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Abstract: National or regional carbon emissions are generally accounted for by the principle of “pro-
ducer responsibility”, which ignores the embodied carbon emissions implied in product consumption
via inter-regional trade. Therefore, it is necessary to include the embodied carbon emissions into
the product consumption regions for overall calculation. As an example, this paper analyzes the
characteristics of China’s domestic regional carbon flow network based on a multiregional input–
output table and carbon emission data, identifying three clusters of carbon emission characteristic
regions by k-means—the clustering algorithm of machine learning. The research results show that
some provinces—such as Beijing, Zhejiang, and Guangdong—are the net input areas of embodied
carbon emissions (“consumers”), consuming products and services produced by “producers” such as
Hebei, Shanxi, and Inner Mongolia through trade, implicitly transferring the responsibility for carbon
emissions. Accounting for carbon emissions worldwide/countrywide should consider both produc-
tion responsibility and trade income. Our findings provide a novel national or regional classification
approach based on embodied carbon emissions, which calls for an equitable regional distribution
system of carbon emission rights. Meantime, inter-regional cooperation is of great significance in
achieving carbon neutrality. In particular, the economically developed regions need to offer assistance
to improve the energy efficiency or optimize the energy structure in less developed regions, by means
of capital investment and technology transformation.

Keywords: regional trade; embodied carbon flows; input–output analysis; k-means algorithm

1. Introduction

In recent years, China has experienced remarkable economic growth, resulting in a
significant increase in domestic carbon dioxide emissions, driven by the escalating demand
for fossil fuels. This surge in emissions propelled China to surpass the United States as
the world’s largest carbon dioxide emitter in 2005 [1]. China’s commitment to addressing
climate change is evident through its goals of achieving peak carbon dioxide emissions
by 2030 and carbon neutrality by 2060, commonly known as the “carbon peaking and
carbon neutrality goals” [2]. However, China, with its vast territorial expanse, faces the
challenge of uneven regional carbon emissions and economic development. For instance,
examining the carbon emissions data for 2017 reveals that provinces with low emissions
exhibited direct carbon emissions of less than 100 million tons, while those with higher
emissions approached close to 1 billion tons (Figure 1) [3–5]. It is crucial to recognize the
substantial regional disparities in carbon emissions within China. Studies have shown that
the difference in economic development levels between the eastern and western regions
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is an important factor that causes a shift in the center of gravity and intensity of carbon
emissions to the west [6].
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Commonly, the eastern regions of China manifest relatively lower carbon emissions
but higher economic growth rates. Conversely, the western regions exhibit higher carbon
emissions, while their economic growth is relatively slower [7]. However, the policymaking
process seems to fail to account for these regional disparities adequately. For instance, the
practical policies concerning regional energy consumption—which is closely related to car-
bon emissions—are still based on a one-size-fits-all approach. This apparently overlooks the
different circumstances between the eastern and western regions [8,9]. In order to address
the issue of regional disparities, it is crucial to consider the unique characteristics of each
region in terms of carbon emissions. In view of the rapidly increasing complexity of global
industrial chains, it can be shown that the embodied carbon emissions—i.e., the direct and
indirect carbon emissions in the production process to meet final demand [10]—should be
taken into account. In a certain region, the direct carbon emissions might be shifted to other
regions via trading of products. In other words, the redistribution of resources—including
goods and services—through trade channels is instrumental in facilitating the transfer of
embodied carbon emissions from the consumer regions to producer regions [11]. Therefore,
it is of practical significance to carry out targeted analysis of the flow of carbon emissions
in trade, which is expected to provide the potential theoretical basis for understanding the
regional imbalance of carbon emissions and its implications for the sustainable economic
development of the whole country.

One of the effective approaches is to consider the flow of embodied carbon emissions
resulting from trade activities between regions. Zhang et al. studied the embodied car-
bon emissions of China in the context of international trade, and they found that China’s
production carbon emissions exceed its consumption emissions [12]. Long et al. analyzed
the embodied carbon emissions resulting from trade activities between China and Japan,
revealing that Japan’s carbon emissions from production were considerably lower than
those from consumption [13]. Xu et al. investigated the embodied energy and pollutant
emissions in China–US trade through environmental input–output analysis (IOA). The re-
sults indicated that from 2002 to 2007, the embodied carbon flow reflected in the eastbound
trade between China and the United States ranged from 400 to 800 MtCO2, accounting
for approximately 8–12% of China’s direct carbon emissions [14]. It is clear that the trade
between two regions or countries can be the carrier that shifts the carbon emissions. For
instance, the developed countries (e.g., the United States, Japan, and countries in Western
Europe) dominating the final consumption of products in trade could become the net im-
porters of carbon emissions, as most of the products are produced in developing countries
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(e.g., China, India, and Russia) with much higher carbon emissions [15,16]. If the “consumer
responsibility principle” is used to allocate the carbon emission responsibilities, developing
regions or countries (as the producers) should take less of the burden of carbon emission
reduction than they actually do, while developed regions or countries with significant
final consumption should hold greater responsibility and obligation for reducing carbon
emissions. However, the above studies are mostly based on bilateral trade relations and
cannot reflect the carbon emissions imbalance of the entire country/world.

