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Abstract: Agricultural sustainability is crucial for ensuring food security, promoting economic de-
velopment, maintaining ecological balance, and achieving sustainable development goals. In this
study, based on relevant theories of agricultural sustainability, an analytical framework is constructed
for agricultural sustainability encompassing economic, resource, environmental, and social dimen-
sions. The Analytic Network Process (ANP) method is employed to determine indicator weights
and assess the spatiotemporal changes in agricultural sustainability levels across Chinese provinces.
The findings reveal that environmental quality is the primary dimension for assessing agricultural
sustainability, and the significance of the rural social development dimension is continuously in-
creasing. Although the sustainability levels have significantly improved in various regions of China,
there remain issues of development imbalance and instability. In conclusion, this paper offers a
comprehensive understanding of the spatiotemporal changes in agricultural sustainability across
Chinese provinces, providing valuable insights for policymakers and researchers.

Keywords: sustainable agriculture; spatiotemporal analysis; analytic network process; China

1. Introduction

Agriculture is a fundamental pillar of human civilization, shaping the way societies
have evolved and interacted throughout history. In the contemporary world, agricultural
sustainability development has emerged as a crucial aspect of global progress, significantly
impacting food security, economic growth, and ecological balance [1]. As the global
population continues to rise and the ramifications of climate change become increasingly
evident, the intensified demand for agriculture leads to mounting pressures on natural
resources and ecosystems [2]. Consequently, achieving sustainability in global agriculture
is essential to meet current human development needs and ensure long-term sustainable
growth [3].

Sustainable agriculture refers to a mode of production that aims to meet current and
future human needs while increasing resource efficiency, protecting natural resources and
ecosystems, and promoting socio-economic well-being [4]. On a macro level, sustainable
agriculture contributes to global food security and poverty eradication [5]. Moreover,
sustainable agricultural practices can help mitigate climate change by reducing greenhouse
gas emissions, enhancing carbon sequestration, and promoting biodiversity and ecosystem
protection [6,7]. As a result, improving agricultural sustainability can directly advance sev-
eral targets of the United Nations’ 2030 Sustainable Development Goals (SDGs), primarily
involving SDG1 “No Poverty”, SDG2 “Zero Hunger”, SDG4 “Quality Education”, SDG5
“Gender Equality”, SDG8 “Decent Work and Economic Growth”, SDG12 “Responsible
Consumption and Production”, SDG13 “Climate Action”, SDG14 “Life Below Water”, and
SDG15 “Life on Land” [8]. Given the multifaceted nature of agricultural sustainability and
its intersection with ecological, environmental, social, and resource aspects, a comprehen-
sive evaluation of agricultural sustainability is paramount for informing policy decisions
and promoting sustainable development worldwide.
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Over the past few decades, various efforts have been made to assess agricultural
sustainability, ranging from simplistic indicator-based approaches to intricate integrated
assessment models [9–12]. On the indicator level, initial evaluations of agricultural sustain-
ability focus primarily on the ecological impacts of agricultural production [13], gradually
expanding to encompass economic, environmental, and social aspects [14,15], with some
studies emphasizing the role of resource utilization [16]. At the model level, numerous
assessment models have been developed for gauging agricultural sustainability, such as
the Sustainability Assessment of Farming and the Environment (SAFE) [17], Sustainability
Assessment (MOTIFS) [18], Sustainability Assessment for Food and Agriculture (SAFA)
system [19], Agricultural Environmental Indicators (AEI) [20], the Multi-Criteria Decision
Analysis (MCDA)-based method [21,22] and some complex assessment models based on
the generalized combination rule [22] and deep learning [23].

In the literature, indicators or models for agricultural sustainability assessment may dif-
fer due to variations in time, space, and theoretical considerations, with most involving the
standardization of indicator data and weight calculation [6,24–27]. Previous studies have
mostly employed evaluation methods such as the Entropy weight method [28], Principal
Component Analysis (PCA) [29], Dematel [30], and Analytic Hierarchy Process (AHP) [31]
for calculating indicator weights in agricultural sustainability assessments. While these
studies have significantly contributed to understanding agricultural sustainability, many
of these approaches fail to capture the full complexity and interconnectedness, ignoring
the interactions among ecological, resource, environmental, and social factors [32,33]. Ad-
dressing these limitations, this study constructs a comprehensive agricultural sustainability
evaluation system using the Analytic Network Process (ANP) methodology. By acknowl-
edging the interconnected nature of agricultural systems, this approach provides a more
integrated and detailed understanding of agricultural sustainability, offering a more robust
framework for its assessment.

The Analytic Network Process (ANP) is a multi-criteria decision making method
developed by Saaty based on the foundation of the Analytic Hierarchy Process (AHP),
allowing for the comprehensive evaluation of complex systems with multiple interdepen-
dent dimensions [34]. The primary feature of ANP lies in providing a framework that
considers the interrelationships among all evaluation indicators (criteria) within and across
clusters [32]. ANP has been employed by numerous researchers to address various decision-
making problems, proving its suitability for constructing models with evaluation criteria
and dimensions encompassing intricate interactions [35]. Consequently, it has been widely
applied in risk assessment [36], environmental management [37], and various evaluation
problems [38]. This study uses the ANP method to thoroughly explore the interplay among
economic, resource, environmental, and social dimensions while evaluating agricultural
sustainability levels.

