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Abstract: In order to promote the cost reduction and efficiency improvement of the logistics distri-
bution process and to guarantee the safety of goods transportation, this paper studies the portfolio
optimization of goods loading and the problem of simultaneous pickup and delivery vehicle routing.
A balanced loading constraint was introduced to restrict loading through two aspects of axle weight
bearing and lateral center-of-gravity offset. With the shortest total route length as the objective, this
paper constructs a simultaneous pickup and delivery vehicle routing model with three-dimensional
(3D) balanced loading constraints (3BL-VRPSPD). Additionally, a hybrid tabu search (TS) algorithm
embedded loading test was proposed to solve this problem. Firstly, a heuristic insertion method was
applied to determine the initial routing scheme, and the node swapping and relocation operators
were designed to construct the tabu neighborhood scheme for routing optimization. On this basis,
the 3D balanced loading was incorporated into the routing iteration process. A balanced loading
algorithm, combining multiple-indicator ordering and maximum space division strategies (MOMD),
was formulated to develop a 3D-balanced loading plan for goods with a pickup and delivery vehicle
routing scheme. Finally, standard instances verified the effectiveness of the method. The results show
that the proposed method can effectively optimize 3BL-VRPSPD and outperform other algorithms.

Keywords: simultaneous pickup and delivery problems; three-dimensional balanced loading; tabu
search algorithm; goods loading algorithm

1. Introduction

As an important part of the modern logistics system, transportation and distribution
services assume a significant role in supporting economic and social development. At
present, transportation costs still occupy the largest part of the total cost structure of social
logistics. Sustainable social and economic development is constrained by high logistics
costs. Thus, it is clear that cost reduction and efficiency improvement are urgent issues to
be solved in the logistics and transportation industry [1,2]. The vehicle routing problem
(VRP) and goods loading layout problem are important aspects of the logistics distribution
process, and the portfolio optimization of these two problems is of great significance for
cost reduction and efficiency improvement.

As an extension of the VRP, the simultaneous pickup and delivery vehicle routing
problem (VRPSPD) is an abstract representation of a complex distribution model. The
VRPSPD means that both the pickup and delivery tasks need to be completed at each
customer node. So, it is widely used in several fields, particularly in situations where
customer pickup and delivery needs are separated [3,4]. For example, in the courier
industry, parcels are delivered to customers while also providing pickup services. In
addition, in the food, electronics, automotive and other industrial manufacturing industries,
the raw materials provided by the supply chain need to be picked up and returned to the
warehouse, while the manufactured products need to be delivered to the customers. In
addition, as environmental issues are of wide concern, the closed-loop system of “resource-
product-recyclable resource” is widely used. The delivery of goods not only needs to
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deliver products to customers, however, it also needs to recycle various kinds of packaging
or used parts to realize the recycling of resources. In an actual distribution scenario, the
goods transported by the vehicles have three-dimensional (3D) dimensions, as well as
weight attributes. In particular, goods with large volumes can easily result in irrational
layout schemes, leading to the predicament of satisfying the volume loading limit but still
being unable to load, resulting in wasted space. Therefore, when studying the VRPSPD, it
is necessary to consider not only the traditional routing constraints but also the 3D loading
constraints. Moreover, in the field of goods transportation, where high demands are placed
on the center of gravity balance, such as in the transportation of household appliances,
furniture, and construction materials, ensuring the safety of goods transportation is critical
in improving the durability and service life of the vehicle.

This paper proposes the simultaneous pickup and delivery vehicle routing problem
with 3D balanced loading (3BL-VRPSPD). In particular, a dynamic balance loading con-
straint is introduced. It includes two parts: the axle weight support constraint and the
lateral center-of-gravity offset constraint. The axle weight support constraint is to limit
the distributed stress of goods loading so that the load in the vehicle compartment meets
the requirements of each axle’s load-bearing capacity. The lateral center-of-gravity offset
constraint is to limit the total center-of-gravity range of the goods in the carriage. This is
carried out to reduce or avoid an excessive center-of-gravity shift and stress concentration
due to the process of cargo transportation so as to improve the safety and stability of the
goods distribution process.

Currently, there are more studies focused on vehicle routing optimization, while
vehicle scheduling optimization that integrates two critical factors of 3D loading and
simultaneous pickup and delivery is less commonly studied. However, in reality, the
distribution problem faced by logistics enterprises often involves a combination of the two
aforementioned problems. Therefore, this paper aims to integrate the consideration of 3D
loading and simultaneous pickup and delivery while also introducing balanced loading
constraints to make the problem more applicable and realistic. The overall framework of
this study is shown in Figure 1.
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The structure of this paper has been organized in the following manner: Section 2
presents a comprehensive Literature Review, which offers a summary of current research
on the VRPSPD. The review offers a horizontal comparison and proposes the research
direction for this paper. Section 3 offers a Problem description and Model Construction,
which outlines the VRPSPD and goods loading optimization concepts. In this section, the
balanced loading constraint is also introduced, and a comprehensive model is established.
Section 4, Model Solving Algorithm Design, analyzes the complexity of the problem and
proposes a hybrid heuristic algorithm with the tabu search (TS) framework embedded
with loading tests. Section 5, Case Study, validates the proposed method by applying
standard case scenarios and verifies the algorithm effect by comparing different algorithms.
Finally, Section 6, Conclusion, summarizes the main findings of the paper and proposes
key research directions for future studies.