The flow of embodied carbon emissions among different regions can be much more
complicated. Cheng et al. studied the inter-regional bilateral trade and carbon emissions
embodied in the interprovincial trade of Northeast China (Liaoning, Jilin, and Heilongjiang
Provinces), and they showed that from 1997 to 2007 the net carbon emissions resulting
from interprovincial trade primarily flowed from Northeast China to 16 southern and
eastern provinces [17]. In another study on the carbon emissions embodied in trade in the
Beijing–Tianjin–Hebei region in 2013, it was found that Beijing and Tianjin are net inflow
provinces of carbon dioxide, while Hebei as a net outflow area [18]. Su et al. artificially
divided China into eight regions based on geographical location, explaining how inter-
regional trade and international trade affect China’s regional domestic emissions [19].
Li et al. calculated the net embodied carbon emissions outflowing from Shanxi and the
embodied carbon emissions of 29 departments in interprovincial trade [20]. As can be
seen, although some studies on the flow of embodied carbon emissions among different
regions via trade have been conducted, they mostly focus on the regional carbon emissions
flow in the bilateral trade between a certain region and its neighboring regions. The lack
of a comprehensive analysis on the embodied carbon emissions in multilateral trade still
hinders the understanding of regional imbalance in carbon emissions and its implications
for policymaking for the whole country/regions.

Therefore, it is imperative to undertake further exploration and extract the intrinsic
relationship between carbon emissions and multilateral trade for different regions. By
identifying the unique features of each region, it is then possible to make a reasonable
classification of the regions in terms of the trade-related carbon emissions flow, which
would form the theoretical basis for making the corresponding carbon reduction policies
according to the carbon emission characteristics of different regions. We believe that this
work can shed some light on the endeavors of the targeted national or regional carbon
reduction policies and the corresponding measures of implementation.

In light of these considerations, the purpose of this paper is twofold: to analyze the
interprovincial embodied carbon emissions brought by multilateral trade using the IOA
approach, and to classify the provinces using a k-means algorithm based on the carbon
emission characteristics. The remaining parts of this paper are arranged as follows: Section 2
presents the calculation method of embodied carbon emissions from the perspective of
production and consumption based on IOA, along with the calculation method of trade
difference and production/consumption difference based on this, and clusters different
provinces by using a machine learning algorithm. Section 3 presents the calculation
results, reports the analysis of 30 provinces in China and the interprovincial emissions
caused by trade circulation, clusters different provinces by using a machine learning
k-means algorithm, and analyzes the provinces with similar characteristics. We discuss
the experimental results in Section 4 and provide corresponding policy recommendations.
Section 5 presents the conclusions and summarizes the research.

2. Methodology

The main measurement method of carbon emission transfer in recent years has been
based on input–output analysis. This model was first proposed by the economist Wassily
W. Leontief in the 1930s [21]. Since the 1960s, it has been widely used by geographers and
economists in various fields, such as regional industrial composition analysis and regional
interaction analysis, and it has been applied by experts and scholars to the calculation of
embodied energy since the 1990s [22–24]. IOA can track the CO2 emissions in the direct
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and indirect energy use of product production. It is a mainstream method to study the
carbon transfer of economy and trade at the macro level. By compiling the input–output
(IO) table and establishing the corresponding mathematical model, we can demonstrate
the relationships between regions, departments, or industries in the economic system.
The application of IO models includes single-region input–output (SRIO), inter-regional
input–output (IRIO), and multiregional input–output (MRIO) models, tracking financial
and material flows in international trade, and establishing databases that are widely used
in this research field—such as WIOD, EXIOBASE, and EORA [25–28]. Moreover, IOA can
be used in environmental analysis by adding additional columns, such as energy, carbon
emissions, water usage, etc. [29,30].

