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Abstract: Too high or too low water content in the proton exchange membrane (PEM) will affect the
output performance of the proton exchange membrane fuel cell (PEMFC) and shorten its service life.
In this paper, the mathematical mechanisms of cathode mass flow, anode mass flow, water content
in the PEM and stack voltage of the PEMFC are deeply studied. Furthermore, the dynamic output
characteristics of the PEMFC under the conditions of flooding and drying membrane are reported,
and the influence of water content in PEM on output performance of the PEMFC is analyzed. To
effectively diagnose membrane drying and flooding faults, prolong their lifespan and thus to improve
operation performance, this paper proposes the state assessment of water content in the PEM based
on BP neural network optimized by genetic algorithm (GA). Simulation results show that compared
with LS-SVM, GA-BP neural network has higher estimation accuracy, which lays a foundation for the
fault diagnosis, life extension and control scheme design of the PEMFC.

Keywords: proton exchange membrane fuel cell (PEMFC); membrane water content; state estimation;
GA-BP neural network

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) are devices that convert chemical
energy into electrical energy through a redox reaction [1]. It is a good candidate for automo-
tive power systems because of its high efficiency, high power density, and environmental
friendliness [2,3]. It is also considered as a sustainable power source alternative on account
of these reasons [4]. PEMFC uses a solid-state membrane (commonly Nafion 117) as elec-
trolyte, and works in a low- temperature (40–90 ◦C) environment [5]. The water content
in the proton exchange membrane (PEM) is closely related to its proton conductivity [6,7].
Too low water content will promote the dry-out of membrane, which will increase the
ionic impedance and the ohmic loss, thus dropping the fuel cell voltage. Furthermore,
membrane drying will also lead to localized hot spots [8], which causes damage to the
PEM such as perforation or delamination. In the contrary, too high water content will leave
the membrane in a “flooding” state, which will block porous channels and reduce the rate
of reactant transport [9–11]. It has been shown that improper humidity of the PEM not
only degrades the performance of the fuel cell and reduces the power generation efficiency
but also leads to irreversible degradation of its internal components (e.g., the catalyst and
membrane). Therefore, maintaining the amount of membrane water content in the suitable
range is the key to improve the output performance and prolonging the lifespan of the
PEMFC [12–14]. Furthermore, adjusting the water content in the PEM can also improve
efficiency and stability without degrading performance, ultimately leading to reduced costs
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and environmental impacts. This helps to promote the application and popularization of
clean energy technology, reduces dependence on traditional energy sources, and promotes
sustainable energy development globally.

It is well known that the PEMFC is sealed, where localized experimental measurements
of membrane water content are extremely difficult. So, predicting the water content in PEM
via state estimation is imperative for control scheme design to maintain the membrane
water content at the expected level. Dotelli and Ferrero et al. conducted an in-depth study
on the testing and evaluation of cell ohmic impedance and suggested that ohmic impedance
is a critical indicator of the water content in the PEMs, but the quantitative relationship
between ohmic impedance and membrane water content was not investigated [15]. Gorgun
et al. studied the static relationship between membrane impedance and membrane water
content, but they did not analyze the dynamic characteristics of membrane moisture [16].
Bellows et al. quantified the distribution of water content within a 500 µm thick PEM,
which showed that the water content within the membrane varied dynamically under
operating conditions but there were no large gradients in the water content [17]. Qu et al.
described the effect of dynamic changes in membrane water content on the cell voltage
when the air flow changes, but the dynamic mechanism model is too complicated to be
used for the state estimation of membrane water content and the control scheme design of
the PEMFC [18].

So far, there is still little work on state estimation of water content in the PEM. In this
paper, based on the mathematical mechanisms of the PEMFC, we establish its dynamic
simulation model by Simulink and then investigate the state estimation of the membrane
water content in the PEM through simulation. Back propagation (BP) neural network is
capable of approximating arbitrary nonlinear functions, and it has been successfully applied
to state of charge (SOC) estimation of lithium battery, state estimation for photovoltaic
power generation and so on. However, BP neural networks have certain shortcomings, such
as more parameters to be adjusted, a lack of effective methods for parameter selection, and
the tendency to fall into local optimality [19–22]. To solve above problems, researchers have
optimized BP neural networks by genetic algorithms (GA) to provide good convergence
and robustness while solving the problem of their tendency to fall into local optimal points.