2. Literature Review

With the development of logistics, the VRP has received more and more attention
and has gradually developed into a rich and active research area. It was first proposed by
Dantzig and Ramser in 1959 [5]. With the in-depth study of practical problems, a large
number of variant studies have been generated on the basis of the traditional VRP, such
as the capacitated vehicle routing problem (CVRP) [6], vehicle routing problem with time
window (VRPTW) [7], vehicle routing problem with simultaneous pickup and delivery
(VRPSPD) [8]. At the same, a large amount of research attempts have been devoted to
designing efficient optimization methods in order to improve the solving efficiency for
this problem, such as nested and joint algorithms [9], genetic algorithms [10,11], large
neighborhood search algorithms (LNS) [12], hybrid metaheuristic algorithm [13], ant
colony optimization algorithm [14], grey wolf optimization algorithm [15] and so on.
Abbaspour and Aghsami [16] conducted a comprehensive comparative analysis of the
performance of 13 different meta-heuristic algorithms, including the dragonfly algorithm
and the grasshopper optimization algorithm. These algorithms gradually improve the
solvency and efficiency of the VRP.

As an important extension of VRP, VRPSPD is an abstract representation of a complex
distribution model that is also receiving increasing attention from scholars. This problem
was first proposed by Min [17] in 1989. On this basis, scholars have studied the extension
problems for VRPSPD, which include the introduction of time window constraints, VRPSPD
with heterogeneous fleet, green VRPSPD, stochastic VRPSPD and so on.

Angelelli and Mansini [18] introduced the VRPSPD with time windows and proposed
a branch-and-cut-and-price algorithm. Liu and Tang [19] proposed a novel memetic Algo-
rithm with an efficient local search and extended neighborhood to solve the VRPSPD with
time windows. Jin and Li [20] investigated a special VRP with realistic constraints, includ-
ing product classification, pickup–delivery, and time windows, in addition to proposing a
hybrid algorithm combining tabu search and artificial immune algorithms.

Avci and Topaloglu [21] extended VRPSPD by assuming that the fleet is heterogeneous
and developed a hybrid local search algorithm that combines a non-monotonic threshold
adjustment strategy with TS. Their threshold function has an adaptive property capable
of self-adjustment. Nepomuceno and Saboia [22] proposed a fast randomized algorithm
using the nearest neighbor strategy to tackle an extension of the VRPSPD in which the fleet
of vehicles is heterogeneous.

In recent years, numerous researchers have focused on the study of green VRP and
have expanded their focus to include the green VRPSPD.

Li [23] studied green VRPSPD in the context of steel distribution and designed a
mixed-integer linear programming model. The improved intelligent water drop algorithm
was applied, which was compared with the genetic algorithm to verify its practicality.
Qu and Zhang [24] investigated VRPSPD in the context of green cold chain logistics. A
multi-objective optimization model considering carbon emission, route cost, and time
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window was constructed. Furthermore, the multi-objective optimization algorithm with
multiple neighborhood operator searches was designed to solve it.

As for stochastic VRPSPD, Hou and Hong [25] designed a discrete difference evo-
lutionary algorithm to solve the routing optimization model. Subsequently, Zhang [26]
constructed a chance-constrained programming model to treat the problem statically, with
the scattering search algorithm designed to construct the solution.

On the other hand, VRPSPD has been investigated by studying different solution
algorithms, and the research results can be classified into three categories: exact solution
algorithms, heuristic algorithms and intelligent optimization algorithms.

Subramanian worked on solving this problem using exact algorithms. In 2011 [27],
a lazy branch-and-shear algorithm for the VRPSPD was proposed. In 2013 [28], a branch
pricing algorithm was proposed for the VRPSPD, validated on a public dataset. Although
exact algorithms for VRPSPD have been able to solve instances with up to 200 customer
points, the prohibitive runtime has also led the research direction toward intelligent heuris-
tic algorithms. Dethloff [29] was among the first researchers to use heuristic algorithms
to study the VRPSPD. They pointed out the importance of VRPSPD in reverse logistics
and proposed an algorithm based on the sparing insertion method, which also provided
a common dataset for the VRPSPD. Kalayci [30] designed a hybrid heuristic algorithm to
solve VRPSPD. The storage structure of the ant colony system was used in conjunction with
the variable neighborhood search algorithm (VNS) to provide a perturbation mechanism
for the algorithm using pheromones. Zhang and Chen [31] proposed a novel dynamic
multi-stage failure-specific cooperative (DMS-FSC) recourse strategy for solving the route
failure which occurs in the VRPSPD. Additionally, they designed an extended genetic
algorithm with a new multi-stage paired vectors representation scheme that is offered to
deal more effectively with the proposed DMS-FSC strategy. Oztas and Tus [32] proposed
a hybrid algorithm combining the iterated local search, variable neighborhood descent
and threshold acceptance metaheuristics to solve the VRPSPD. Yu and Aloina [33] cast
the VRPSPD into a mixed-integer linear programming model and proposed a simulated
annealing heuristic with a mathematical programming-based construction heuristic to
solve the VRPSPD.

In summary, considerable progress has been made in the extension problem and
algorithm optimization of VRPSPD. Various heuristic algorithms have been developed to
solve the problem and have achieved promising results, which provide a solid foundation
for further research. However, research on the problem of VRPSPD with 3D loading is
relatively scarce, and little attention has been given to balanced loading constraints, which
involve the safety of loading and unloading during the goods transportation process. Since
3BL-VRPSPD can closely reflect actual distribution scenarios and improve the safety of
goods transportation, optimizing the combined problem is critical to practical logistics
and distribution and has important applications in the field of logistics and distribution.
Therefore, it is necessary to explore optimization theories for this problem by integrating
practical constraints.

