CH4 is greater (i.e., by a factor of 28).
Moreover, CH4 concentrations in the near-surface atmosphere have increased by a factor
greater than 1.5 compared to pre-industrial levels [2]. Freshwater systems contribute
greatly to the global CH4 budget, being responsible for approximately 42% of all global
emissions from natural and anthropogenic sources [3]. Among these sources, reservoirs
that are constructed by means of river damming have been recognized as CH4 emission
hotspots [4,5]. A recent modeling assessment estimated that global reservoirs emitted
1076 Tg of CO2-equivalent in 2020, of which CH4 contributed 70% [6]. Moreover, under
the ongoing expansion of hydropower engineering projects, reservoirs will likely have an
increasing effect on global warming over the coming decades, while their CH4 emissions are
expected to increasingly dominate reservoir-induced effects [7]. Therefore, the quantitative
prediction of reservoir emissions under conditions of environmental change is critical to
accurately assessing reservoir-based climatic effects while also estimating global budgets.

Damming changes upstream river environments from lotic to lentic, leading to signifi-
cant organic carbon (C) sedimentation and accumulation in reservoir sediment [8]. This
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makes reservoir sediment CH4 hotspots [9,10]. Many studies have investigated reservoir
emission budgets and CH4 cycling processes. Generally, organic C is degraded and miner-
alized to generate CH4 in anoxic sediment, except for a small fraction that is permanently
buried [11]. Then, CH4 is partially oxidized in oxic sediment [12], while the remaining
fraction is released from sediment via diffusion and ebullition [13]. Extensive research has
been conducted to measure and monitor CH4 emissions in rivers and reservoirs [13–15].
Meanwhile, modeling approaches have been developed and applied to simulate CH4
cycling processes and calculate their respective budgets [16,17]. It has been widely found
that reservoir CH4 emissions are subject to considerable variability and are regulated by
multiple influencing factors [4,18,19].

Climatic factors (i.e., air temperature, precipitation, atmospheric pressure, etc.) have
frequently been shown to affect CH4 cycling processes and emissions in aquatic ecosys-
tems [3,20,21]. Temperature affects the rate of microbiological processes, thereby influencing
both CH4 production and consumption. Wetland experiments have shown that climate
warming leads to a disproportionate increase in CH4 production over oxidation, which is
indicative of a positive feedback loop (i.e., where warming can cause increases in wetland
emissions) [3]. Moreover, temperature affects CH4 solubility and thereby impacts CH4
release pathways (i.e., through diffusion or ebullition) [22]. On the other hand, precipitation
affects hydrological conditions, which strongly impact CH4 cycling processes [20]. It has
recently been shown that both water depth variation and submerged conditions affect
C emissions in reservoirs and wetlands [5,23]. The effects of temperature increases on
wetland emissions vary with wetland water tables [24].

The effect of climate warming on CH4 cycling is complex in deep reservoirs due to the
existence of seasonal thermal stratification [25]. The water level has a significant effect on
water and sediment temperature distribution [26], thereby affecting reservoir emission feed-
back as air temperatures increase. Global warming is increasingly impacting the world’s
environments, where hydrological conditions are subject to significant variability and
uncertainty. CH4 emission feedback to climate change has been explored for wetlands with
comparatively low water depths [2,24,27]. However, deep reservoirs differ from wetlands
in multiple ways, such as water depth, sediment condition, and biological communities.
Feedbacks of sediment CH4 processes and emissions on climate warming have rarely been
investigated in deep reservoirs, especially under hydrological uncertainty. It is important to
understand reservoir feedbacks to project future global reservoir emissions under climate
change and to direct anthropogenic emission reduction planning to achieve sustainable
development goals.