Studies incorporating IOA have analyzed environmental flows in different regions and
sectors. For instance, one study utilized a multi-scenario factor analysis and multiregional
input–output (MFA-MRIO) model to simulate the carbon dioxide emissions pathway in
Beijing, Tianjin, and Hebei, revealing the individual and interactive effects of various
factors, departments, and cities within the urban agglomeration. The study emphasized
that the highest CO2 flow occurred from Hebei to Beijing. It also highlighted the potential
positive impact on carbon intensity reduction if final demand reduction policies were
implemented for high-carbon-emission sectors in Tianjin and Hebei [31]. Furthermore,
Chen et al. analyzed the carbon transfer within the industry in Dongguan, based on the IO
situation of Guangdong Province, and developed a method to analyze the urban carbon
metabolism process using provincial IO tables [32].

This paper aims to calculate the flow of embodied carbon emissions brought about
by interprovincial and inter-regional trade. To achieve this goal, we compiled an environ-
mental extended IO table containing 30 provinces’ input–output situations by integrating
regional trade flows into embodied carbon emission flows, where i represents the horizontal
region and j represents the column area. In the horizontal relationship, it represents the
sum of the quantity of products provided by region i to each region for production and
consumption—that is, the quantity of intermediate products. From the perspective of
column relationships, it represents the sum of the product quantities consumed by i regions
in the production process. Yi represents the total final use of region i; Xi represents the total
output of region i; Xj represents the total input of region j. There are

n

∑
j=1

aijXj + Yi = Xi (1)

aij =
Xij

Xj
, (2)

where aij is the direct consumption coefficient of the production–consumption relationship
between region i and region j. Since the linear equations have a one-to-one correspondence
with the matrix, the linear Equation (1) can be rewritten in the form of the following matrix:

AX + Y = X (3)

where, A represents the direct consumption coefficient matrix composed of aij, which is
an IO coefficient matrix reflecting the technical level. X and Y represent the total output
column vector and final use column vector of each region, respectively, and the diagonal
matrix Y is the final demand vector. Resolve (3) to obtain

X = (I − A)−1Y (4)

Equation (4) describes all direct and indirect IO relationships between different de-
partments, where (I − A)−1 is called the Leontief inverse matrix.
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2.1. Defining System Boundaries

We compiled the Chinese IO table of 2017 for 30 provinces from the MRIO table as the
boundary of the regional carbon emission transfer network in this work, excluding Tibet,
Hong Kong, Macao, and Taiwan due to a lack of basic data.

The final demand and intermediate demand of each province also include imported
products and services. As the carbon emissions indirectly caused by these imported
products and services occur abroad, this paper only focuses on China’s domestic carbon
emissions, so the imported part of carbon emissions is temporarily excluded.

2.2. Establishment of Provincial IO Table

Since the national IO table is compiled in the 2nd and 7th years of each decade, Zheng
et al. calculated the MRIO table of 42 departments in 31 provinces in 2017 according to the
latest national IO table [33]. On the basis of Zheng’s work, the IO tables of 30 provinces
and regions were compiled by spatial aggregation.

In this way, the statistical data of the various factors that affect the model can be
obtained and simplified through the values of the national provinces and industries, and
the direct consumption coefficient matrix can be calculated according to the IO table of the
30 provinces. It must be stated that we assume that all of the provinces and regions share
the same technical level in this work for better calculation.

2.3. Calculation of Embodied Carbon Emissions

China’s IO table can add additional columns by adding environmental extended
input–output analysis (EEIOA), such as energy use, carbon emissions, water consumption,
and air pollutants [23,24]. For example, data on energy inputs for each sector and region
can be used to assess the carbon emissions reflected in trade between 30 sectors and 30
regions. Using the environmental emission coefficient, the carbon emission flow matrix
between regional grids can be calculated with the following equations:

f j =
cj

Xj
(5)

G = Fdiag(I − A)−1Ydiag, (6)

where F is the diagonal matrix of the direct carbon flow generating carbon emissions per
unit of GDP in the region, i.e., carbon emission density. Y is the diagonal matrix of the final
demand vector, and G is the carbon emission flow matrix after matrix multiplication. The
assumption is that the products or services obtained by each region from other regions
are completely used for regional use, and that all production inputs in the region come
from regional resources and can be used as the final use of the region. Therefore, the
embodied carbon emissions caused by trade flows in domestic regions only come from
regional emissions. Through the matrix calculation in the network, the transfer channels
and quantities of embodied carbon emissions in each region are obtained, so as to see the
actual carbon emissions and transfer at the consumer end of each region in the process of
national carbon emissions.