3. Materials and Methods
3.1. Problem Description

The 3BL-VRPSPD is shown in Figure 2 and can be described as follows: For a distribu-
tion center, there are a certain number of the same types of vehicles to serve customers and
meet the customer’s pickup and delivery demand simultaneously. The quantity of goods
that each customer needs for delivery and pickup is determined. The distribution centers
assign vehicles to visit customers according to the order requirements. These distribution
centers need to comprehensively consider and make rational decisions on the distribu-
tion vehicles, the distribution sequence, schemes and goods-loading solutions under the
constraints of satisfying the demands of the customers, the maximum loading capacity of
the vehicles, and 3D balanced loading limitations, to achieve the goal of the shortest total
vehicle routing.
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Therein, the assumptions of the 3BL-VRPSPD are listed as follows: (i) There is only one
distribution center, which is the starting and ending point of the vehicles; (ii) the vehicles
at the distribution center are all tail-loading trucks of the same specifications; (iii) each
customer is visited by the vehicle only once, and the empty vehicle can satisfy the demands
of a single customer; (iv) the goods have homogeneous, rectangular shape characteristics,
the center of gravity of the goods is located in the geometric center and the goods cannot
be moved during transit.

3.2. Notations

For easy reference, this section gives the description of notations that will be used in
this paper, which are listed in Table 1.

Table 1. Description of notations.

Notation Description

G(N, E) The complete digraph to represent the distribution network
N = {0, 1, . . . , n} The set of customer nodes

E The set of effective route
R The set of vehicles
Nr The set of nodes accessed by vehicle r

Ii = {Ii1, Ii2, . . . , Iik} The set of goods of custom i
pi(i = 1, 2, . . . , n) The pickup demand of node i
di(i = 1, 2, . . . , n) The delivery demand of node i

yij The pickup volume of vehicle passing through route (i, j)
zij The delivery volume of vehicle passing through route (i, j)
dij The distance from point i to point j/(km), ∀i, j ∈ N(i 6= j)
c0 The weight of empty vehicle/(kg)
c The rated load of vehicle/(kg)
c1 The maximum front axle weight of vehicle/(kg)
c2 The maximum rear axle weight of vehicle/(kg)
g The distance between front and rear axles/(m)
β The lateral shift range of center of gravity/(m)

L, W, H The length, width and height of the carriage/(m)
vik The volume of goods Iik for customer i/(m3)
bik The weight of goods Iik for customer i/(kg)
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Table 1. Cont.

Notation Description

aik The floor space of goods Iik for customer i/(m2)
θ The ratio of support surface
fik The fragility of the goods

lik, wik, hik The length, width and height of the goods/(m)

xijr
0–1 variable,

1 if vehicle r traverses arc (i, j), ∀i, j ∈ N(i 6= j) and 0, otherwise

3.3. Formulation of the 3BL-VRPSPD

Based on the comprehensive considerations above, with the shortest total vehicle travel
path as the optimization objective, the optimization model of 3BL-VRPSPD is constructed
as follows:

min ∑
i∈N

∑
j∈N

∑
r∈R

dijxijr, (1)

which is subject to:

∑
j∈N

∑
r∈R

xijr = 1 ∀i ∈ N\{0} (2)

∑
j∈N

xijr − ∑
j∈N

xjir = 0 ∀i ∈ N, r ∈ R (3)

∑
i∈N

x0ir ≤ 1 ∀r ∈ R (4)

∑
j∈N

x0jr = 1 ∀r ∈ R (5)

∑
j∈N

xijr−∑
j∈N

xjir = 0 ∀i ∈ N\{0}, ∀r ∈ R (6)

∑
i∈N

xi0r = 1 ∀r ∈ R (7)

∑
i,j∈N

(
dijxijr

)
≤ s ∀r ∈ R (8)

∑
i,j∈Nr

xijr ≤ Nr − 1 ∀r ∈ R (9)

yij + zij ≤ c ∑
r∈R

xijr ∀i, j ∈ N (10)

∑
i∈N

yij − ∑
i∈N

yji = pi, ∀j ∈ N\{0} (11)

∑
i∈N

zji − ∑
i∈N

zij = di, ∀j ∈ N\{0} (12)

yij, zij ≥ 0 ∀i, j ∈ N (13)

∑
i∈Nr

∑
k∈Mi

bik ≤ c ∀r ∈ R (14)

∑
i∈Nr

∑
k∈Mi

vik ≤ L×W × H ∀r ∈ R (15)
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(max(xrik′ , xrik) ≥ min(xrik′ + lrik′ , xrik + lrik))∪
(max(yrik′ , yrik) ≥ min(yrik′ + wrik′ , yrik + wrik))∪
(max(zrik′ , zrik) ≥ min(zrik′ + hrik′ , zrik + hrik)) = 1

∀i ∈ Nr, ∀k, k′ ∈ Mi, ∀r ∈ R

(16)

max(zrik′ , zrik) = min(zrik′ + hrik′ , zrik + hrik)
∀i ∈ Nr, ∀k, k′ ∈ Mi, ∀r ∈ R

(17)

(xrik + lrik ≤ L) ∩ (zrik + hrik ≤ H) ∩ (yrik + wrik ≤W) = 1
∀i ∈ Nr, ∀k ∈ Mi, ∀r ∈ R

(18)

Aik =

{
aik, zik = 0
∑ ∆aik, zik 6= 0

∀k ∈ Mi, ∀i ∈ Nr (19)

Aik ≥ θaik ∀k ∈ Mi, ∀i ∈ Nr (20)

( fik′ = 1) ∪ (( fik′ = 0) ∩ ( fik = 0)) = 1 ∀k, k′ ∈ Mi, ∀i ∈ P (21)