By integrating the ANP methodology, this study seeks to develop a holistic agricultural
sustainability assessment framework that captures the complexity and interconnections
among various dimensions of agricultural sustainability, offering a more robust and com-
prehensive evaluation tool for policymakers and researchers. Using China as a case study,
we investigate the spatiotemporal dynamics of agricultural sustainability, providing valu-
able insights for those seeking to advance sustainable agriculture worldwide. Our findings
contribute to a broader understanding of agricultural sustainability assessment and man-
agement, emphasizing the importance of a holistic approach that considers the interactions
among economic, resource, environmental, and social dimensions.

The remainder of this study is organized as follows. The next section describes
the methods, starting with the research area and data sources, then the construction of
the evaluation index system, determination of index weights using the ANP method,
and calculation of agricultural sustainability levels. In Section 3, we analyze the results,
examining index weights and conducting temporal and spatial comparative analyses of
agricultural sustainability. Section 4 focuses on the discussion, comparing our findings
with previous studies, exploring the implications of our results for agricultural policy and
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planning, and identifying limitations and potential improvements for future research. The
conclusion summarizes our findings and offers policy recommendations for enhancing
agricultural sustainability within sustainable development goals and global ecological,
environmental, and resource management.

2. Materials and Methods
2.1. Research Area and Data Source

Situated in East Asia, China spans from 73°40′ to 135°2′ east longitude and 3°52′

to 53°33′ north latitude, encompassing a diverse array of climates and abundant natural
resources (Figure 1). China’s agriculture provides a supply of staple foods for approximately
22% of the global population, establishing itself as one of the world’s largest food producers
and consumers [39]. Investigating agricultural sustainability in China offers valuable
insights that contribute to advancing research and practice in global sustainable agriculture.

Figure 1. The spatial distribution features of China’s three regions.

The primary data used in this paper are the agricultural and rural-related data of
30 provinces, autonomous regions, and municipalities in mainland China from 2005 to
2020. Due to data availability and completeness, this study does not include Shanghai,
Taiwan, Macau, and Hong Kong. All data are from the China Statistical Yearbook and the
China Rural Statistical Yearbook released by the National and Local Bureau of Statistics
of China. All the data are carried out at the provincial level because all indicators at
the provincial level are the complete data, which can ensure this paper’s scientific and
comprehensive results.

2.2. Construction of Evaluation Index System

In order to construct a comprehensive agricultural sustainability evaluation system, we
integrated the multiple connotations of agricultural sustainability into different discourses.
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Globally, politics prioritize sustainable agriculture techniques and economic growth [40],
while academia examines resource use and environmental preservation [41]. Notably, social
welfare is increasingly recognized in both domains [42]. Based on the above-mentioned
theoretical analysis, this study synthesizes the focal points of both domains, developing
a comprehensive agricultural sustainability assessment framework encompassing four
dimensions: agricultural economy, resource utilization, environmental quality, and rural
society. The details are as follows.

In the agricultural economy dimension, specifically, five key indicators are considered:
per labor gross agricultural value (e1), per labor grain output (e2), agricultural mechaniza-
tion level (e3), agricultural electrification level (e4), and land productivity (e5) [43,44]. These
indicators reflect the agricultural sector’s overall economic vitality and directly influence
the potential for sustainable growth. Higher values in these indicators suggest a more
robust agricultural economy conducive to long-term sustainability. Enhanced agricultural
electrification (e4), for example, fosters the adoption of advanced machinery and irrigation
systems, catalyzing production efficiency, economic growth, and, consequently, agricultural
sustainability [45].

Transitioning to the resource utilization dimension, we focus on four indicators: per
capita arable land area (e6), per capita water resource availability (e7), rural power supply
level (e8), and effective irrigation rate (e9) [43,46]. Efficient resource utilization efficiency is
the basis for achieving sustainable agricultural development, reducing resource depletion
and achieving environmental protection. Higher scores in these indicators denote more
sustainable resource use and bolster agricultural activities without compromising the needs
of future generations.

For the environmental quality dimension, we examine five indicators: fertilizer use
intensity (e10), pesticide use intensity (e11), forest coverage rate (e12), air quality index
(e13), and soil and water conservation area (e14) [6,46]. These indicators illustrate the
ecological impact of agricultural practices and underscore the necessity of environmentally
friendly approaches. Reduced values in e10 and e11 and increased values in e12, e13, and
e14 imply enhanced environmental quality—an indispensable component for the long-term
viability of agriculture and rural ecosystems.

Finally, the rural society dimension incorporates four indicators: per capita disposable
income of rural residents (e15), Engel’s coefficient of rural residents (e16), rural healthcare
level (e17), and education level of rural residents (e18) [44,47]. These epitomize the overall
welfare of the rural populace, integral to sustainable agriculture. High disposable income
and education levels in rural areas foster investment in and comprehension of sustainable
agricultural practice, while robust rural healthcare sustains a capable workforce [26]. A
lower Engel coefficient indicates improved rural living standards and a transition toward
sustainable lifestyles. Collectively, these indicators buttress the long-term sustainability of
agriculture.

Based on the above analysis and guided by systematicity, scientificity, and data avail-
ability principles, this paper constructs a comprehensive agricultural sustainability evalua-
tion system with 18 secondary indicators covering the four dimensions of the economic,
resource, environmental, and social aspects of sustainable agricultural development, as
shown in Table 1.
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Table 1. Agricultural sustainability evaluation index system.