This study combines a reservoir CH4 cycling model and a Statistical DownScaling
Model (SDSM) to evaluate reservoir CH4 cycling feedback to climate warming under
hydrological uncertainty. We selected the Danjiangkou Reservoir, China’s second-largest
reservoir, as a case study. The projections of air temperature in 2100 under the shared
socioeconomic pathways (SSPs) simulated by the CanESM5 model were downscaled on
the SDSM platform. To address hydrological uncertainty, three representative hydrological
years (i.e., wet, normal, and dry) were selected through means of historical reservoir
inflow analysis. After combining temperature and hydrological scenarios, the reservoir
CH4 cycling model simulates how climate change influences spatiotemporal CH4 cycling
through hydrodynamic and biogeochemical processes in the Danjiangkou Reservoir. This
study can help predict reservoir CH4 emission dynamics and direct decision-making in the
pursuit of reservoir sustainability.

2. Materials and Methods
2.1. Study Area

The Danjiangkou Reservoir (Figure 1), located in the Yangtze River basin, is China’s
second-largest reservoir. It plays a vital role in providing water to the South–North Water
Transfer Project. At its normal pool level (i.e., 170 m), its storage capacity is 29.05 × 109 m3,
with a total area of 1023 km2. The main functions of the reservoir are to provide water,



Sustainability 2023, 15, 9197 3 of 14

generate hydropower, control floods, and discharge environmental flow. For the reasons
explained below, the Danjiangkou Reservoir is a good case study candidate. Firstly, along
with agricultural development, the land adjacent to its upstream reaches is high in soil
organic carbon content and subject to water degradation and soil erosion [28]. This eroded
soil is then washed into the Han River, where it is trapped by the Danjiangkou Reservoir.
This increases organic C content in reservoir sediment, which provides substrates for
methanogens to produce CH4 [9]. Secondly, hypolimnetic hypoxia in this deep reservoir is
induced by seasonal water stratification and algal growth [25]. Incremental air temperature
lengthens the period of hypolimnetic hypoxia [29] and stimulates algal growth [30], which
may promote CH4 production in reservoir sediment [31,32]. Finally, precipitation variation
affects runoff in upstream river reaches and water storage levels in the reservoir [33], which
could influence reservoir sediment CH4 emission pathways [34,35].
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level (170 m).

2.2. Reservoir Methane Cycling Simulations

The Environmental Fluid Dynamics Code (EFDC) is a surface water modeling sys-
tem originally developed by Hamrick [36]. The EFDC has been used to build models for
different waterbody types, including rivers [37], reservoirs [38], lakes [30], estuaries [39],
etc. For this study, we used a quasi-three-dimensional reservoir model developed on the
EFDC platform for the Danjiangkou Reservoir, which has previously been calibrated and
validated [40]. The reservoir model couples hydrodynamic, water quality, and sediment
diagenesis modules on the EFDC to simulate interactions of multiple variables in the
water body and sediment. The hydrodynamic module simulates water flow and material
transportation in the horizontal direction with orthogonal curvilinear coordinates and
in the vertical direction with sigma coordinates. The water quality module simulates
C, nitrogen (N), and phosphorus (P) transformations, dissolved oxygen (DO) variation,
and algal dynamics. Meanwhile, these organic matter forms are composed of labile par-
ticulate, refractory particulate, and dissolved organic matter. The sediment diagenesis
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module simulates organic and inorganic matter flux at the sediment-water interface and
biogeochemical processes in sediment. More details on EFDC theory can be found in the
existing document [41].

To simulate CH4 production and consumption in reservoir sediment as well as CH4
emissions from sediment to the overlying water and subsequently to the atmosphere, the
specific processes are introduced as follows. Particulate organic carbon (POC), derived
from terrestrial organic matter, wastewater, and/or autochthonous algae, deposits in
sediment. Next, labile and refractory POC are degraded, and CH4 is produced within
anoxic sediment, while permanently buried POC is only negligibly degraded. Then, the
produced CH4 moves up into the upper oxic sediment layer, which is partly oxidized by
oxygen diffusing from overlying water. The remaining CH4 is released into the water
column via diffusion or ebullition. Additionally, the rising bubbles (ebullition) lose a
fraction of CH4 in the water column, and the remaining CH4 is subsequently released into
the atmosphere. Following the empirical model proposed by Ostrovsky [42], we calculated
the CH4 ebullient flux to the atmosphere.