Up to now, state estimation of the water content in the PEM based on the GA-BP
neural network has not been reported. To improve power generation efficiency and prolong
the lifespan of the PEMFC, this paper attempts to bypass the complex internal reaction
mechanisms of the PEMFC and proposes a GA-BP neural network state estimator for
evaluating membrane water content. The simulation results show that the GA-BP neural
network has higher accuracy in membrane water content estimation compared with the
least squares support vector machine (LS-SVM), thus laying the foundation for the fault
diagnosis, life extension and control scheme design for the PEMFC.

Furthermore, the membrane water content can significantly affect key parameters of
PEMFC such as mass transfer, conductivity, and reaction rate. Real-time estimation of the
state of the water content in the PEM is critical for optimizing the design and operation
of the PEMFC. Thus, it can further reduce costs and greatly promote the development of
PEMFC technology.

The rest of this paper is organized as follows. The dynamic mechanistic model
proposed in [23] is briefly reviewed in Section 2. Section 3 reports the dynamic modeling
and simulation analysis of the PEMFC by Simulink. Estimation of membrane water
content in the PEMFC based on a GA-BP neural network is depicted in Section 4. Finally,
conclusions and suggestion for further work are presented in Section 5.

2. Dynamic Model of the PEMFC

The generation, convection, and diffusion of water during the operation of the PEMFC
involve complex mathematical mechanisms. Based on the work reported in [23], the PEMFC
dynamic model, including cathode mass flow sub-model, anode mass flow sub-model,
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membrane water content sub-model, and stack voltage sub-model, is simply reviewed in
this section.

2.1. Cathode Mass Flow Sub-Model

It is assumed that all gases are ideal, the operating temperature of the PEMFC stack is
constant (80 ◦C), and the temperature, pressure, humidity, and oxygen molar fraction of the
gases passing into and out of the cathode are kept constant. When the water vapor content
in the cathode gas is not saturated, the liquid water evaporates. While the water vapor
content of the cathode gas reaches 100%, the gaseous water becomes liquid but not leave
the stack. According to the law of mass conservation, the mass flow of oxygen, nitrogen,
and water can be modelled as follows [24]:

dmo2,ca

dt
= Wo2,ca,in −Wo2,ca,out −Wo2,reacted (1)

dmN2,ca

dt
= WN2,ca,in −WN2,ca,out (2)

dmw,ca

dt
= Wv,ca,in −Wv,ca,out + Wv,ca,gen + Wv,mem −Wl,ca,out (3)

where Wv,ca,gen is the vapor generated flow rate in the cathode, Wv,mem is the water vapor
flow rate transfer across the membrane, Wl,ca,out is the cathode outlet flow rate of liquid
water, according to the assumptions, here Wl,ca,out = 0.

The saturation pressure Psat of gaseous water can be described as [23,25,26]:

log10(Psat) = −1.69× 10−10T4
st + 3.85× 10−7T3

st − 3.39× 10−10T2
st + 0.143Tst − 20.92 (4)

The mass flow rates of oxygen, nitrogen, and water vapor flowing into the cathode
can be calculated by:

Wo2,ca,in = xo2,ca,inWa,ca,in (5)

WN2,ca,in = (1− xO2,ca,in)Wa,ca,in (6)

Wv,ca,in = Wca,in −Wa,ca,in (7)

where Wa,ca,in is the cathode inlet mass flow rate of dry air, xo2,ca,in is the cathode inlet mass
fraction of oxygen, Wca,in is the cathode inlet mass flow rate of the gas.

The mass flow rates of oxygen, nitrogen, and water vapor discharged from the cathode
can be described as follows:

Wo2,ca,out = xo2,caWa,ca,out (8)

WN2,ca,out = (1− xO2,ca)Wa,ca,out (9)

Wv,ca,out = Wca,out −Wa,ca,out (10)

where xO2,ca is the mass fraction of oxygen in the cathode outlet stream, Wa,ca,out is the
cathode outlet mass flow rate of dry air; Wca,out is the cathode outlet mass flow rate of
the gas.