∑
i∈Nr

∑
k∈Mi

(
bik ×

(
xrik +

lik
2

))
≥ g× ∑

i∈Nr

∑
k∈Mi

bik − g× c1

∀r ∈ R
(22)

∑
i∈Nr

∑
k∈Mi

(
bik ×

(
xrik +

lik
2

))
≤ g× c2 ∀r ∈ R (23)

∣∣∣∣∣∣∣∣
∑

i∈Nr

∑
k∈Mi

(
bik ×

(
yik +

wik
2
))

+ c0 × W
2

∑
i∈Nr

∑
k∈Mi

bik + c0
− W

2

∣∣∣∣∣∣∣∣ ≤ β ∀r ∈ R. (24)

Equation (1) indicates the objective function, which is the shortest route length.
Equations (2) and (3) indicate that each node can be visited only once. Equation (4) indicates
that the customers on each route can only be visited by the same vehicle. Equations (5)–(7)
indicate that each vehicle starts and ends at the distribution center. Equation (8) indicates
the maximum vehicle mileage constraint. Equation (9) indicates the avoidance sub-circuit.
Equation (10) indicates the load constraint of the vehicle. Equations (11) and (12) indicate
the flow conservation constraint for pickups and deliveries. Equation (13) indicates the
non-negative volume of pickups and deliveries for each customer. Equations (14) and (15),
respectively, indicate that the total weight and volume of the goods do not exceed the rated
weight and effective volume. Equation (16) indicates that the position of the cargo cannot over-
lap. Equation (17) indicates that the goods cannot be overhanging. Equation (18) indicates that
the goods cannot exceed the effective loading space of the vehicles. Equations (19) and (20)
are support-surface constraints. Equation (21) is the fragility constraint, as only fragile
goods can be placed above the fragile goods, and non-fragile goods above the fragile goods
are not required. Equations (22) and (23) indicate the vehicle longitudinal-axle-weight
constraint. Equation (24) indicates the goods’ lateral center-of-gravity offset constraint.

4. Model-Solving Algorithm Design
4.1. Framework of the Solution Mechanism

The solution of 3BL-VRPSPD involves two aspects, namely, the route planning of the
pickup and delivery vehicles and the 3D balanced loading of goods at nodes. Therefore,
this paper proposes a hybrid heuristic algorithm with TS as the framework embedded in
the goods loading link. It is proposed to incorporate goods loading into the inspection link
of route planning and integrate the feasibility judgment of 3D balanced loading into the
routing optimization process. In this paper, we use TS to optimize the routing and design a
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3D balanced loading algorithm based on multiple-indicator ordering and maximum space
division (MOMD) to complete the goods loading of nodes. The proposed algorithm of
simultaneous pickup and delivery vehicle routing optimization is based on TS with 3D
balanced loading (TS-MOMD). The basic flow of the algorithm is shown in Figure 3.
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4.2. The Design of TS-MOMD Algorithm
4.2.1. Initial Solution Construction

The problem characteristics are analyzed, and feasible initial solutions are constructed
using an insertion heuristic algorithm. In this way, high-quality initial solutions are obtained
to lay the foundation for subsequent TS.

Firstly, start a vehicle, select the customers ni that are feasible to load, and if there are
multiple customers that can be loaded, select the customer with the shortest distribution
routing to form the distribution route (n0,ni, n0), i.e., select the customer with the smallest
routing length doi + di0 to insert into the routing.

Then, among the currently unloaded customers, select the customer nj with loading
feasibility. If there are multiple loadable customers, the customer with the shortest routing is
selected. Assume that the existing distribution route is (n0,n1, n2, . . . , nk, nk+1, . . . , n0) and
the distribution routing

(
n0,n1, n2, . . . , nk, nj, nk+1, . . . , n0

)
is formed after loading customer

nj. Select the customer node with the largest path-saving value dkj + djk+1 − dkk+1 and
insert the routing. If there is no customer that meets the feasibility of loading, then move to
the previous step. If all customers are loaded, then output the initial routing scheme S0.

4.2.2. Neighborhood Structure Construction

Independent parallel node swapping and relocation operators are designed to con-
struct neighborhood schemes based on intra-routing and between different routings. The
operator is shown in Figure 4.
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1. Node exchange operator within routing

Select a transport routing in the current routing scheme, and randomly select two
customer nodes in that routing to exchange and form a new route. Take the example shown
in Figure 4, the randomly select route 1, then randomly select customer nodes i and j in
that routing, and exchange nodes i and j to form a new routing route 1′.

2. Node relocation operator within routing

Select a transport routing in the current scheme, select m consecutive customer nodes
of that routing, and relocate these m nodes to form a new route. If m = 1, randomly select a
node and insert it into other positions of this routing. When m = 2, randomly select route 1
in the current scheme, relocate nodes j and j + 1 of route 1 to between nodes i and i + 1 to
form a new route. As shown in Figure 4, if more than one position can satisfy the constraint,
the position with the smallest route length is selected to insert the node.

3. Inter-routing node exchange operator

Select two routes in the current scheme, select a node in each route respectively, and
form two new routes after the exchange. As shown in Figure 4, after selecting route 1 and
route 2, node i is randomly selected from route 1, node j is randomly selected from route 2,
and node i and node j are exchanged to form two new routes. If more than one position
can satisfy the constraint, the position with the smallest route length is selected to insert
the node.

4. Inter-routing node relocation operator

Select two routes in the current scheme, select a node at random from one and insert it
into the other to form two new routes. As shown in Figure 4, node i is randomly selected
from route 1 to transfer between node j and j + 1 of route 2 to form two new routes. If more
than one position can satisfy the constraint, the position with the smallest route length is
chosen to insert the node.