During the process of building the reservoir model, we first input the boundary of
Danjiangkou Reservoir into the EFDC platform, which was drawn from the map using
the Universal Transverse Mercator (UTM) Coordinate System. Before this, the coordinate
system of the map needed to be converted from the World Geodetic System (WGS) to the
UTM Coordinate System due to standard cartography (Figure 1) using WGS. Subsequently,
bottom elevation, hydrological, meteorological, and water quality data were input to
the EFDC software (version 10.3) step by step, and the water body of the reservoir was
divided into six layers averagely in order to simulate the change of variables in the vertical
direction [40]. Additionally, calibration and verification had been done previously [40,43].
To improve its running efficiency, the model was run by setting the dynamic time-step to
2 s as the initial value.

2.3. Air Temperature Prediction and Hydrological Uncertainty

This section introduces the prediction method that we used for the air temperature
above the surface of the Danjiangkou Reservoir in 2100. In this study, we chose the
modeling results of air temperature simulated by the newest version of the Canadian Earth
System Model (CanESM5) because its early versions had great performance in simulating
climate change in China [44–46]. Additionally, according to historical runoff, we selected
representative hydrological years to address hydrological uncertainty. Through runoff
data from different hydrological years, discharges from the Danjiangkou Reservoirs were
simulated by a reservoir operation model [25]. The corresponding air temperature, runoff,
and discharge data for all scenarios were input into the Danjiangkou Reservoir model
developed on the EFDC. The model was then run in all scenarios. Following this, we
analyzed the spatiotemporal feedback of reservoir CH4 cycling to climate warming during
all three hydrological years.

2.3.1. Near-Surface Air Temperature Prediction

The Statistical DownScaling Model (SDSM) [47], a hybrid model between a stochastic
weather generator and multiple regression equations, enhances the efficiency of generating
multiple, low-cost, and single-site scenarios of surface weather variables under present
and future climate forcing. To generate the scenarios, the first step was to obtain observed
near-surface air temperature and predictor variable data in the study area. The daily air tem-
perature monitored by the Laohekou Meteorological Station between 1979 and 2014, which
this study regarded as the air temperature above the surface of the Danjiangkou Reservoir,
was obtained from the National Centers for Environmental Information (NCEI), the United
States of America (https://www.ncei.noaa.gov/maps/daily, accessed on 26 April 2023).
For this study, we selected one grid box covering the Laohekou Meteorological Station
from all the grid boxes on the Canadian Climate Impacts and Scenarios (CCIS) project web-
site (https://climate-scenarios.canada.ca/?page=pred-cmip6, accessed on 26 April 2023).

https://www.ncei.noaa.gov/maps/daily
https://climate-scenarios.canada.ca/?page=pred-cmip6
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Next, in this grid box, we downloaded modeling results from the National Centers for
Environmental Prediction-Department of Energy (NCEP-DOE) Reanalysis 2 model be-
tween 1979 and 2014, which contains data sets of 26 predictor variables. In the same grid
box, we simultaneously downloaded other predictor variable data sets, namely, modeling
results under the SSPs (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5) simulated by the CanESM5
model between 2015 and 2100. The second step was to develop a statistical model. To do
so, we screened 26 predictor variables simulated by the NCEP-DOE Reanalysis 2 model
on the SDSM platform to find predictor variables whose optimal statistical relationships
corresponded to observational data. Two predictor variables were subsequently selected:
air temperature at 2 m (temp) and mean sea level pressure (mslp). The observational and
the selected predictor variable data were, respectively, sectioned into two: (1) that which
ranged between 1979 and 1996 and (2) that which ranged between 1997 and 2014. The first
observational and predictor variable data were used to develop the statistical model and
calibrate it on the SDSM platform. The second predictor variable data were input into the
statistical model to obtain predictand, which was used to calculate deviations from the
observed data. Lastly, after verification, we input temp and mslp under the SSPs simulated
by the CanESM5 model into the statistical model to obtain the air temperature above the
surface of the Danjiangkou Reservoir in 2100.