Based on the electrochemical principle, the mass flow rates of the reacted oxygen and
the generated water vapor are:

Wo2,reacted = Mo2

nIst

4F
(11)
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Wv,ca,gen = Mv
nIst

2F
(12)

where n is the number of individual cells in the stack.
The mass flow rate of water vapor across the PEM Wv,mem is

Wv,mem = Nv,mem ×Mv × A f c × n (13)

where Nv,mem is the molar flow rate of water vapor through the membrane, A f c is the
effective area of the fuel cell.

Based on the cathode mass flow mechanism, the schematic diagram of the cathode
mass flow for the PEMFC stack is presented as Figure 1.
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2.2. Anode Mass Flow Sub-Model

The model is proposed based on previous research and the following main assumptions:

• The anode input flow rate can be adjusted in time by a valve to minimize the pressure
difference between the cathode and the anode.

• The temperature of the reaction gas stream is equal to the reactor temperature.
• The pressure, temperature, and humidity of the anode output stream are the same as

those in the anode flow channel, respectively.

According to the law of mass conservation, the mass flow of hydrogen and water is
respectively modelled as:

dmH2,an

dt
= WH2,an,in −WH2,an,out −WH2,reacted (14)

dmw,an

dt
= Wv,an,in −Wv,an,out −Wv,mem −Wl,an,out (15)

where WH2,reacted represents the hydrogen reacted rate, Wv,mem is the mass flow rate of water
vapor through the PEM, Wl,an,out is the anode outlet mass flow rate of liquid water. In this
paper, we have Wl,an,out = 0.

The mass flow rates of hydrogen and water vapor passing into the anode are:

WH2,an,in =
1

1 + wan,in
Wan,in (16)

Wv,an,in = Wan,in −WH2,an,in (17)

where wan,in is the humidity ratio of the gas into the anode, Wan,in represents the anode
inlet mass flow rate of the gas.
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The mass flow rates of hydrogen and water vapor discharged from the anode can be
calculated as:

WH2,an,out =
1

1 + wan,out
Wan,out (18)

Wv,an,out = Wan,out −WH2,an,out (19)

where wan,out is the humidity ratio of the gas discharged from the anode; Wan,out is the mass
flow rate of the gas discharged from the anode.

Based on electrochemical principles, the reaction rate of hydrogen is:

WH2,reacted = MH2

nI
2F

(20)

where MH2 is the molar mass of hydrogen.
The inputs and outputs of the anode mass flow sub-model are shown in Figure 2.
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Figure 2. Anode mass flow schematic diagram of the PEMFC stack.

2.3. PEM Water Content Sub-Model

The water content in the PEM λi is defined as the ratio of water molecules to the
number of charge sites, which can be expressed as the average of the water content in the
anode and cathode streams [27]. Assuming that the water content in the membrane and the
mass flow rate of water through the membrane are uniform, the membrane water content
λi can be calculated from the water activity ai as [23,28]:

λi =

{
0.043 + 17.81ai − 39.85a2

i + 36.0a3
i , 0 < ai ≤ 1

14 + 1.4(ai − 1), 1 < ai ≤ 3
(21)

Water activity ai can be expressed as follows:

ai =
yv,i pi

psat,i
=

pv,i

psat,i
(22)

am =
aan + aca

2
(23)

where, i ∈ {an, ca} and the subscript ‘m’ represents the PEM, when the water in the
cathode flow and the anode flow is in the gaseous state, the water activity ai equals to
the relative humidity ϕi. yv,i is the molar fraction of water vapor, pi represents the total
pressure of the gas stream, pv,i is the partial pressure of water vapor, psat,i represents the
saturation pressure of water vapor.