4.2.3. The MOMD Algorithm for 3D Balanced Loading

The key of the MOMD algorithm is the matching of the effective loading space and 3D
goods. In this paper, this is achieved by designing a multiple-indicator ordering strategy
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and a maximum-space-division positioning strategy. This algorithm is used to perform
goods loading at each node and is used to test the optimized routing scheme.

1. Loading and positioning rules

The goods loading and positioning consists of three parts: the division of load space,
update of load space and selection of available space. In this paper, the maximum space
division (Figure 5) method represents the remaining space; set F is defined to represent the
loadable space. The original loadable space is the whole rectangular carriage, and after the
first goods are placed in the carriage, the remaining space is divided into three maximum
covering rectangles according to the maximum space partitioning idea.
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For the space update, when the goods of the delivery space are delivered to the
node, and if two planes of this space coincide with the bottom and front of the carriage,
respectively, the pickup space is transformed for loading the goods, and then the set F of
available spaces is updated.

The rule of selecting the loadable space is in the order of the available space coordinates
x > z > y. When loading the goods, the loading space for trying the next piece of the
goods is selected according to the principle of front to back, bottom to top and left to right.

2. Loading and ordering rules

Based on the multiple-index ordering strategy, four loading sequences are obtained
by sorting the goods according to weight, volume, bottom area from large to small and
fragility from small to large. Sequence selection was performed in the order of weight >
volume > bottom area > friability.

3. Design of MOMD algorithm

In this paper, based on the multi-index ordering strategy and maximum-space parti-
tioning strategy, the 3D balanced cargo-loading algorithm (MOMD) is designed as follows:

Input: goods information
Output: the loading scheme B and the remaining space set F
Step 1: Define the goods set of customers i as Ii, the goods loading scheme set of i is bi,

initialize bi = ∅, j = 1, k = 1;
Step 2: Based on the multi-index ordering strategy, the goods are sorted by weight,

volume, bottom area, and fragility. In order to obtain four sets of loading sequences
e = {e1, e2, e3, e4} turn to Step 3;

Step 3: Load the goods according to the first sequence in the set of loading sequences
e1; use ej to sort the goods Ii to obtain ej = {Ii1, Ii2, . . . , Iik}; if all sequences have been tried,
i.e., e = ∅, turn to Step 7. Otherwise, remove this sequence from the set e and update the
set e, and turn to Step 4;

Step 4: Load goods Iik of ej according to the maximum space partitioning strategy. If
ej = ∅, turn to Step 6, otherwise, turn to Step 5;

Step 5: If Iik is successfully placed in the load space and the load constraint is satisfied,
remove it from the set ej, update ej, bi and F and turn to Step 4; otherwise, the load is deemed
to have failed and the next load sequence is attempted, in which case, turn to Step 3;

Step 6: Perform a balanced loading test on the loaded goods. If passed, determine
that the goods of customer i is successfully loaded, and update the set of goods loading
solutions B and F, and turn to Step 7, otherwise, to Step 3;
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Step 7: If bi = ∅, it means that the goods of customer i are not loaded successfully,
otherwise, it means successful loading, and output the loading scheme B and the remaining
space set F.

4.2.4. Design of TS-MOMD Algorithm

The TS is an iterative search algorithm that seeks progressively superior neighborhoods
and utilizes memory to guide the search process. In this study, four types of domain
construction methods are designated as tabu objects; the objective function serves as the
evaluation criterion for the solution. When a neighborhood solution is searched, the
objective function formula is used to evaluate the solution by computing the length of
its total route. Based on problem characteristics and experimental calculation results,
the maximum number of iterations for TS is set as the stopping criterion. The proposed
TS-MOMD algorithm is as follows:

Input: set of customers N, set of goods Ii, rated by weight D, carriage length L, width
W and height H;

Output: optimal solution Sbest, objective function value f ;
Step 1: The initial routing scheme S0 is generated, and its corresponding loading

scheme is B0, both of which form a temporary solution Stmp. Initialize the taboo table
TL = null, taboo length len, maximum number of iterations tmax, number of iterations
t = 0, current optimal solution Sbest = Stmp.

Step 2: Generate the set of routing neighborhood schemes SN , using the intra-route
node exchange operator, intra-route node relocation operator, inter-route node exchange
operator and inter-route node relocation operator.

Step 3: The MOMD algorithm is called to perform the loading test on SN . If it can
complete the loading of goods at all nodes and satisfy the 3D balanced loading constraint,
the loading scheme is obtained, and the routing scheme and the loading scheme together
constitute the neighborhood solution, go to Step 4; if the test is not passed, the node
exchange or repositioning of the original route is removed, go to Step 2.

Step 4: The solution evaluation criterion is applied to rank the neighborhood solutions.
If the optimal neighborhood solution meets the amnesty criterion, i.e., the route length of
optimal neighborhood solution is less than the Stmp, the optimal neighborhood solution is
assigned to Stmp; otherwise, the Stmp remains unchanged.

Step 5: If the route length of the current temporary solution is better than the current
optimal solution, then Sbest = Stmp. Add the taboo objects of S to the TL, update the TL
and t = t + 1.

Step 6: Determine whether the iteration count termination rule is satisfied; if t > tmax,
the algorithm terminates and outputs the Sbest and f , otherwise, it continues to execute
Step 2~Step 6.

5. Computational Experiments

The experiments and experimental results based on a large number of widely used
VRPSPD instances are given and compared with existing methods. The algorithm is coded
with JAVA, using the IntelliJ IDEA platform, and the experimental machine is configured
with Windows 10 Professional 64-bit OS, which runs on an Intel(R) Core (TM) i54200M @
2.50 GHz, 8.0 GB RAM PC.