2.3.2. Hydrological Uncertainty Analysis

The main source of uncertainty between Global Climate Models (GCMs) and within
the GCM was runoff projections under climate change, which were obtained by the combi-
nation of a downscaling method and a hydrological model [48]. Additionally, hydrological
uncertainty distinctly increased over time under future climate scenarios and was larger
under high than low emission scenarios [49]. Given the difficulty in predicting precipi-
tation, we used historical runoff data from the Han River as inflow to the Danjiangkou
Reservoir when predicting the impact of climate warming on reservoir sediment CH4
cycling processes. To comprehensively account for future variation, we selected three
hydrological years (i.e., wet, normal, and dry) from a total of fifty years of runoff data,
following the method proposed by Cai and Rosegrant [50]. Based on the SSPs under the
different hydrological years, a total of nine scenarios were selected for this study (Table 1),
which were subsequently used to analyze climate warming impacts on reservoir sediment
C cycling processes under different hydrological conditions.

Table 1. Methane cycle in the Danjiangkou Reservoir under various scenarios.

Hydrological
Year a SSPs b

Production Oxidation Diffusion Ebullition

×103 t C Year−1 ×103 t C Year−1 Percent c ×103 t C Year−1 Percent c ×103 t C Year−1 Percent c

Wet
SSP1-2.6 323.1 121.5 38 125.9 39 75.7 23
SSP2-4.5 342.7 125.6 37 133.7 39 83.4 24
SSP5-8.5 388.2 139.1 36 144.8 37 104.3 27

Normal
SSP1-2.6 331.1 118.4 36 115.1 35 97.6 29
SSP2-4.5 352.0 123.2 35 122.9 35 105.8 30
SSP5-8.5 403.3 137.9 34 132.8 33 132.5 33

Dry
SSP1-2.6 335.8 113.1 34 101.1 30 121.6 36
SSP2-4.5 357.9 118.6 33 107.8 30 131.6 37
SSP5-8.5 413.7 133.8 32 116.1 28 163.8 40

a Annual mean water storage levels were 159.1 m, 152.9 m, and 146.9 m during the wet, normal, and dry years,
respectively. b Annual mean near-surface air temperatures under the shared socioeconomic pathway (SSP) 1-2.6,
SSP2-4.5, and SSP5-8.5 were 17.7 ◦C, 19.7 ◦C, and 22.6 ◦C, respectively. c Percentage of methane (CH4) oxidation,
CH4 diffusive flux, or CH4 ebullient flux in CH4 production.

3. Results and Discussion
3.1. Air Temperature Prediction

The predictor variables (i.e., temp and mslp) simulated by the NCEP-DOE Reanalysis
2 model and observed daily near-surface air temperature data between 1979 and 1996 were
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used to calibrate the statistical model for downscaling on the SDSM platform. Then, the
predictor variables and air temperature data between 1997 and 2014 were used to verify the
statistical model. As Figure 2 shows, the statistical model could perform well during the
downscaling process. The determination coefficient (R2) and curve slope of the daily mean
air temperature are 0.95 and 0.99, respectively (Figure 2a). The variance of the monthly
mean air temperature ranged from 0.34 to 0.88 (Figure 2b).
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Figure 2. Comparison between observed and simulated (a) daily mean near-surface air temperature
as well as (b) monthly mean air temperature in the verification process.

Near-surface air temperatures in 2100 under the SSP1-2.6, SSP2-4.5, and SSP5-8.5
simulated by the CanESM5 model were downscaled by using the statistical model (Figure 3).
Annual mean air temperatures under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 were 17.7 ◦C,
19.7 ◦C, and 22.6 ◦C, respectively. Although the annual mean air temperature under the
SSP2-4.5 was significantly higher than that under the SSP1-2.6 (2.0 ◦C), the mean difference
between them was negligible from mid-June to August (0.6 ◦C). Generally, the daily air
temperature under the SSP5-8.5 was distinctly the highest among the three SSPs.
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3.2. Dynamic Variations of Sediment Methane Budgets