Dimensions Indexes Description Units Direction References

Agricultural
Economy

e1: Per labor
agricultural gross

value

Agricultural,
forestry, animal
husbandry, and
fishery output

value/rural
population

Yuan/rural labor + [15,44]

Agricultural
Economy

e2: Per labor grain
output

Total grain
output/rural labor kg/person + [15]

e3: Agricultural
mechanization

level

Total agricultural
machinery

power/cultivated
land area

kW/hm2 + [15]

e4: Agricultural
electrification level

Rural electricity
consump-
tion/rural
population

kW·h/person + [43,45]

e5: Land
productivity

Total grain
output/cultivated

land area
kg/hm2 + [18]

Resource
Utilization

e6: Per capita
arable land area

Total arable land
area at

year-end/total
population at

year-end

hm2/person + [46]

e7: Per capita
water resource

availability

Total water
resources

availability/total
population

m3/person + [44]

e8: Rural power
supply level

Total rural power
supply

generation/rural
population

% + [26]

e9: Effective
irrigation rate

Effective irrigation
area/sown area % + [12,26]

Environmental
Quality

e10: Fertilizer use
intensity

Fertilizer consump-
tion/sown

area
kg/hm2 - [15,43]

e11: Pesticide use
intensity

Pesticide consump-
tion/sown

area
kg/hm2 - [12,31]

e12: Forest
coverage rate

Forest area/land
area % + [12,15]

e13: Air quality
index

Days of good air
quality/365 / + [18]

e14: Soil and water
conservation area

Soil and water
conservation area khm2 + [6]
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Table 1. Cont.

Dimensions Indexes Description Units Direction References

Rural Society

e15: Per capita
disposable income

Per capita
disposable income
of rural residents

Yuan/person + [18,26]

e16: Engel’s
coefficient of rural

residents

Food expenditure
cost/total rural

resident
consumption
expenditure

/ - [44]

e17: Rural
healthcare level

Average health
personnel per
thousand rural

population

/ + [15]

e18: Education
level of rural

residents

Average years of
education years + [24,26]

2.3. Index Weights Determination Using ANP

In order to take into account the complex interactions between the dimensions of
the agricultural sustainability evaluation indicators, this study uses the Analytic Network
Process (ANP) method to evaluate indicator weights. The calculation process and basic
steps are as follows.

2.3.1. Network Model Construction

The ANP network structure is divided into control and network layers. The control
layer determines the system’s general objective and the corresponding criterion, while the
construction of the relationship between the network layer elements is the core of the ANP
method. In this study, the control layer has only one element, agricultural sustainability,
and thus was omitted. The network layer is constructed using the previous agricultural
sustainability evaluation index system. The clusters in the network layer and the nodes
under each cluster correspond to the four dimensions and indicators of the agricultural
economy, resource use, environmental quality, and rural society in the evaluation system
(Table 1), respectively.

In the network layer, the nodes are interdependent and dominated by each other,
and the nodes and clusters are not internally independent, forming a network structure
of mutual influence [48]. The dependency relationships may not also occur between
nodes from different clusters but between those included in the same cluster. Within the
agricultural sustainability evaluation system, for example, the node “e1 (Gross agricultural
product of rural population)” from the “Agricultural Economy” cluster is both affected by
“e4 (Agricultural electrification level)” from the same cluster and “e9 (Effective irrigation
rate)” from the “Resource utilization” cluster, and so on.

Based on the above analysis, a network model of agricultural sustainability evaluation
was constructed in this study, as shown in Figure 2. In this network model, the influence
relationships between different nodes are indicated by arrows: arrows pointing to other
clusters indicate that there are nodes under the original cluster that influence the nodes of
other clusters, and arrows pointing to their self-clusters indicate that there are nodes under
the same cluster that influence each other.
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Figure 2. Network model of agricultural sustainability.

2.3.2. Calculation of Weights

Due to the complex relationship between the elements and the excessive calculation
of ANP method, this paper uses Superdecisions software to calculate the weights in the
agricultural sustainability evaluation index system. The specific process and principles are
as follows.

• step 1: conduct the pairwise comparisons.
Expert opinions were sought to perform pairwise comparisons of the indicators within
each cluster and between clusters, reflecting their relative importance in determining
agricultural sustainability. The pairwise comparisons were quantified using a nine-
point scale, where 1 represented equal importance and 9 indicated extreme importance.
Inverses of these values were assigned for reciprocal comparisons [32,49]. These values
were subsequently input into the SuperDecisions software for further computations.

• step 2: calculate the unweighted supermatrix.
Based on the scoring results in step 1, firstly, the maximum eigenvalues are calculated,
and then the eigenvectors are normalized. 2. Please carefully check variable formatting
(italic, bold, subscript, uppercase, etc.) throughout the manuscript to ensure the
formatting is consistent and revise if needed.

Rjl Ri1 Ri2 . . . Rin Normalized Eigenvector

Ri1 e11 e12 . . . e1n Ωjl
i1

Ri2 e21 e22 . . . e2n Ωjl
i2

... . . .
...

Rin en1 en2 . . . enn Ωjl
in

(1)
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Then, using the eigenvalue method, calculate the ranking vector (Ωjl
i1, Ωjl

i2, . . . , Ωjl
in)

and complete the consistency check. Wij is denoted as:

Wij =


Ωj1

i1 Ωj2
i1 . . . Ωjn

i1
Ωj1

i2 Ωj2
i2 . . . Ωjn

i2
. . . . . . . . . . . .
Ωj1

in Ωj2
in . . . Ωjn

in

 (2)

The column vector Wij represents the influence ranking of elementRini in systemRi
on elementRjj in systemRj. If the elements inRi have no influence on the elements
inRj, then Ωij = 0 (i = 1, 2, . . . , N; j = 1, 2, . . . , N).
Finally, the unweighted supermatrix of elemental interactions under the control level
of the total system is obtained.