2.4. The Relationship between Monetary Trade Flow and Embodied Carbon Emissions

The traditional IO model does not consider the impact of trade on regional carbon
emissions, so the model needs to be adjusted and improved. When adding the influencing
factors of regional import and export trade, adjust the calculation method of embodied
carbon emission migration brought by interprovincial trade gradually, and consider the
impact of embodied carbon emissions brought by regional import and export trade.

∆Gk =
30

∑
i=1

Gik −
30

∑
j=1

Gkj (k = 1, 2, . . . , 30), (7)
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where ∆Gk represents the net carbon emissions from province K to other provinces or

regions;
30
∑

i=1
Gik represents the total embodied carbon emissions from the perspective of the

consumption of province K, while
30
∑

j=1
Gkj shows its total direct productive carbon emissions

from the perspective of production. A positive or negative value of ∆Gk means that the
embodied carbon emissions generated by consumption in province K are more or less than
those generated by production, respectively.

Similarly, the net momentum trade value flow can be calculated according to the
same principles:

∆Mk =
30

∑
i=1

Mik −
30

∑
j=1

Mkj (k = 1, 2, . . . , 30), (8)

where ∆Mk represents the net value flow of interprovincial monetary trade from province

K to other provinces;
30
∑

i=1
Mik represents the total monetary consumption of province K,

while
30
∑

j=1
Mkj represents the total monetary output of province K. A positive or negative

value means that the monetary consumption of province K is more or less than its monetary
production, respectively. The positive trade surplus and net carbon emissions are not
always consistent, but a large trade surplus is more likely to lead to positive provincial net
carbon emissions [34].

Based on the above model, we can obtain the net carbon flow network between
Chinese provinces caused by trade. We take the net carbon flow and balance of trade flow
of provinces as two statistical dimensions to carry out machine learning clustering.

2.5. Clustering Provinces by the Machine Learning Clustering Algorithm

In order to overcome the weakness of the traditional statistical method, we imported
the machine learning method to cluster the carbon flow network and trade flow network
of different provinces as two statistical data dimensions and analyze the characteristics of
different types of provinces and their roles in the carbon emission network.

The k-means clustering algorithm is one of the most popular and elegant cluster-
ing methods in machine learning. It is used to divide the dataset into k different and
non-overlapping clusters [35,36]. Under the background of machine learning, k-means clus-
tering analysis is an unsupervised task. It is a clustering algorithm based on the common
characteristics of the sample set. Firstly, the algorithm automatically selects k seeds as the
initial centroid of each class in class k. Then, it calculates the distance between each seed
and the centroid of each class and re-divides all seeds into class k according to the distance.
Furthermore, it recalculates the centroid of each class. The above calculation process is
iterated for as many times as necessary until the requirement of function convergence
is met; that is, the cluster’s center will not change. In our case, the k-means clustering
algorithm was used to establish a regional evaluation model according to the economic
carbon emission difference data in the IO model. The algorithm clustered the vectors
of n = 30 provinces. We set the sample dimension m = 2 (namely, provincial economic
difference and carbon emission difference) and divided them into clusters of quantity k
by the k-means algorithm to determine the provinces with high or low economic/carbon
emission differences with common characteristics.

In this study, we comprehensively clustered provinces through k-means clustering
and its components. The clustering results were evaluated by the elbow method and CH
method. We studied different clusters and then deeply analyzed the typical characteristics
of different provincial clusters. The programming was implemented using the Python
language to complete the k-means clustering.
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2.6. Data Sources

Most of the data used in this paper are from China carbon emission accounts and
datasets (CEADs) [37] and professional knowledge service systems for energy. In order to
facilitate calculation, all carbon emissions data in this study were converted into million
tons of carbon dioxide equivalents (MtCO2). Due to the cumbersome preparation of China’s
IO table, the mantissa of the year is prepared every 2nd and 7th year of each decade, so
2017 is the latest year for which data are available at present.