5.1. Testing Instances and Parameters

In this paper, we adopt the classical VRPSPD test dataset proposed by Salhi S [34]. We
selected 14 data sets from CMT1X-CMT14X. The size and serial numbers of the instances
and the number of customer nodes per set of instances are shown in Table 2. Since the
initial data set does not have data on goods, the test data set is constructed by adding the
3D information of goods for each node, which is constructed as follows:

1. The number of the demands of each customer is a random number from 1 to 3, and
each node randomly generates the goods to be picked up or delivered.
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2. The length, width and height of the goods is randomly generated from the intervals
[0.1 L, 0.5 L], [0.1 W, 0.5 W], [0.1 H, 0.5 H]. The weight of the goods are randomly
generated from [0.05c, 0.3c]. Fragile goods account for 25%, and the minimum support
area of the goods is 75% of its own area.

3. The length, width and height of the vehicle are 6 m, 2.5 m and 3 m, and the rated load
is 45,000 kg; the load capacity of both the front and rear axles is 22,500 kg, and the
allowable lateral offset of the center of gravity is 0.75 m.

Table 2. Standard Instance Information.

Instance Size Instance Number Number of Nodes

Small Scale

CMT1X 50
CMT6X 50
CMT2X 75
CMT7X 75

Large Scale

CMT3X 100
CMT8X 100

CMT12X 100
CMT14X 100
CMT11X 120
CMT13X 120
CMT4X 150
CMT9X 150
CMT5X 199

CMT10X 199

5.2. Computational Results

This paper sets the initial tabu length as len = 50 and the maximum number of iterations
as tmax = 800. Fourteen groups of standard arithmetic cases are tested using 10 experiments
per group, and the results are averaged. Table 3 summarizes the experimental results, which
are analyzed for the stability of the optimal deviation solution. To facilitate comparison,
we select the research literature on VRPSPD [34] and 3L-VRPSPD [35] using their optimal
total distance traveled, number of vehicles and computation time as reference values. The
percentage gap (GAP) is applied to compare the calculation results, where a positive GAP
indicates that the method proposed in this paper (TS) yields better results and vice versa
for the literature method.

Table 3. Instance calculation results.

Instance
Vehicle Distance Time

Best Adv r% Best Adv d% Best Adv t%

CMT1X 4 4.5 0.24 479.80 497.43 0.04 96.00 101.79 0.06
CMT2X 7 7.9 0.13 698.91 758.73 0.09 541.55 563.63 0.04
CMT3X 6 7.2 0.19 767.61 814.37 0.06 1472.30 1924.64 0.31
CMT4X 9 9.7 0.10 976.77 1036.19 0.06 3771.20 4139.04 0.10
CMT5X 13 14.3 0.12 1204.99 1254.72 0.04 7270.30 7933.04 0.09
CMT6X 5 6.3 0.16 538.70 594.07 0.10 375.75 493.52 0.31
CMT7X 10 11.4 0.14 975.31 1004.84 0.03 860.15 974.88 0.13
CMT8X 8 9.9 0.17 824.68 939.94 0.14 1627.55 1942.98 0.19
CMT9X 14 15.8 0.16 1154.61 1306.27 0.13 5963.10 6187.39 0.04

CMT10X 18 20.1 0.12 1458.74 1637.95 0.12 11,230.60 11,896.71 0.06
CMT11X 6 6.6 0.09 904.36 995.22 0.10 1499.60 1605.50 0.07
CMT12X 7 8.0 0.15 688.97 740.21 0.07 1624.25 1819.20 0.12
CMT13X 11 12.4 0.14 1466.75 1631.26 0.11 1638.40 1801.36 0.10
CMT14X 10 11.3 0.13 830.27 908.30 0.09 1713.40 1833.96 0.07

sum 128 — — 12,970.47 — — 39,684.15 — —
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The results are shown in Table 4, where the “BL” column represents the calculated
results of 3BL-VRPSPD, and the “3L” column represents the calculated results of VRPSPD,
with a 3D loading constraint in the literature [35]. To verify the effectiveness of the loading
algorithm in this paper, the results obtained from the three different loading algorithms
are compared as shown in Table 5, where “MOMD” represents the balanced loading
algorithm, “MCA” represents the maximum contact area strategy and “LB” represents
the left-bottom-first strategy. The above optimal deviations (d%, r%, t%) and GAP are
calculated as follows:

d% =
(

d− dbest

)
/dbest (25)

r% = (r− rbest)/rbest (26)

t% =
(
t− tbest

)
/tbest (27)

GAP = (xliterature − xTS−MOMD)/min(xliterature, xTS−MOMD)× 100% (28)

Table 4. Comparison of instance results.

Instance
Vehicle Distance Time

BL 3L GAPr BL 3L GAPd BL 3L GAPt

CMT1X 4 3 −33.33 479.80 488.82 1.88 96.00 126.60 31.88
CMT2X 7 6 −16.67 698.91 697.71 −0.17 541.55 640.20 18.22
CMT3X 6 5 −20.00 767.61 800.21 4.25 1472.30 1940.40 31.79
CMT4X 9 7 −28.57 976.77 969.08 −0.79 3771.20 4838.30 28.30
CMT5X 13 11 −18.18 1204.99 1193.9 −0.93 7270.30 8797.70 21.01
CMT6X 5 6 20.00 538.70 590.42 9.60 375.750 419.20 11.56
CMT7X 10 11 10.00 975.31 964.8 −1.09 860.15 1018.40 18.40
CMT8X 8 9 12.50 824.68 905.82 9.84 1627.55 2001.10 22.95
CMT9X 14 15 7.14 1154.61 1285.93 11.37 5963.10 8211.30 37.70
CMT10X 18 19 5.56 1458.74 1571.03 7.70 11,230.60 15,692.80 39.73
CMT11X 6 4 −50.00 995.22 886.92 −12.21 1499.60 2133.90 42.30
CMT12X 7 6 −16.67 688.97 699.39 1.51 1624.25 2232.20 37.43
CMT13X 11 11 0.00 1466.75 1587.90 8.26 1638.40 1982.20 20.98
CMT14X 10 10 0.00 830.27 879.58 5.94 1713.40 2042.30 19.20