W =



r11r12 . . . r1n1 r21r22 . . . r2n2 . . . rj1rj2 . . . rjnj . . . rn1rn2 . . . rNN
r11
r12
...

r1n

Ω11 Ω12 . . . Ω1j . . . Ω1N

r21
r22
...

r2n

Ω21 Ω22 . . . Ω2j . . . Ω2N

...
...

...
...

...
...

...
ri1
ri2
...

rin

Ωi1 Ωi2 . . . Ωij . . . ΩiN

...
...

...
...

...
...

...
rN1
rN2

...
rNN

ΩN1 ΩN2 . . . ΩNj . . . ΩNN



(3)

• step 3: calculate the weighted supermatrix.
In the above supermatrix, all Wij matrices are based onRjn as the sub-criterion, and
the ranking vectors are obtained by pairwise comparisons of elements inRi. Although
each column in Wij is column-normalized, W is not normalized. Therefore, it is neces-
sary to compare the importance of each element groupRi (i = 1, 2, . . . , N) under the
control layer for the sub-criterionRj (j = 1, 2, . . . , N) and pass the consistency check.

Ri R1 R2 . . . RN Normalized Eigenvector
R1 r11 r12 . . . r1N a1j
R2 r21 r22 . . . r2N a2j
. . . . . . . . . . . . . . . . . .
RN rN1 rN2 . . . rNN aNj

(4)
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According to the relative weight value A ofRi, calculate the eigenvector to obtain the
following weighted matrix A:

A =



α11 α12 . . . α1j . . . α1n
α21 α22 . . . α2j . . . α2n

...
...

...
...

...
...

αi1 αi2 . . . αij . . . αin
...

...
...

...
...

...
αN1 αN2 . . . αNN . . . αnn


(5)

Weight the elements in the supermatrix to obtain W̄ = [Ωij]n×n, where w̄ij = aijΩij,
(i = 1, 2, . . . , N; j = 1, 2, . . . , N). W is the weighted supermatrix, and its characteristic
is that the sum of the columns is 1.

W̄ =



a11Ω11 a12Ω12 . . . a1jΩ1j . . . a1nΩ1n
a21Ω21 a22Ω22 . . . a2jΩ2j . . . a2nΩ2n

...
...

...
...

...
...

ai1Ωi1 ai2Ωi2 . . . aijΩij . . . ainΩin
...

...
...

...
...

...
an1Ωn1 an2Ωn2 . . . anjΩnj . . . annΩnn


(6)

• step 4: Calculate the weights of the elements
By using the weighted supermatrix and the idea of normalization, the limit superma-
trix W∞ is obtained through consecutive multiplication, and its vector is the weight
vector W ′ of the element Rini:

W ′ = (ω11, ω12, . . . , ωnn)
Γ (7)

Here, Γ represents the number of matrix multiplications performed until the conver-
gence criterion is satisfied. Thus, the weight vectors of each element Rij are as follows.

W ′i = (ω′i1, ω′i2, . . . , ω′in)
Γ (8)

2.4. Calculation of the Evaluation Value
2.4.1. Normalization of Indicator Data

Due to our agricultural sustainability evaluation system involving many aspects of
economic resources, environment, and society, the indicators are scattered, some of which
are negative. In order to eliminate the influence of direction and dimensionality, this paper
adopts a normalization method to process the data. Specifically, we postulate the applica-
tion of our agricultural sustainability indicator framework to assess the sustainability levels
of T distinct regions. For the t-th region, the manifestation of agricultural sustainability
pertaining to the n-th indicator, denoted as en, is represented by Atn, where t = 1, 2, . . . , T,
and n = 1, 2, . . . , 18. The specific equations are as follows:

Xtn =
Atn −min{A1n, . . . , ATn}

max{A1n, . . . , ATn} −min{A1n, . . . , ATn}
(9)

Xtn =
max{A1n, . . . , ATn} − Atn

max{A1n, . . . , ATn} −min{A1n, . . . , ATn}
(10)

Here, Equation (9) is employed for the normalization of positive indicators, while
Equation (10) is utilized for the normalization of negative indicators. It is important to
note that the aforementioned normalization equations are exclusively applicable for spa-
tial analysis, which is employed to compare the agricultural sustainability development
levels of distinct regions at the same point in time. When comparing temporal differences,
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we normalize the data for the same region at different points in time. In this case, the
new equations can be expressed in Equations (11) and (12), where Y represents the total
duration of the data, y denotes the ordinal year with an interval of one year, and other vari-
ables remain unchanged. Unless otherwise specified, the following analysis will evaluate
agricultural sustainability development levels for different regions from both spatial and
temporal perspectives.

Xyn =
Ayn −min{A1n, . . . , AYn}

max{A1n, . . . , AYn} −min{A1n, . . . , AYn}
(11)

Xyn =
max{A1n, . . . , AYn} − Ayn

max{A1n, . . . , AYn} −min{A1n, . . . , AYn}
(12)

2.4.2. Calculation and Processing of Evaluation Value

After standardizing all the collected data and combining the indicator weights and
normalized data for each region, the development levels of different dimensions of regional
agricultural sustainability (Si

t) can be obtained, as shown in Equation (14).