In fact, Equation (21) is the fit result of the experimental relationship of λi vs. ai by
referring Reference [28]. According to Equation (21), the PEM water content λm can be
calculated from the average water activity of the anode and the cathode am. Based on the
above mechanism, the schematic diagram of the membrane water content for the PEMFC
stack is presented as Figure 3.
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2.4. Output Voltage Sub-Model

In general, there are three losses in the output voltage of fuel cells [29], thus the actual
output voltage Vf c of a single cell can be expressed as:

Vf c = E−Vohm −Vact −Vcon (24)

where open circuit voltage E, ohmic polarization Vohm, active polarization Vact, and concen-
tration difference polarization Vcon are respectively given as follows:

E = 1.229− 8.5× 10−4(Tf c − 298.15) + 4.308× 10−5Tf c

[
ln

pH2

1.01325
+

1
2

ln
pO2

1.01325

]
(25)

Vohm = i1Rohm = i1
tm

σm
(26)

Vact = V0 + Va[1− exp(−c1i1)] (27)

Vcon = i1(c2
i1

i1,max
)

c3

(28)

where Tf c is the cell’s operating temperature, pH2 and pO2 represent the partial pressures
of hydrogen at the anode and oxygen at the cathode, respectively. tm is the thickness of
the PEM, σm is the conductivity of the PEM, i1 is the amount of electricity passing through
a unit area of the stack per unit time. V0 is the voltage drop when i1 = 0, V0 and Va are
related to the oxygen partial pressure and temperature, c1 takes the value of 10, i1,max is the
current density that causes the voltage to drop rapidly, which takes the value of 2.2, c2 is
related to the temperature and the partial pressure of reactants, the value of c3 is 2. The
operating conditions of the PEMFC stack are shown in Table 1.

Table 1. PEMFC operating point data.

Symbol Definition Value

n Number of cells 381
F Faraday constant 96,485 C/mol

MO2 Molar mass of oxygen 0.032 kg/mol
MN2 Molar mass of nitrogen 0.028 kg/mol
MV Molar mass of gaseous water 0.01802 kg/mol
RV Ideal gas constant for gaseous water 461.5 J/(mol · K)
A f c Effective area of fuel cell 232 cm2

RH2 Ideal gas constants for hydrogen 4124.3 J/(mol · K)
tm PEM thickness 0.01275 cm
c3 Parameter 2
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Since the PEMFC stack consists of multiple single cells connected in series, the output
voltage of the PEMFC stack is:

Vst = n ·Vf c. (29)

Based on the electrochemical mechanism, the stack voltage schematic diagram of the
PEMFC can be described as Figure 4.
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3. Simulink Dynamic Modelling and Simulation of the PEMFC

In order to study the dynamic characteristics of the water content in the PEM, this
section builds a dynamic simulation model of the PEMFC stack in Simulink.

3.1. Dynamic Simulation Model of the PEMFC

In this paper, the PEMFC stack in a 75 KW Ford P2000 prototype with a PEM of type
Nafion 117 is used as the research object. Based on the dynamic mechanism of the PEMFC
in this paper, the simulation model of the PEMFC stack is built as shown in Figure 5. The
model contains an anode mass flow module, a cathode mass flow module, a membrane
water content module, and a stack voltage module.
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To ensure the reliability of the simulated model, the output performance of the simu-
lated model proposed in this paper is compared with that in Reference [23]. As shown in
the Figure 6, the trend of the output voltage for the simulated model closely aligns with
that of the literature data, which show a better performance for the simulated model.



Sustainability 2023, 15, 9094 8 of 16

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 17 
 

3. Simulink Dynamic Modelling and Simulation of the PEMFC 
In order to study the dynamic characteristics of the water content in the PEM, this 

section builds a dynamic simulation model of the PEMFC stack in Simulink. 

3.1. Dynamic Simulation Model of the PEMFC 
In this paper, the PEMFC stack in a 75 KW Ford P2000 prototype with a PEM of type 

Nafion 117 is used as the research object. Based on the dynamic mechanism of the PEMFC 
in this paper, the simulation model of the PEMFC stack is built as shown in Figure 5. The 
model contains an anode mass flow module, a cathode mass flow module, a membrane 
water content module, and a stack voltage module. 

 
Figure 5. Simulink dynamic model of the PEMFC power stack. 

To ensure the reliability of the simulated model, the output performance of the sim-
ulated model proposed in this paper is compared with that in Reference [23]. As shown 
in the Figure 6, the trend of the output voltage for the simulated model closely aligns with 
that of the literature data, which show a better performance for the simulated model. 

 
Figure 6. Output characteristic curves of the simulated model and existing model. 

  

Figure 6. Output characteristic curves of the simulated model and existing model.