Results show that annual sediment CH4 cycle flux increased under the warmer SSPs
(Figure 4 and Table 1). As the annual mean air temperature increased from 17.7 ◦C (SSP1-
2.6) to 19.7 ◦C (SSP2-4.5), annual CH4 production and ebullition increased by 10.4 × 103 t C
year−1 per ◦C and 4.3 × 103 t C year−1 per ◦C, respectively. Likewise, as annual mean air
temperature increased from 19.7 ◦C to 22.6 ◦C (SSP5-8.5), annual CH4 production and ebul-
lition increased by 17.5 × 103 t C year−1 per ◦C and 9.2 × 103 t C year−1 per ◦C, respectively.
These modeling results indicated a significant nonlinear relationship between annual CH4
production (or ebullition) and annual mean near-surface air temperature (Figure 4). Addi-
tionally, the CH4 oxidation growth rate was slower compared to CH4 production among all
SSPs (Figure 4), resulting in a decrease in the CH4 oxidation percentage of CH4 production
(Table 1). Meanwhile, the CH4 ebullient flux percentage in CH4 production increased under
the warmer SSPs, while the CH4 diffusive flux percentage in CH4 production decreased.
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Figure 4. Flux variations in annual sediment CH4 cycling in the Danjiangkou Reservoir under the
SSPs (i.e., 17.7 ◦C, 19.7 ◦C, and 22.6 ◦C in annual mean near-surface air temperature under the
SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively).

Furthermore, hydrological conditions influence the response of sediment CH4 cycling
processes to climate warming. Under the same SSP, even though the differences in annual
CH4 production (or oxidation) among the hydrological years were insignificant (less than
5%), the CH4 oxidation percentage in CH4 production decreased as annual runoff decreased
(Table 1). In summary, when the annual mean air temperature increased and runoff
decreased, the CH4 oxidation percentage in CH4 production decreased. Likewise, the
variations in hydrological conditions significantly affected CH4 diffusive (8.1–12.6%) and
ebullient (23.6–28.9%) fluxes. Accompanied by a decrement in runoff, the CH4 ebullient flux
percentage in CH4 production increased rapidly, while the CH4 diffusive flux percentage
in CH4 production decreased slowly (Table 1). This means that diffusion was not always
the dominant reservoir sediment CH4 emission pathway, while annual CH4 ebullient flux
surpassed diffusive flux and dominates CH4 emissions during the dry year.
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3.3. Spatiotemporal Feedback of Sediment Methane Production and Oxidation

Generally, daily reservoir sediment CH4 production increased as air temperatures
increased from January to July and decreased as air temperatures decreased from August
to December under the three SSPs (Figures 3 and 5a). This indicated that the methanogenic
rate varies with air temperature. Accounting for air temperature differences among
the SSPs, daily CH4 production under the SSP2-4.5 was generally higher than under
the SSP1-2.6 from January to early June (Figures 3 and 5a). Between mid-June and Au-
gust, the mean air temperature under the SSP2-4.5 was slightly higher compared to the
SSP1-2.6 (0.6 ◦C). This means that there was no significant difference in CH4 production
(29.1 t C day−1). Meanwhile, daily CH4 production was generally highest under the SSP5-
8.5 before September, while mean CH4 production was 444.8 t C day−1 (or 415.8 t C day−1)
higher compared to the SSP1-2.6 (or SSP2-4.5) from mid-June to August. After August,
differences in daily CH4 production among the three SSPs were not significant. Two reasons
could explain this phenomenon. Firstly, under the warmer SSPs, given that more POC was
consumed in reservoir sediment from January to August, especially in the shallow-water
zone and the drawdown area (Figure 6), there was less POC for CH4 production after
August. Secondly, less CH4 was produced under the cooler SSPs. Because CH4 was mainly
produced in sediment from mid-June to August, differences in CH4 production among the
SSPs during this period mainly resulted in a nonlinear relationship between annual CH4
production and annual mean air temperature.
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Figure 5. Temporal variation in (a) methane production and (c) oxidation in the Danjiangkou
Reservoir during the normal year under all three SSPs as well as (b) production and (d) oxidation
during the wet, normal, and dry years under the SSP2-4.5.
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Figure 6. Spatial distribution of sediment methane production in the Danjiangkou Reservoir on
20 June during the (a) normal and (b) dry years under the SSP2-4.5.