Si
t =

Mi

∑
n=1

w′i · xti, t = 1, 2, . . . , T (13)

where i represents the four dimensions within the agricultural sustainable development
evaluation system, while M denotes the number of component indicators for each dimen-
sion. The level of regional integrated agricultural sustainability(St) is:

St =
4

∑
i=1

si
t, (14)

In order to improve spatiotemporal analysis, the results of agricultural sustainability
evaluation are further processed in this paper, and the processing is as follows:

• For the temporal analysis, to comprehensively capture the overall development and
internal disparities in agricultural sustainability, we conducted calculations of the mean
(S̄y) and coefficient of variation (CV) for the results (as shown in Equations (15) and (16)).
The S̄y represents the central tendency of the data, while the CV quantifies the extent of
variability relative to the mean, thereby shedding light on the degree of heterogeneity
among the studied objects [50,51].

S̄y =
1
n

n

∑
i=1

Si,y (15)

CV =
σ

S̄y
× 100 (16)

where y denotes a specific year, Si,y represents the agricultural sustainability level of
region i in a specific year, n signifies the number of observed regions, and σ denotes
the standard deviation of the dataset.
Additionally, this study decomposes the agricultural sustainability level into dimen-
sions to better reflect the changes in each dimension and their contributions to the
overall level of agricultural sustainability. By calculating the contribution margin(CR),
we can clearly distinguish the strengths and weaknesses of the dimensions that con-
tribute to agricultural sustainability and make targeted improvements [52,53]; the
formula is as follows:

CRi
t = Si

t/St, i = 1, 2, . . . , 4, t = 1, 2, . . . , T (17)

• In the spatial analysis, this study employs the Natural Breaks Classification(NBC)
method to further process the agricultural sustainability levels of various regions. This
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method is based on the distribution characteristics of the data, attempting to group
similar data values into the same category while maximizing the differences between
different categories [54]. In this study, we classified the level of agricultural sustain-
ability using NBC method according to 5 classification standards in the ecological field:
low level, relatively low level, medium level, relatively high level, and high level [55].
The Jenks optimization algorithm is employed to determine the optimal breaking
points for the classification [56]. The detailed calculation principle is described below,
with Equations (18) and (19) representing the optimization algorithm:

SSDc,k = min
1≤j≤n−k+1

[
SSDc−1,j−1 +

1
n− j + 1

n−k+1

∑
i=j

(Si − S̄j)
2

]
(18)

S̄j =
1

n− j + 1

n

∑
i=j

Si (19)

In the above equations, SSDc,k represents the sum of squared deviations between
classes for c classes, wherein c = 5, and k observations; n denotes the number of
observed regions; Si stands for each individual agricultural sustainability level; and S̄j
is the mean value from j to n.

3. Result
3.1. Index Weights Results

In this paper, the index weights of the agricultural sustainability evaluation system
were determined by the ANP method. Following the procedures and formulas delineated
in Section 2.2, this study employs the SuperDecisions software to determine the weights of
the various elements (Figure 3).

At the indicator level, the weight of an indicator reflects its relative importance com-
pared to all the indicators within the evaluation system. For a given evaluation indicator,
the higher the weight, the greater its impact on the final agricultural sustainability as-
sessment value. As illustrated in Figure 3, it is evident that Forest coverage rate (e12,
weight: 0.1537), Air quality index (e13, weight: 0.1132), and Per capita disposable income
(e15, weight: 0.1305) are the three most crucial indicators. In contrast, the Agricultural
electrification level (e4) and Rural healthcare level (e17) are the indicators with the most
negligible impact on the agricultural sustainability assessment, with weights of only 0.0104
and 0.0117, respectively. Aside from indicators such as Agricultural mechanization level
(e3) and Fertilizer use intensity (e10), which also have relatively low impact weights, most
indicator weights lie within a range of 0.3 to 0.7.

At the dimension level, according to Figure 3, the weight of Environmental Quality (C3)
is significantly higher than the other three dimensions—at 0.3999—accounting for 40% of
the total. The Agricultural Economy dimension follows, with a weight of 0.2138. Resource
Utilization and Rural Society exhibit similar weights, at 0.1923 and 0.1939, respectively.
This suggests that Environmental quality is the primary evaluation dimension in the
agricultural sustainability assessment process, with the other three dimensions having
relatively less influence.
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Figure 3. The index weights of agricultural sustainability evaluation system.

3.2. Temporal Analysis of Agricultural Sustainability

Upon obtaining the index weights, the data are processed using the time normal-
ization method presented in Section 2.3 (Equations (11) and (12)), followed by calcu-
lating the agricultural sustainability levels of Chinese provinces from 2005 to 2020 us-
ing Equations (13) and (14). Further processing is conducted based on these results
(Equations (15)–(17)) and shown in Sections 3.3.1 and 3.3.2. In accordance with the pa-
per’s formatting and presentation requirements, the specific results of the agricultural
sustainability levels for Chinese provinces are not shown here. For detailed information,
refer to Table A1 in the Appendix A.

3.2.1. Overall Temporal Variation Analysis

Figure 4 illustrates the overall temporal variation of agricultural sustainability by
province in China. From 2005 to 2020, there is a general trend of increasing agricultural
sustainability levels in all provinces.

As evident from Figure 4a, the agricultural sustainability levels of various Chinese
provinces exhibit similar trends—displaying significant increases except for a substantial
decline in 2013. It is important to note that the rate of increase in agricultural sustainability
levels varies across provinces. Some provinces experienced relatively steady growth,
while others exhibited more fluctuating patterns. For instance, Beijing exhibited a more
consistent increase throughout the period, while provinces such as Liaoning and Jilin
showed more variation in their trends. Provinces such as Anhui, Hubei, Hunan, and
Sichuan demonstrate the most significant increases in agricultural sustainability, with
growth rates exceeding 93%.