3.2. Dynamic Characteristics of the Membrane Water Content

When the load power demand causes step changes in the PEMFC current density,
as shown in Figure 7, the dynamic characteristics of the water content in the PEM can be
obtained by simulation based on the Simulink model of the PEMFC stack, combing with
the ode45 solver, as shown in Figure 8.
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From Figure 8, We can see the water content in the PEM varies with changes in the
stack current density. When the current density of the PEMFC stack increases, the water
content in the PEM also increases. This is because as the output power of the PEMFC
increases, the chemical reaction inside the stack intensifies and produces more water, which
causes the water content in the PEM to increase.

3.3. Dynamic Characteristics of the PEMFC Output Voltage

The output voltage of the PEMFC is the key to reflecting the cell’s efficiency. Ohmic
polarization is one of the major factors causing the drop in output voltage of PEMFCs.
From Equation (26), it is evident that the ohmic impedance is a function of the conductivity
of the PEM, and the water content largely determines the magnitude of the conductivity.
When the water content in the PEM undergoes changes, as shown in Figure 8, the PEMFC
output voltage characteristic curve is shown in Figure 9.
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As can be seen from Figure 9, the output voltage of the PEMFC can quickly reflect the
step change of the stack current density, but there is a large hysteresis in the output voltage
of the PEMFC at the moment of the step change of the stack current density. This is mainly
caused by the ohmic overpotential of the PEMFC.

3.3.1. Output Voltage Characteristics of the PEMFC with Drying Membrane

The appropriate membrane water content allows for optimal conductivity, which
results in optimal output performance of the PEMFC. The effect of the water content in the
PEM on the output voltage of the PEMFC stack is now being analyzed through simulations.

Figure 10 illustrates the dynamic characteristics of the PEMFC output voltage with
drying membrane (the water content in the PEM is set to 4) during the step changes in
the stack current density, as shown in Figure 7. From Figure 10, we can observe that the
overall output voltage of the PEMFC may plummet by 20–40% in the absence of proper
humidification control. This is because the membrane water content is too low, which
makes it difficult for the hydrated protons to cross the PEM to reach the cathode. The
ohmic impedance of the PEM increases due to this low water content, which consequently
decreases the efficiency of the reduction reaction on the cathode side. This results in a
significant reduction in the output voltage of the PEMFC stack.

3.3.2. Output Voltage Characteristics of the PEMFC with 100% Humidified Membrane

In general, the wetter the PEM is, the better the hydrated protons can pass through
it, thus improving the output performance of the PEMFC. However, too much water can
cause “flooding” of the gas diffusion layer, thus reducing the output performance of the
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PEMFC. The output voltage characteristics of the PEMFC stack are shown in Figure 11
when the PEM is 100% humidified and in a “flooded” state (PEM water content of 8).
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As can be seen from Figure 11, the output voltage of the PEMFC stack experiences a
significant negative overshoot when the step changes of the stack current occur, which is
not beneficial for the stability of the stack’s output voltage. This is due to the “flooding” of
the PEM, which leads to an increase in activation polarization loss as well as an increase in
the mass transfer limitation of the reacting gas inside.

Based on the analysis presented above, it is evident that maintaining a suitable water
content in the PEM under certain working conditions is crucial for ensuring stable and
efficient output characteristics of the PEMFC. Therefore, it is important to establish a
dynamic model of the water content in the PEM and to study the relationship between the
output characteristics of the PEMFC stack and the membrane water content.

4. GA-BP Based Estimation of the Water Content in the PEM

In order to effectively diagnose membrane drying and flooding faults and extend
its lifespan to improve operational performance, this paper proposes a state estimation
method for determining the membrane water content of the PEMFC stack based on a
GA-BP neural network. To verify the effectiveness of the state estimation method proposed
in this paper, a LS-SVM based analysis method is chosen for comparison.
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4.1. Estimation of Membrane Water Content Based on GA-BP Neural Network
4.1.1. Basic Principles of GA-BP Neural Network

GA is an efficient global search method that operates in parallel and automatically
accumulates knowledge about the search space during the search process. Through this
approach, GA can adaptively control the search process to obtain the optimal solution. GA
mimics the evolution of organisms in nature, where individuals in a population retain some
genetic information from previous generations and undergo changes in gene frequencies.
During the evolution process, individuals are selected based on a fitness function, which
retains good samples and iterates until the optimal individual is obtained. The BP neural
network has limitations in the search space, while the GA-BP neural network can find the
optimal solution in the global space, which makes up for the shortcomings of the BP neural
network [30]. In this paper, we use GA to optimize the weights and thresholds of the neural
network, which allows for a more efficient search in the solution space by narrowing down
the search range. The BP neural network is then used to estimate the membrane water
content in the PEM.