3. Results
3.1. Carbon Flows Based on Production and Consumption between 30 Provinces

According to the calculation results, we obtained the carbon flow network among
30 provinces in China and drew the interprovincial flow visualization diagram of the
embodied carbon flow network, as shown in Figure 2.
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From the data of Table 1, the following can be seen: (1) On the basis of calculating the
domestic technical level in the national IO table in 2017, the direct carbon analysis of carbon
emissions was carried out first. Based on the direct carbon emissions of all provinces in
China, Shandong has the highest direct carbon emissions, where direct carbon emissions
reached 784 MtCO2, followed by Hebei (660 MtCO2), Jiangsu (824 MtCO2), and Inner
Mongolia (452 MtCO2). (2) From the perspective of the carbon emissions flow network
based on production and consumption in each province (Figure 2), the province’s own
consumption products have the most embodied carbon, followed by the transfer to other
regions for emission. This is because the products produced in the region are generally used
to meet their own needs first, and the surplus part is used for export to other regions. In the
process of transferring embodied carbon emissions (Figure 3), 16 provinces (including Zhe-
jiang, Guangdong, and Beijing) are the inflow provinces of net embodied carbon emissions,
so they have an advantage in the allocation of production emission responsibilities for
direct carbon emissions. Meanwhile, 14 provinces (including Inner Mongolia, Shanxi, and
Hebei) are the outflow areas of net embodied carbon emissions. This means that according
to the existing carbon emission reduction allocation mechanism in China, the outflow
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regional provinces—as major producers—will bear greater pressure for reducing carbon
emissions. (3) The carbon emissions per unit output of different provinces in China are
shown in Figure 4, i.e., the environmental factors of carbon emissions. The provinces with
large carbon emissions per unit output are Ningxia (21.58 kg/102 CNY), Inner Mongolia
(19.13 kg/102 CNY), Xinjiang (15.8 kg/102 CNY), and Shanxi (5.34 kg/102 CNY), showing
that there are high carbon emissions per unit output in energy-rich areas. This also shows
that energy production is a great contributor to carbon emissions.

Table 1. Emissions and economic data of the IO table.

Province ∆Gk
(MtCO2)

∆Mk
(Billion CNY)

Value of Total Output X
(Billion CNY)

Carbon Emission Intensity
(CO2 Emissions Per X in

kg/Billion CNY)

Beijing 130.8447534 386.25 8057.62595353 0.10618573
Tianjin 21.30661562 −151.43 5477.25936850 0.26288875
Hebei −132.8549652 −339.44 9048.22766085 0.875669578
Shanxi −144.092038 −303.39 3552.66430072 1.43156913

Inner Mongolia −204.7213401 −226.33 3432.71953823 1.913488243
Liaoning −47.8913827 −2.85 5655.79638150 0.878448236

Jilin −26.26580856 −265.24 4168.24178385 0.490221102
Heilongjiang −52.87473351 −235.29 3451.64238694 0.80225821

Shanghai 18.1690189 −916.46 8595.22130804 0.228212284
Jiangsu 66.11943215 −229.12 23,163.05044022 0.327193738

Zhejiang 193.5345881 1144.43 13,686.24859557 0.280985829
Anhui −7.563860822 68.53 8880.76230130 0.430386974
Fujian 7.737647196 −146.74 8613.30414124 0.272798681
Jiangxi −4.671829386 −78.45 5425.54276535 0.422039993

Shandong −51.70723951 −463.87 23,655.20768753 0.353334056
Henan 11.57950805 49.27 13,630.94432928 0.368173852
Hubei 25.9937036 170.06 8667.56873359 0.382590306
Hunan 5.831142998 −45.97 7531.59592419 0.429733686

Guangdong 186.450015 413.68 23,171.18855864 0.24032389
Guangxi 3.454222982 67.18 4494.85337619 0.507005601
Hainan 11.54509415 80.70 1051.87564881 0.400775434

Chongqing 68.57056298 403.01 5101.27381082 0.314724855
Sichuan 35.49972612 237.48 9195.37610680 0.346740327
Guizhou −30.18334765 −13.11 3072.79321962 0.838513195
Yunnan 41.92336883 392.45 3705.88377753 0.537007932
Shaanxi −8.33299848 −40.84 5134.13032839 0.533741104
Gansu −21.43795239 −46.71 1709.14735799 0.889090504

Qinghai 1.145232259 26.77 621.48655149 0.860616388
Ningxia −24.98614166 71.46 827.83322521 2.157734511
Xinjiang −72.12099436 −6.04 2579.73318038 1.58061342
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3.2. Carbon Flows Based on Interprovincial Trade

By calculating the IO values of 30 provinces, from the perspective of the interprovincial
embodied carbon emission flow network, the carbon emission spillover areas—that is, the
areas with dominant carbon emission flows and forming a carbon emission surplus—are
the economically developed Zhejiang, Guangdong, and Beijing, among other places. The
important carbon emission inflow regions and the regions forming carbon emission deficits
are Inner Mongolia, Shanxi, and Hebei Provinces.