As indicated by Figure 4b, the average agricultural sustainability levels of Chinese
provinces exhibit a rapid growth trend, rising from 0.2464 in 2005 to 0.8407 in 2020. This
upward trajectory was interrupted by fluctuations in 2012 and 2013 when the average value
declined to 0.416 before rebounding to 0.518. On the other hand, the coefficient of variation
displays a more complex pattern. Initially, the values showed a pronounced decrease;
however, this trend was disrupted by a notable increase in 2013, with the coefficient
reaching its peak at 0.160. Following this apex, the coefficient gradually declined, stabilizing
in 2019 and 2020. The trends in mean values and CVs indicate that while the agricultural
sustainability capacities of Chinese provinces have been rapidly improving, there is a
convergence effect of low-efficiency regions catching up with high-efficiency regions.
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(a) Regional trends

(b) Means and coefficients of variation

Figure 4. Temporal variations in regional agricultural sustainability.

3.2.2. Dimensional Temporal Variation Analysis

Figure 5 illustrates the temporal changes in the mean values and contribution rates of
different dimensions of agricultural sustainability across regions. Between 2005 and 2020,
although the scores of each dimension have been continuously increasing, the contribution
rates of these dimensions have experienced various changes.

As seen in Figure 5a, the sustainability levels of the four dimensions—agricultural
economy, resource utilization, environmental quality, and rural society—all exhibit a contin-
uous upward trend. Among these, the rural society dimension displays the most significant
change, increasing more than 20-fold from 0.0077 in 2005 to 0.1856 in 2020. Environmental
quality consistently remains the most critical component among the four indicators, with
a score of 0.3571 in 2020, significantly higher than the other dimensions. Agricultural
economy and resource utilization dimensions demonstrate similar, stable upward trends,
rising from 0.0304 and 0.0541 in 2005 to 0.1603 and 0.1377 in 2020, respectively.

According to Figure 5b, the contribution rates of the four dimensions—Agriculture
economy, Resource utilization, Environmental quality, and Rural society—exhibit different
changes during the process but ultimately stabilize. Between 2005 and 2020, the proportion
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of the Agriculture economy dimension of the overall agricultural sustainability demon-
strates a generally increasing trend, rising from 12% in 2005 to its peak of 25% in 2013, then
stabilizing between 17% and 20%. Conversely, the Resource utilization dimension shows
a declining trend, decreasing from its peak of 25% in 2008 to 16% in 2020. Throughout
the entire period, the Environmental quality dimension consistently maintains the highest
proportion among the four categories, despite experiencing a decline of more than 20%,
ultimately remaining between 40% and 42%. Lastly, the contribution of the Rural society
dimension to agricultural sustainability significantly increases, rising from 3% in 2005 to
eventually stabilizing around 22%.

3.3. Spatial Analysis of Agricultural Sustainability

This section employs the same processing approach as Section 3.3, utilizing the spatial
normalization method (Equations (9) and (10)) to process the data. Combined with the
index weights from Section 3.2, each province’s relative agricultural sustainability scores
are calculated using Equations (13) and (14) for each year. Finally, the NBC method is
applied for classification and comparison. Similarly, detailed information can be found in
Appendix A in Table A2.

(a) Absolute values

(b) Contribution rates

Figure 5. Dimensional temporal variation in agricultural sustainability.
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3.3.1. Overall Spatial Variation Analysis

In order to compare more intuitively the spatial differences in the level of agricultural
sustainability among different provinces, this study uses ArcGIS software to create maps of
agricultural sustainability levels for Chinese provinces in 2005, 2010, 2015, and 2020, with a
5-year interval between each map. The resulting maps are presented in Figure 6.

As shown in Figure 6, the differences in agricultural sustainability among many
regions remain relatively stable. Between 2005 and 2020, Zhejiang and Fujian’s relative
agricultural sustainability levels have consistently been higher than those of other regions.
Beijing, Jiangxi, and Guangdong maintain stable positions in the second tier. Sichuan
and Tibet are among the regions with medium agricultural sustainability levels. Henan
and Anhui exhibit relatively low agricultural sustainability, while Gansu and Qinghai
rank at the bottom.

(a) 2005 (b) 2010

(c) 2015 (d) 2020

Figure 6. Spatial variations in regional agricultural sustainability.

Apart from these regions, the agricultural sustainability levels of other areas have
exhibited varying changes over the 16 years. For example, the relative agricultural sustain-
ability ratings of provinces such as Hebei and Inner Mongolia have displayed different
declining trends, with Jilin experiencing the most significant drop (from a high level in
2005 to a medium level in 2020). In contrast, the agricultural sustainability ratings of
Heilongjiang, Hunan, and four other provinces have risen. With the exception of Jiangsu,
which exhibited relatively large fluctuations in its agricultural sustainability (low level
in 2005, medium level in 2010, high level in 2015, and medium level in 2020), nine areas,
including Tianjin, Shanxi, and Shandong, have fluctuated between adjacent ratings.
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3.3.2. Dimentional Spatial Variation Analysis

Figure 7 displays the spatial differences among various dimensions of agricultural
sustainability in 2005, 2010, 2015, and 2020. This table provides an intuitive representation
of the comparative advantages and disparities among different dimensions across regions
at different time points.