The algorithmic flow for GA-based optimization of BP neural networks can be sum-
marized in the following steps:

Step 1: Initialization. The real number encoding method is used for individual encod-
ing. Each individual is a string of real numbers that contains all the weights and thresholds
of the neural network. The neural network can be formed using a combination of the
known network structure and parameters.

Step 2: Based on the initial weights and thresholds of the neural network obtained by
the individual, the BP neural network is trained and the system output can be predicted.
The sum of the absolute values of the errors between the predicted and expected results is
used as the individual fitness value F.

F = k(
n

∑
i=1
|yi − oi|). (30)

where n is the number of output nodes in the network, yi and oi represent the predicted
and expected value of the i-th node in the network, k is the coefficient.

Step 3: Roulette selection, the probability of an individual i being selected is propor-
tional to its fitness value, and can be calculated as follows:

pi =
k fi

Fi
N
∑

j=1
f j

. (31)

where fi and N are the fitness value of an individual i and the number of individuals in the
population, respectively.

Step 4: The real number crossover method is the preferred choice for individual
crossover. The crossover process between the k-th individual ak at position j and the l-th
individual al is as follows: {

akj = akj(1− b) + aijb
al j = al j(1− b) + akj

. (32)

where b is a random number between [0, 1].
Step 5: The j-th position of the i-th individual is selected for mutation, and the process

can be described as:

aij =

{
aij + (aij − amax)× f (g) r ≥ 0.5
aij + (amin − aij)× f (g) r < 0.5

(33)
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where amax is the upper limit of individuals aij, amin represents the lower limit of individuals
aij. Of which,

f (g) = r2

(
1− g

Gmax

)2
r2 (34)

r2 is a random number, g represents the number of current iterations, Gmax is the maximum
number of evolutions, r is a random number between [0, 1].

4.1.2. GA-BP Based State Estimation of PEM Water Content

In this paper, the stack voltage, anode side relative humidity and PEM water content
of the PEMFC stack are selected as the training and testing data for the GA-BP neural
network model, and the total duration of the PEMFC Simulink dynamic model simulation
is 1200 s. The sampling interval is 0.3 s. Improper data selection and processing can easily
have an impact on the neural network training, so the data needs to be normalized to speed
up the convergence of the network training. In order to verify the estimation accuracy of
membrane water content, the data collected from 0–690 s are used to train the GA-BP neural
network, and the data from 691–980 s are selected to test the accuracy of the proposed
neural network model. The Sigmoid function is chosen for the activation function of the
implicit layer of this network, and the Levenberg-Marquardt algorithm is used for training.
Furthermore, the steps of state estimation for membrane water content using the GA-BP
neural network model are outlined below:

(1) Initialize the program. Clear the environment variables.
(2) Read the data. Collect reliable data as training and test samples for the neural network

and save them in column form to a table.
(3) Divide the training set and the test set. The total number of samples is 3264, the first

2300 data for training and the next 964 data for prediction on the trained model.
(4) Data normalization. In this paper, the data are mapped to the interval of [0, 1], and the

normalization can eliminate the differences of the magnitude, prevent the gradient
explosion, and improve the performance of the neural network and lead to the better
accuracy of the prediction.

(5) Construction of neural network. The configuration of network parameters is carried
out, and the optimal number of nodes is found by using the trial-and-error method.
The initial population number of GA is set to 10, the number of evolutionary end
generations is 60, the crossover probability is 0.8, and the variation probability is 0.1.

(6) Population initialization. Code function is established to generate a random popula-
tion and encode the variables needed for each individual in the population, which
assigns them with an initial value. Fun function is developed to initialize the weights
and thresholds of the BP neural network, and train the network using the encoded
individual with the best adaptation. The function also records the best and average
adaptation in each generation of evolution.