From Figure 5, we can easily observe that the regional consumption process of
13 provinces (including Zhejiang and Guangdong) is greater than their total regional output,
which means that these provinces consume the products and services of other provinces
that produce carbon emissions through trade activities, thereby occupying a dominant
position in the process of embodied carbon emissions. Due to the trade balance of emissions
among provinces, economically developed provinces (such as Zhejiang, Guangdong, and
Beijing) are net importers of embodied carbon emissions from interprovincial trade, while
developing provinces (e.g., Inner Mongolia, Shanxi, and Hebei) are mostly net exporters.
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On the basis of the above results, according to the national carbon emission flow
and trade flow in 2017, we can determine the trade balance of different provinces’ carbon
emissions and trade flows—that is, the two dimensions of the k-means clustering. It can
be seen from Figure 6 that if a province’s consumption increases more than its production,
its net carbon emission difference will also rise, reflecting that the net carbon emission
difference is related to the province’s total trade volume and the balance of trade. Although
it is not always the case that the trade balance and the net carbon emission difference of
provinces are positive, a large balance of trade is more likely to lead to a positive net carbon
emission difference.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 17 
 

 
Figure 5. Trade balance of different provinces. 

On the basis of the above results, according to the national carbon emission flow and 
trade flow in 2017, we can determine the trade balance of different provinces’ carbon emis-
sions and trade flows—that is, the two dimensions of the k-means clustering. It can be 
seen from Figure 6 that if a province’s consumption increases more than its production, 
its net carbon emission difference will also rise, reflecting that the net carbon emission 
difference is related to the province’s total trade volume and the balance of trade. Alt-
hough it is not always the case that the trade balance and the net carbon emission differ-
ence of provinces are positive, a large balance of trade is more likely to lead to a positive 
net carbon emission difference. 

 

Figure 6. Comparison of net trade flows and carbon emission flows of each province. Figure 6. Comparison of net trade flows and carbon emission flows of each province.



Sustainability 2023, 15, 9196 11 of 17

3.3. K-Means Clustering Results

According to the calculation results of the IO model mentioned above, the k-means
clustering algorithm was introduced to cluster the embodied carbon emission difference
and trade difference of 30 provinces. It can be seen from Figure 7a that there is an obvious
inflection point when k = 3. This allows us to tentatively evaluate the effects of numerical
clustering before and after based on k = 3.

The evaluation of the clustering effect mainly uses the internal index coefficient and
external index coefficient to evaluate the clustering effect, which is used to select the
appropriate number of clusters. In this study, the silhouette coefficient (SH) and Calinski–
Harabasz (CH) coefficient were used as the internal clustering evaluation indices (Figure 7b),
but it was found that when k = 3, the SH and CH indices reach opposite conclusions
(Table 2)—that is, the SH index is the largest and the CH index is the smallest, which shows
that the datasets of 30 provinces in this paper are not cluster structure data, leading to the
inconsistent evaluation of the two indices. Therefore, we referred to the external clustering
index known as the Davies–Bouldin index (DB). When k = 3, the minimum DB index is
obtained, which shows that the clustering result when k = 3 is reasonable. This also verifies
the results of the elbow method—that the best clustering value will be obtained when the
inflection point k = 3.
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Table 2. Evaluation results of different clustering indicators (CH, SH, and DB) obtained by different
clustering values.

Amount of Clusters Silhouette Score Davies–Bouldin
Score

Calinski–Harabasz
Score

3 0.6781 0.3464 63.0233
4 0.5678 0.4575 97.5296
5 0.5646 0.4543 118.9320
6 0.5571 0.3676 131.2678

The final clustering result is shown in Figure 8; moreover, it can be seen from Table 3
that the provinces with the same number are classified into one category. For example,
23 provinces (including Liaoning, Jiangsu, and Hunan) belong to the first category, while
Beijing, Zhejiang, and Guangdong are allocated to the second category, and the third
category includes Hebei, Shanxi, and Inner Mongolia. From the results of k-means machine
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learning algorithm, the 30 provinces were clustered into three categories to accurately
reflect the relationship between domestic embodied carbon emissions and trade flows.
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Table 3. Final results of k-means clustering analysis.