As shown in Figure 7, during the period of 2005–2020, some regions demonstrated
remarkable advantages in single dimensions. For example, Beijing’s sustainability level in
the rural society dimension was significantly higher than other regions, Tibet led substan-
tially in the resources utilization dimension, and Yunnan consistently held an advantage
in the environmental quality dimension. In addition, some regions gradually developed
their own advantageous dimensions over the 16-year period. For instance, Heilongjiang
surpassed Jiangsu and Jilin in the agricultural economy dimension after 2010 and main-
tained a leading position. Fujian’s sustainability level in the resources utilization dimension
gradually exceeded Xinjiang and ranked only behind Tibet in 2020.

(a) 2005 (b) 2010

(c) 2015 (d) 2020

Figure 7. Dimensional spatial variation in agricultural sustainability.
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Furthermore, Figure 7 also reveals the unbalanced development of agricultural sus-
tainability across various regions in China. Generally, development in the environmental
quality dimension is the most balanced among all provinces, with universally high sustain-
ability levels and relatively small gaps. In the resources utilization dimension, by contrast,
most regions exhibit the lowest sustainability scores among the four dimensions, with only
a few exceptions such as Tibet, Xinjiang, and Fujian. A similar phenomenon is observed
in the rural society dimension. Lastly, the agricultural economy dimension is the most
distinctive, showing a divergent trend. It evolves from initially high scores across most
regions to a gradual concentration in advantageous areas such as Heilongjiang, Jiangsu,
Shandong, and Henan, with relative declines in other regions such as Zhejiang and Fujian.

4. Discussion

In this study, we employ the ANP method to determine index weights for an agricul-
tural sustainability evaluation system and assess the spatiotemporal changes in agricultural
sustainability levels across Chinese provinces from 2005 to 2020. Our findings are generally
consistent with previous research but also show some differences. Based on these findings,
we offer new insights into the constituent factors, development levels, and future policy
recommendations for agricultural sustainability in China.

Considering the index weight results, our analysis emphasizes the importance of
environmental quality in driving agricultural sustainability outcomes, which diverges
from existing studies focusing more on the agricultural economic dimension [15,28]. The
potential reasons for this difference may be attributed to our consideration of the inter-
relationships among different dimensions and indicators when calculating weights and
variations in experts’ subjective judgments. Moreover, although the per capita disposable
income in rural areas is significantly higher than other dimension indicators at the index
level, the overall weight of the social dimension does not show a significant difference
compared to the agricultural economy and resource utilization dimensions. This insight
suggests that, while prioritizing environmental protection in promoting sustainable agri-
cultural development, it is essential to pay attention to the coordinated development of the
agricultural economy, resource utilization, and rural society [57].

In terms of temporal trends, our analysis first reconfirms the findings of Liu et al.
(2019) [58] and Hu et al. (2022) [59] that the level of agricultural sustainability has signifi-
cantly improved in all regions of China, indicating that China’s agricultural policies and
practices are effective in promoting sustainable agriculture. However, the considerable
decline in agricultural sustainability observed in various provinces in 2013 may suggest the
impact of external factors, such as the peak severity of adverse weather conditions such as
smog that year [60]. This implies that while maintaining agricultural sustainability growth,
regions should focus on enhancing their response to external shocks and improving the
stability of agricultural sustainability growth. Secondly, our study confirms the conver-
gence effect of low-efficiency regions catching up with high-efficiency regions in terms
of agricultural sustainability across China [61], highlighting the importance of targeted
policies and interventions in addressing regional disparities. Lastly, the analysis of the
temporal changes in each dimension reveals that the increasing importance of the rural
social dimension reflects the significant role of rural development in enhancing agricultural
sustainability [62]. Simultaneously, the persistent high contribution of the environmen-
tal quality dimension reiterates the necessity of prioritizing environmental protection in
agricultural policies and practices [63].

Regarding spatial disparity, overall, some regions, such as Zhejiang and Fujian, consis-
tently exhibit higher levels of agricultural sustainability, while others, such as Gansu and
Qinghai, perform poorly, and some regions show considerable fluctuations in rankings. This
indicates that agricultural sustainability levels in China still present specific imbalances and in-
stabilities in development [64,65]. It is worth noting that regions such as Shandong and Henan,
which are considered areas with high agricultural sustainability in some studies [65], are only
ranked as moderate or even relatively low in our findings. This could be due to our evaluation
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process placing greater emphasis on the environmental quality dimension and using many
per capita indicators in constructing the index system, which weakens these regions’ overall
leading advantages in economic, resource, and social dimensions. At the dimension level,
some regions demonstrate distinct advantages in specific dimensions, such as Beijing in the
rural social dimension, Tibet in resource utilization, and Yunnan in environmental quality.
The dimensional advantages of regions such as Heilongjiang and Fujian have gradually been
established. These findings emphasize the importance of leveraging regional strengths and
addressing weaknesses to promote balanced and sustainable agricultural development [66].
In policy formulation and agricultural practices, it is crucial to recognize these differences
and strive for balanced development across all aspects. By capitalizing on the strengths of
advantageous dimensions and addressing the shortcomings of weaker ones, we can work
towards achieving sustainable, resilient, and inclusive agricultural systems that contribute to
the well-being of both humanity and our planet.

5. Conclusions

In conclusion, our study contributes to a broad understanding of agricultural sustain-
ability assessment and management by providing a comprehensive and detailed evaluation
system based on the ANP methodology, which examines the spatial and temporal variation
in agricultural sustainability across regions in China over the last 16 years. Our findings
provide valuable insights and policy recommendations for improving agricultural sustain-
ability in China, and they can serve as a valuable reference for other countries seeking to
advance sustainable agricultural development.