Temporal and spatial CH4 production showed significant differences under the same
SSP during all three representative hydrological years (Figures 5b and 6). Under dryer con-
ditions, the sediment temperature response rate to air temperature variation increased in
both the reservoir’s shallow- and deep-water zones, causing a time-lag decrease in CH4 pro-
duction variation. Moreover, compared with CH4 production in shallow- and deep-water
zones, CH4 production in the drawdown area is highest during the period when tempera-
tures increased and lowest during the period when temperatures decreased. These led to
larger intra-year variations of CH4 production under drier conditions (Figures 5b and 6).
Additionally, among the three hydrological years, CH4 production differences during the
former period were nearly cancelled out by differences during the latter period, leading to
non-significant differences in annual CH4 production under the same SSP.

In general, the feedback trend in daily sediment CH4 oxidation to warming under
all three hydrological conditions was similar to that of CH4 production (Figure 5). Never-
theless, daily CH4 oxidation under the SSP5-8.5 was slightly higher than the other SSPs
from September to October (Figure 5c). This is because methanotrophic rates increased
under the warmer SSPs, which were subject to similar daily CH4 production among all
SSPs during this period. Besides, the CH4 oxidation percentage in CH4 production in the
reservoir’s drawdown area is inversely proportional to air temperature. That is, as the
air temperature increased, the percentage of CH4 oxidation decreased. Under the warmer
SSPs, this phenomenon became more apparent.

3.4. Feedback of Sediment Methane Emissions

The feedback trend in daily sediment CH4 diffusive flux to warming was similar to
that of CH4 production (Figures 5a and 7a). Additionally, mean diffusive flux between
mid-June and August under the SSP5-8.5 was significantly larger, being 85.5 t C day−1

and 80.1 t C day−1 larger than that under the SSP1-2.6 and SSP2-4.5, respectively. In other
words, the difference in mean diffusive flux during that period between SSP1-2.6 and
SSP2-4.5 was insignificant (Figure 7a). Besides, the impacts of hydrological conditions on
diffusive flux differed from CH4 production under the same SSP (Figures 5b and 7b). Due
to different runoff during three hydrological years, the differences in water level became
apparent. At the same time, as air temperature increased, the differences in daily CH4
diffusive flux became gradually significant (Figure 7b). As the air temperature decreased,
the differences became insignificant (Figure 7b). The maximum differences occurred in
mid-September. That is, daily CH4 diffusive flux in mid-September during the wet year
is 129.9 t C day−1 and 283.1 t C day−1 larger than that during the normal and dry years,
respectively. Consequently, different hydrological conditions could enlarge the differences
in daily CH4 diffusive flux under the SSPs.
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Figure 7. Temporal variation in sediment methane (a) diffusive and (c) ebullient flux in the
Danjiangkou Reservoir during the normal year under all three SSPs as well as (b) diffusive and
(d) ebullient flux during the wet, normal, and dry years under the SSP2-4.5.

Compared with the feedback trend in daily sediment CH4 diffusive flux to warming,
daily sediment CH4 ebullient flux increased or decreased more rapidly as air temperature
(Figure 7c). Additionally, mean ebullient flux between mid-June and August under the
SSP5-8.5 was significantly larger, being 231.6 t C day−1 and 227.0 t C day−1 larger than that
under the SSP1-2.6 and SSP2-4.5, respectively. During this period, the differences in CH4
ebullient flux between SSP5-8.5 and SSP1-2.6 (or SSP2-4.5) were more significant than those
in diffusive flux. Compared Figure 7b and Figure 7d, in general, ebullition was the main
sediment CH4 emission pathway in the summer. Moreover, the variations in hydrological
conditions affected the time duration of ebullition as the main emission pathway, lasting
nearly four months, less than three months, and several days during the dry, normal, and
wet years, respectively. Additionally, the increment in time duration resulted in reservoir
CH4 released into the atmosphere increasing sharply.