Cluster Provinces

Cluster 1 Beijing, Zhejiang, Guangdong

Cluster 2

Tianjin, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Anhui,
Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangxi, Hainan,
Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai,
Ningxia, Xinjiang

Cluster 3 Hebei, Shanxi, Inner Mongolia

From the clustering results in Figure 8 and Table 3, Cluster 1 and Cluster 3 have
obvious category characteristics. By comparing and analyzing the data in Table 1, Beijing,
Zhejiang, and Guangdong Provinces in Cluster 1 consume a large number of products
and services produced by other provinces through trade consumption in the embodied
carbon emissions and provincial trade relations. The interprovincial trade brought about
by this demand has led to a large amount of embodied carbon emissions transfer, so that
the embodied carbon emissions of the three provinces in this cluster are much higher than
their direct production carbon emissions. Cluster 3 is the exact opposite situation of Cluster
1. In the flow of embodied carbon emissions, Hebei, Shanxi, and Inner Mongolia—the
three typical provinces of Cluster 3—transfer large amounts of products and services
produced in the region to the “buyers” of Cluster 1, so as to realize the outflow of embodied
carbon to regions outside the province. From the perspective of the embodied carbon
emissions transfer of Cluster 1 and Cluster 3, it is unfair for Cluster 3 to make carbon
emission reduction policies only from the perspective of producer responsibility. There are
24 provinces in Cluster 2, which reflect that positive trade surplus and net carbon emissions
are not always the same, but a large trade surplus is more likely to lead to positive regional
net carbon emissions. Further analysis shows that the embodied carbon emission difference
and its trade flow difference in different regions show some convergence but are not
completely consistent.

4. Discussion and Policy Implementation
4.1. Distinct Roles of Different Regions in the Domestic Carbon Emission Network

Understanding the interconnected and intertwined dynamics between the economy
and the environment in complex socioeconomic systems is essential for balancing human
and natural development. Embodied carbon emissions provide a means to describe the
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intricate flows of economic and environmental interactions within society. It is crucial to
recognize the connections between carbon emissions and economic activities, and to identify
specific roles of different regions in order to implement targeted carbon reduction policies,
for the achievement of a harmonious and sustainable coexistence between humanity and
nature. Currently, the importance of implementing different carbon reduction policies for
different regions has been recognized and emphasized by many scholars [38–40]. Existing
research has focused on policy-level connections, although few studies have used machine
learning algorithms to identify the attributes of different regions. To fill this gap, our
research provides a new classification method for regional research on the embodied
carbon emissions from trade against the background of global carbon neutrality goals.
By considering the embodied carbon emissions in trade and regional characteristics, our
research provides a foundation for defining the carbon emission responsibilities of each
region [41]. Our findings contribute to the development of regional management strategies
and offer policy implementation suggestions.

Based on experimental calculations, we identified the regional roles determined by
the relationships between trade and carbon emissions in different regions of China. The
clustering analysis of the 30 provinces (as shown in Table 1) reveals the diversity in trade
and carbon flow characteristics among regions. This finding is consistent with previous
studies [17,19,42] emphasizing the variation in regional carbon emissions in the context
of trade. Regions within the same cluster have similar embodied carbon flow and trade
characteristics. According to the research results, economically developed provinces such
as Beijing, Zhejiang, and Guangdong, with the largest trade surplus and embodied carbon
emissions consumption, were identified as dominant “buyers” or “consumers” in the
carbon emission network, relying on trade channels to import products and services with
embodied carbon emissions. Due to the regional separation of production and consumption
of goods and services in inter-regional trade, the provinces in Cluster 1 have become the
regions with the most obvious benefits from the division of carbon reduction responsibilities
under the producer responsibility principle.

Conversely, provinces such as Hebei, Shanxi, and Inner Mongolia, with the largest
trade deficits and embodied carbon emissions outflows, were identified as “sellers” or
“producers”, indicating their relatively inferior net export status in the carbon emission
network [43]. Guangdong is the region with the highest embodied carbon emissions
consumption, while Inner Mongolia is the province with the largest carbon emissions
outflow. While providing strong support for the economic development of other provinces,
the provinces of Cluster 3 have become the most severely damaged areas in terms of carbon
emission reduction responsibility under the principle of producer responsibility.

These findings reveal that the assessment of carbon emissions from a production
responsibility perspective may underestimate the actual emissions. When considering the
embodied carbon emissions transferred through trade, a different conclusion arises. Devel-
oped nations or regions tend to be net importers of carbon emissions, while developing
nations or regions act as net exporters of emissions.