sum 128 123 — 12,970.47 13,521.51 — 39,684.15 52,076.6 —

As shown in Table 3, the optimal and average values of route length, number of
vehicles and running time are obtained by applying this algorithm to 14 sets of standard
cases for 10 calculations. From the data in the table, it can be inferred that the stability
effect of the algorithm solution in this paper is good, and the optimization results of the
running time and total distance maintain high stability. The t% is less than 0.10 for 78.6%
of the cases and the d% is less than 0.10 for 71.4% of the cases; the stability of the number of
vehicles is slightly less, as the r% reaches 0.24, however, most of the cases maintain an r%
between 0.10 and 0.15.

As shown in Table 4, the results of this paper are compared with those in the liter-
ature [35]. After introducing the balanced loading constraints, the results of this paper
achieved shorter route lengths in nine sets of cases, with GAPd values ranging from 1.51%
to 11.37%. The CMT8X and CMT9X have the best route optimization results, with a 10.21%
and 8.96% improvement, respectively, and the total route length of 14 sets of cases is re-
duced by 4.08%. For the solution efficiency, the solution time of 14 sets of cases is shorter,
and the GAPt values are all greater than 10%. In the large-scale cases, the GAPt values
are all greater than 19%, so the advantage of the solution efficiency is more obvious, and
the total solution time of 14 sets of cases is reduced by 23.80%. In terms of the number of
vehicles used, this paper achieves better values for five sets of cases, the number of cases in



Sustainability 2023, 15, 9132 14 of 20

two sets is the same, and the total number of vehicles in 14 sets of cases increases by 3.91%,
however, the number of vehicles is still within the maximum limit.

Table 5. Comparison of results of different loading algorithms.

Instance

Vehicle Distance Time

MO
MD MCA LB MO

MD MCA LB MO
MD MCA LB

CMT1X 4 3 3 479.8 488.8 493.5 96 126.6 62.4
CMT2X 7 6 7 698.9 697.7 735.7 541.6 640.2 441.2
CMT3X 6 5 5 767.6 800.2 809.9 1472.3 1940.4 1001.9
CMT4X 9 7 7 976.8 969.1 1076.3 3771.2 4838.3 2699.8
CMT5X 13 11 12 1205.0 1193.9 1273.6 7270.3 8797.7 5730.1
CMT6X 5 6 6 538.7 590.4 586.3 375.8 419.2 329.3
CMT7X 10 11 11 975.3 964.8 1001.1 860.2 1018.4 699.9
CMT8X 8 9 9 824.7 905.8 892.6 1627.6 2001.1 1251.7
CMT9X 14 15 15 1154.6 1285.9 1309.3 5963.1 8211.3 3710.3

CMT10X 18 19 19 1458.7 1571.0 1669.8 11,230.6 15,692.8 6751.4
CMT11X 6 4 5 995.2 886.9 897.3 1499.6 2133.9 861.9
CMT12X 7 6 7 689.0 699.4 754.2 1624.3 2232.2 1013.3
CMT13X 11 11 12 1466.8 1587.9 1639.4 1638.4 1982.2 1291.6
CMT14X 10 10 10 830.3 879.6 906.3 1713.4 2042.3 1379.4

sum 128 123 128 12,970.5 13,521.5 14,045.3 39,684.2 52,076.6 27,224.2

As shown in Table 5, the results obtained in this paper are compared with those
obtained by three different loading algorithms in the literature [35]. In terms of routing
optimization, MOMD achieves the best results among the three algorithms, obtaining the
shortest total distance among the nine sets of cases, and the total distance in all cases is
smaller than the other two algorithms. The total routing length obtained by MOMD is 4.1%
shorter than that of the MCA algorithm and 7.7% shorter than that of LB. For the solution
efficiency, the solution effect of MOMD is between MCA and LB. In 14 sets of cases, the
solution time of MOMC is larger than that of LB, and the total running time increases by
31.3%; compared with MCA, the total solution time of the cases is reduced by 23.8%. For
the number of vehicles, MOMD partially outperforms MCA and LB and achieves the best
value among the three algorithms in 50% of the cases.

5.3. Algorithm Comparison and Analysis

In order to analyze the influence of the different sizes of the cases on the stability of the
solution, the optimal deviations of the total distance, the number of vehicles and the solution
time for each set of cases are connected by a line, and the overall trend is shown in Figure 6.