3.5. Reservoir Methane Emission to the Atmosphere

When CH4 was transported from sediment to the water column and then to the atmo-
sphere via diffusion, most was oxidized in the water column while only 0.1–0.2 × 103 t C year−1

was released to the atmosphere under the SSPs during all three hydrological years (less
than 0.2%). Nevertheless, CH4 in bubbles is seldom released into the water column. In
other words, most CH4 in bubbles is released into the atmosphere under the SSPs during all
three hydrological years (51.3–137.7 × 103 t C year−1, 67.8–84.6%). Consequently, the CH4
ebullient flux feedback to climate warming is more important than that of diffusive flux, the



Sustainability 2023, 15, 9197 11 of 14

former of which will mainly affect future climate change. CH4 ebullient flux to the atmo-
sphere was higher under the warmer SSPs (i.e., 76.8, 82.7, and 103.3 × 103 t C year−1 under
the SSP1-2.6, SSP2-4.5, and SSP5-8.5 during the normal year, respectively). Meanwhile,
CH4 ebullient flux to the atmosphere increased as runoff decreased (i.e., 56.8, 82.7, and
110.6 × 103 t C year−1 under the SSP2-4.5 during the wet, normal, and dry year, respec-
tively). Thus, annual CH4 ebullient flux (137.7 × 103 t C year−1) was highest under the
SSP5-8.5 during the dry year, accounting for 33% of CH4 production. Likewise, annual
CH4 ebullient flux (51.3 × 103 t C year−1) was the lowest under the SSP1-2.6 during the
wet year, accounting for 16% of CH4 production.

4. Conclusions

Climatic and hydrological conditions influence both reservoir methane (CH4) cycling
processes and emissions. This study combined a reservoir CH4 cycle model and a Sta-
tistical DownScaling Model (SDSM) to evaluate reservoir CH4 cycling feedbacks under
multiple climate change scenarios while accounting for hydrological uncertainty. China’s
Danjiangkou Reservoir was used as a case study to evaluate the impact of climate change
on spatiotemporal reservoir CH4 cycling processes. Due to differences in daily summer
air temperatures under the three SSPs, annual CH4 production and ebullition showed a
significant and increasing nonlinear relationship with the annual mean near-surface air
temperature. The annual CH4 oxidation percentage in annual CH4 production decreased
when the annual mean air temperature increased and runoff decreased. At the same time,
the phenomenon that the CH4 oxidation percentage in CH4 production in the reservoir’s
drawdown area was inversely proportional to air temperature became more apparent un-
der the warmer SSPs. Besides, although diffusion was the main CH4 emission pathway in
sediment during the wet and normal years, CH4 ebullient flux surpassed diffusive flux and
dominated CH4 emissions during the dry year. Likewise, less than 0.2% of CH4 released
from sediment via diffusion was released to the atmosphere (0.1–0.2 × 103 t C year−1),
while 67.8–84.6% of CH4 released from sediment via ebullition was released to the atmo-
sphere (51.3–137.7 × 103 t C year−1). Thus, the CH4 ebullient flux feedback to climate
warming was more important than that of diffusive flux. CH4 ebullient flux increased as
air temperatures increased, and runoff decreased. That is, annual CH4 ebullient flux was
highest (137.7 × 103 t C year−1) under the SSP5-8.5 during the dry year, while it was lowest
(51.3 × 103 t C year−1) under the SSP1-2.6 during the wet year. This means that high air
temperatures and low runoff aggravated CH4 emissions as well as climate warming, while
low air temperatures and high runoff were beneficial in reducing reservoir CH4 emissions.
This study could help researchers predict reservoir CH4 emission dynamics while directing
decision-making policies for reservoir sustainability.

This study did not account for the impacts of future precipitation changes on reservoir
CH4 cycling processes due to the difficulty of accurate precipitation prediction. Mean-
while, POC loading varied in reservoir sediment under different hydrological conditions.
This could affect the modeling results of reservoir CH4 cycling flux. After the improve-
ment in GCMs and decrease in uncertainty, accounting for the impacts of multiple factors
(air temperature, precipitation, and POC loading affected by runoff) on reservoir CH4
cycling will be a prospective research topic. Besides, reservoir CH4 emissions could be
effectively controlled by reservoir operation policy adjustments. A reservoir operation
policy that considers both economic benefit improvements and CH4 emission reductions is
urgently needed to mitigate the positive feedback between reservoir CH4 emissions and
climate warming.
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