(7) Iteratively solve the optimal initial threshold and weights. Establish the select func-
tion, cross function, mutation function and test function respectively to select new
individuals using roulette, selection, crossover, and variation operations on individu-
als, test the feasibility of individuals, and judge whether the thresholds and weights
are over-bounded.

(8) Evolution. The worst individuals in each generation are eliminated, and the best
adaptation and average adaptation in each evolutionary generation are recorded.

(9) GA-BP neural network training. The train function is invoked to train and simulate
the network for testing.

(10) GA-BP neural network test. Simulation and inverse normalization are performed
with the trained model, and finally the predicted and desired outputs are compared
and the associated error values are calculated.
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4.2. Results of Water Content Estimation with the GA-BP Neural Network

For the purpose of comparison, the same input-output data are used to identify a
LS-SVM model for water content estimation. Based on the proposed GA-BP neural network
model, the water content estimation results in the PEM are shown in Figure 12, and LS-SVM
estimation results are cited as comparison. From Figure 12, we can see that the GA-BP
neural network is superior to the LS-SVM in estimating the PEM water content of the
PEMFC. For the GA-BP, the error between the estimated and expected values being less
than 0.3, and the maximum percentage error being 0.05%.
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To further evaluate the performance of water content estimation in the PEM by the
GA-BP neural network and the LS-SVM, the mean square error (MSE), mean absolute
error (MAE) and root mean square error (RMSE) are used. From Table 2, we can see the
resulting MSE, MAE and RMSE using GA-BP neural network are 0.0226, 0.1256 and 0.1506,
respectively, which are much smaller than those using the LS-SVM. This indicates that the
GA-BP neural network has better state estimation effects of water content in the PEM, and
the GA-BP based water content estimation of the PEMFC in this paper is feasible.

Table 2. Comparison of the error results for the two models.

Item Value (LS-SVM) Value (GA-BP)

MSE 0.215 0.0226
MAE 0.32809 0.1256
RMSE 0.4588 0.1506

5. Conclusions

In this paper, the effect of water content in the PEM on the output voltage of the
PEMFC stack is first investigated. When the step change of the current density occurs, the
simulation results of the output voltage under the two cases with drying membrane and
100% humidified membrane show that the PEM water content has a significant impact on
the dynamic output voltage of the stack.

In order to effectively diagnose membrane drying and flooding faults, extend their
effective life and thus to improve operational performance, the state estimation of water
content in the PEM by using GA-BP neural network is presented in this paper. The results
show that the GA-BP neural network has higher estimation accuracy compared with the
LS-SVM, which indicates that it is feasible to use GA-BP neural network for state estimation
of water content in the PEM, thus laying the foundation for the study of the fault diagnosis
and control scheme design for membrane water content of the PEMFC. This study is
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expected to open up new perspective to expanding their applications, particularly in the
realm of sustainable PEMFC technology.
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Nomenclature

Abbreviations
BP back propagation
GA genetic algorithm
LS-SVM least squares support vector machine
MAE mean absolute error
MSE mean square error
PEMFC proton exchange membrane fuel cell
RMSE root mean square error
Subscripts
a air
act active
an anode
ca cathode
con concentration
f c fuel cell stack
gen generation
H2 hydrogen
i index or position
in inlet
j position
l liquid
max maximum
mem membrane
min minimum
N2 nitrogen
ohm ohmic
SOC state of charge
out outlet
O2 oxygen
reacted electrochemical reacted
sat saturation
st stack
w water
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v vapor
0 standard state
Parameters and variables
g number of current iterations
i current density, A cm−2

m mass, kg
n water drag coefficient
r random number
x mass fraction
y molar fraction
A area, m2

E open circuit voltage, V
F Faraday constant, 96,485.3 C mol−1

G number of evolution
I current, A
N molar flow (mol s−1)
P pressure, pa
R ideal gas constant (8.31 J mol−1 K−1)
T temperature, K
V voltage (V) or volume (m3)
W gas mass flow rate, kg s−1

λ water content
M molar mass
n water drag coefficient
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