Our findings support the existing research that emphasizes the need for regions
with net carbon emission inputs to assume greater responsibility for reducing carbon
emissions [44,45]. The economic disparities among provinces, as evidenced by the de-
creasing trade volume from east to west and from south to north, reflect the imbalanced
distribution of carbon emissions. For instance, provinces in Cluster 1—characterized by
developed economies and high trade volumes—transfer a significant amount of direct
carbon flow to net-output provinces through trade circulation. Consequently, it is essential
for the net-input regions to shoulder more social and carbon emission reduction responsi-
bilities by sharing their regional capital and technological advantages [46]. This mechanism
would support the net-output regions in reducing their carbon dioxide emissions per unit
of output value through financial support and technological improvements [47].
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4.2. Policy Implementation

To address the challenges posed by embodied carbon emissions in trade, it is crucial to
develop effective regional carbon emission reduction plans. The existing climate emission
framework systems, such as the IPCC guidelines for national greenhouse gas inventories
and the Kyoto Protocol, advocate for accounting for greenhouse gases generated within
national territories, following the producer responsibility system [48]. However, relying
solely on a production-responsibility-based carbon emission reduction scheme may result
in unfair distribution and hinder the efficiency of regional carbon emission reduction
efforts. In light of this, a carbon emission accounting system that combines the production
responsibility system and the trade income principle can be adopted to formulate more
equitable regional carbon emission reduction schemes [16]. The corresponding policy
implications for the different regions clustered through our research are as follows:

For “producers”, it is crucial to increase the allocation of carbon emission rights and
optimize the regional allocation index system of allowable carbon emissions. This can
be achieved by promoting the upgrading of industrial technologies and incentivizing the
production, use, and advancement of clean energy to reduce carbon emission intensity per
unit of output value [49].

For “consumers”, there are two key aspects to consider: Firstly, sharing advanced
management and production experience with other regions can facilitate their transition
towards low-carbon practices. Secondly, implementing a carbon tax on industrial supply
can provide economic incentives for carbon emission reduction. Through the allocation
of special funds for carbon tax at the macro level, preferential support can be given to
“producers” and labor groups, thereby minimizing the social challenges and adverse effects
(e.g., poverty) resulting from low-carbon transformations. Studies have shown that carbon
taxation can effectively incentivize carbon emission reductions and support sustainable
development [50,51].

Moreover, reducing the total carbon emissions resulting from trade circulation ne-
cessitates not only local improvements in technical conditions and in production and
consumption levels, but also the optimization of production and consumption structures
across all regions along the trade path. Therefore, achieving worldwide or countrywide
carbon emission reduction goals requires robust inter-regional cooperation.

The “carbon peaking and carbon neutrality goals” in all regions should not be pursued
uniformly. Instead, it is crucial to strike a balance between overall and local perspectives,
development, and emission reductions, and to formulate comprehensive plans that en-
compass all regions. This can be achieved through various means, including clarifying
emission reduction responsibilities, regulating carbon emissions per region, and strength-
ening regional cooperation. Collaborative efforts can include knowledge exchange, sharing
best practices, and jointly developing innovative solutions for reducing carbon emissions.
Research highlights the significance of inter-regional collaboration in achieving sustainable
development and effective carbon emission reductions [52].

By adopting these strategies, regions can work together to address the challenges
posed by embodied carbon emissions in trade and contribute to the global carbon neutrality
goal. This holistic approach promotes fairness, efficiency, and cooperation, allowing for a
comprehensive and effective reduction in carbon emissions.

5. Conclusions

Adopting IOA and the k-means clustering algorithm, we first investigated the car-
bon emissions embodied in the multilateral trade of 30 provinces of China in this work.
Considering the differences between direct and embodied carbon emissions across the
provinces, we identified the direction of carbon emission transfers in trade, as well as
the characteristics of different regions. Moreover, we propose that different carbon re-
duction policies should be recommended for different regions according to the k-means
clustering. Essentially, the regions classified as either “producers” or “consumers” should
have corresponding measures for the implementation of carbon reduction policies, and the
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impact of inter-regional trade on the embodied carbon emissions should be carefully taken
into account.

We believe that the outcomes of this research have valuable implications for policy-
makers and regional managers to formulate effective carbon emission reduction strategies
and policies. By acknowledging the distinct roles of regions in the carbon emission net-
work, identifying the responsibilities of net-input and net-output regions, and promoting
inter-regional cooperation, we can assist the advancement in reaching the goal of carbon
neutrality in large countries such as China with significant regional imbalances of energy
production and carbon emissions.

Despite the valuable insights gained from this research, there are still some gaps to be
further filled with regard to the present work. Firstly, our analysis was mainly based on
data from the IO table in 2017; thus, the results may not fully capture the dynamic changes
in carbon emissions and trade patterns in more recent years. Secondly, this study focuses
on China’s provinces, and the findings may not be directly applicable to other countries
or regions with different economic structures and trade patterns. We intend to expand
our analysis methodology of embodied carbon emissions and trade dynamics to other
countries and regions. Future research is highly desirable to address these limitations and
advance our understanding of the complex interplay between regional trade, embodied
carbon emissions, and carbon emission reduction strategies.
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