As shown in Figure 6, the trend of the line shows that the optimal deviation is basically
below 0.30. The solution stability of the route length works best, with r below 0.1 for most of
the cases, and the upward and downward fluctuation is small. The number of vehicles is the
next most stable solution, and the r of all the results remains at a low level except for the first
set of cases. The optimal deviation values of the running time fluctuate widely, with higher t
for the third, sixth, and eighth sets of cases, while the rest of the sets remain around 0.10. It is
found that the size of the customers does not have a significant impact on the stability of the
solution, and the optimal deviations of the three indicators are kept at the average level for
the largest cases in groups 5 and 10. Therefore, the influence of different customer sizes on the
computational stability of the solution method is small, and it is more due to the fluctuation
of the results of each experiment caused by chance factors. In order to verify the solution
effect of the balanced loading constraint method introduced in this paper, 1L-VRPSPD and
3L-VRPSPD are selected for comparison, and the optimal distance, number of vehicles and
running time results obtained on the standard data set are compared as shown in Figures 7–9.
In order to express the advantage of the results obtained after the introduction of the balanced
loading constraint more intuitively, the overall trend of GAP is shown in Figure 10.
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Analyzing the trend of the line graph presented in Figure 7 shows that 1L-VRPSPD
has the largest route length, which is generally higher than the other two types of prob-
lems. In some cases, BL-VRPSPD achieves a shorter route length, indicating that the
introduction of the balanced loading constraint does not compromise the effectiveness of
the routing optimization.

As shown in Figure 8, among the 14 sets of calculation results, the results of the
number of vehicles obtained from the 3L-PDVRPSPD and BL-PDVRPSPD problems do
not differ significantly and are smaller than the results of the 1L-PDVRPSPD problem. In
some of the cases, the number of vehicles obtained from the solution of the BL-VRPSPD
problem is larger than that of the 3L-VRPSPD, which indicates that the introduction of the
balanced loading constraint has a certain impact on the number of vehicles applied, and
the main reason is that the introduction of the balanced loading constraint severely restricts
the loading position of the goods, resulting in an increase in the number of vehicles.
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As shown in Figure 9, the solution time for 1L-VRPSPD is much shorter than the
other two types of problems, and the resulting solution time is not of the same order of
magnitude. This indicates that the inclusion of the 3D loading constraint into the routing
check session increases the number of iterations of the algorithm and substantially increases
the solution time. In most of the cases, the solution times of BL-VRPSPD and 3L-VRPSPD
are close to each other, and the solution efficiency of BL-VRPSPD is higher in the 5th, 9th,
and 10th sets of cases. It shows that the introduction of balanced loading does not reduce
the solution efficiency of the method, and the solution time decreases in large-scale cases,
indicating that the solution efficiency of the proposed method becomes more obvious as
the size of the customers increases.

As shown in Figure 10, in the 14 sets of results, the GAPd of route length basically
lies above the 0-axis, the GAPr value curve of the vehicle number fluctuates more, and
the GAPt of the running time lies above the 0-axis. Therefore, the introduction of the
equilibrium loading constraint results in better pathfinding and has the same advantage in
the solution efficiency.

In order to better verify the MOMD algorithm proposed in this paper, the advantages
of the results of the total distance, number of vehicles and solution time obtained under
the three different loading algorithms are analyzed and represented by bar graphs in
Figures 11–13.
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As shown in Figure 11, MOMD achieves the best degree of routing optimization
among the three algorithms in most cases. As shown in Figure 12, MOMD achieves a
lower number of vehicles in some cases. As shown in Figure 13, in most cases, LB has the
highest solution efficiency, mainly because LB does not perform multiple combinations, so
it takes less time, while both MOMD and MCA algorithms consume more time in finding
the optimal combination of loading space and goods, and the solution efficiency of MOMD
is better in the comparison of these two algorithms, and the advantage is more prominent
in large-scale cases.

6. Conclusions

For the demand of cost reduction and efficiency improvement faced by actual logistics
and distribution, as well as the need to improve the safety of goods transportation, this
paper proposes 3BL-VRPSPD, which optimizes the combination of goods-loading layout
and pickup and delivery vehicle routing by considering 3D balanced loading. It is a realistic
guide for improving the stability of the goods transportation process while enhancing the
timeliness of logistics distribution and controlling the logistics cost in the specific pickup
and delivery vehicle routing planning.

In this paper, we analyze the constraints at both vehicle routing and goods loading levels.
Constraints, such as node access order, avoidance of sub-circuit, travel mileage limit, goods
first-in last-out, support surface and balanced loading, are introduced. With the shortest total
route length as the optimization objective, a 3BL-VRPSPD optimization model is constructed
to portray the logistics distribution problem in a practical application scenario.

A hybrid heuristic algorithm with an improved TS as the optimization framework is
proposed, an insertion heuristic algorithm is designed to construct the initial solution, and
a loading algorithm MOMD is designed. The routing optimization is carried out by TS, and
four independent parallel neighborhood operators are designed for neighborhood iterative
transformations to find the optimization, while the loading layout is incorporated into the
test link, and the feasibility judgment of the 3D balanced loading is integrated into the
routing optimization process. Thus, we propose the optimization algorithm TS-MOMD.

This paper utilizes JAVA to implement the algorithm and selects standard cases as the
dataset for analysis. The solution stability and efficiency of this algorithm are shown, and
the results are compared with the existing algorithm, and the results show that the method
still has a strong routing finding ability by adding the 3D balanced loading constraint.
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The 3BL-VRPSPD is studied, and certain results are achieved, however, the problem is
complex because it combines two NP-hard problems. The study still has some shortcomings
and needs continuous improvement:

(i) In order to facilitate the study of the equilibrium loading constraint, only a single
vehicle field and no time window are considered in the path. Subsequent studies can
gradually consider adding constraints such as multi-vehicle yards and time windows to
bring the problem closer to the actual situation.

(ii) The TS is used to find routing and a nested balanced loading algorithm, which
requires a large number of traversals during routing optimization, making the number
of iterations increase and the running time increase. In some cases, the solution time is
high, which indicates that the algorithm can be greatly improved. Later on, we can develop
a bootstrap algorithm to speed up the algorithm iteration process and a better loading
algorithm to obtain a better loading solution.
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