The main contributions of this study can be summarized as follows. First, by consider-
ing the various dimensions and indicators of agricultural sustainability as an interacting
whole, our analysis provides a more comprehensive and accurate assessment of China’s
agricultural sustainability. Second, our examination of the different dimensions reveals
the necessity for adopting a sustainable development model centered on environmental
protection, with coordinated growth in agriculture, resource utilization, and social as-
pects after reaching a specific scale of economic development. Third, our analysis of the
spatiotemporal differences across China’s regions offers a theoretical basis for targeted
policymaking and interventions in specific areas.

However, due to data limitations, this study omits the evaluation of a few regions and
cannot incorporate all relevant evaluation indicators. Furthermore, the assessment method
employed in this research is based on subjective and relative perspectives and does not
delve deeply into the influencing factors. Therefore, objectively measuring agricultural
sustainability and investigating the external impact factors, internal driving forces, and the
effectiveness of policies and measures affecting agricultural sustainability are directions for
our future research.
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Appendix A. Tables of Results

Table A1. Temporal evolution of agricultural sustainability levels (2005–2020).

Region 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Beijing 0.3560 0.3614 0.3797 0.5161 0.5331 0.5361 0.5710 0.5937 0.4108 0.4756 0.5269 0.5506 0.5695 0.6007 0.5642 0.6677
Tianjin 0.2348 0.2678 0.2895 0.2838 0.3470 0.3528 0.4119 0.4430 0.3222 0.4741 0.5394 0.5836 0.6306 0.6604 0.7078 0.7903
Hebei 0.2284 0.2518 0.3152 0.3402 0.3884 0.4104 0.4900 0.5376 0.3325 0.4688 0.5553 0.5919 0.6015 0.6920 0.7327 0.8286
Shanxi 0.1913 0.2312 0.2604 0.2858 0.3733 0.4118 0.4975 0.5059 0.4717 0.5734 0.5839 0.6635 0.6558 0.7013 0.7274 0.8363
Neimeng 0.2548 0.2582 0.2867 0.3439 0.4164 0.4519 0.5082 0.5267 0.4431 0.5635 0.6089 0.6143 0.5939 0.7014 0.7724 0.7950
Liaoning 0.3622 0.3431 0.3304 0.3566 0.4387 0.5109 0.5964 0.6792 0.4633 0.4501 0.5372 0.6230 0.6470 0.6893 0.7793 0.8088
Jilin 0.3443 0.3048 0.3022 0.3203 0.4073 0.4909 0.5025 0.5312 0.3673 0.4355 0.4689 0.5850 0.6014 0.7495 0.7187 0.7847
Heilongjiang 0.1978 0.2047 0.1805 0.2529 0.3768 0.3975 0.4371 0.4774 0.4036 0.5082 0.5182 0.6217 0.6332 0.8279 0.8419 0.8821
Jiangsu 0.1967 0.2238 0.2733 0.2977 0.4827 0.4915 0.5555 0.6066 0.4163 0.4561 0.5323 0.5985 0.6284 0.7364 0.6957 0.7845
Xinjiang 0.2330 0.2217 0.2684 0.2514 0.3486 0.4108 0.4178 0.4572 0.4367 0.5925 0.6698 0.6430 0.6398 0.6785 0.7368 0.7263
Zhejiang 0.2181 0.2105 0.2252 0.2594 0.4606 0.5015 0.4926 0.5679 0.4771 0.5619 0.6247 0.6522 0.6612 0.7810 0.7646 0.7906
Anhui 0.2391 0.2388 0.2649 0.3008 0.3619 0.4738 0.4569 0.5208 0.4237 0.4832 0.6379 0.7179 0.7089 0.7674 0.8062 0.9397
Fujian 0.2538 0.2153 0.2510 0.2606 0.3977 0.4402 0.4493 0.5068 0.5213 0.5156 0.5990 0.6687 0.6503 0.7468 0.7822 0.8068
Jiangxi 0.2329 0.2294 0.2326 0.2633 0.3524 0.4366 0.4175 0.4811 0.3919 0.5666 0.6197 0.6535 0.6541 0.7898 0.8002 0.8255
Shandong 0.2243 0.2314 0.2831 0.3089 0.3076 0.3801 0.4495 0.4731 0.2965 0.5021 0.5576 0.6133 0.6657 0.7222 0.7524 0.8867
Henan 0.2514 0.2441 0.2964 0.3148 0.4039 0.4340 0.4754 0.5151 0.3357 0.5043 0.5566 0.5792 0.6334 0.6754 0.7163 0.8645
Hubei 0.2142 0.1955 0.2330 0.2832 0.4327 0.4659 0.4426 0.5791 0.5101 0.5311 0.6206 0.6941 0.7381 0.7583 0.8031 0.9395
Hunan 0.1628 0.1851 0.2098 0.2724 0.3791 0.3743 0.4172 0.4723 0.4284 0.5766 0.6517 0.6999 0.7278 0.7501 0.8249 0.9548
Guangdong 0.2226 0.2236 0.1931 0.3145 0.3990 0.4404 0.4456 0.4930 0.3634 0.4803 0.5276 0.5790 0.5643 0.6811 0.6957 0.7623
Guangxi 0.2247 0.2515 0.2303 0.3126 0.3760 0.3969 0.4005 0.4645 0.3967 0.5410 0.6137 0.6605 0.6877 0.8133 0.8024 0.8600
Hainan 0.2598 0.3189 0.2800 0.4412 0.5234 0.5119 0.5480 0.5732 0.4976 0.5105 0.5295 0.6405 0.6142 0.7405 0.6828 0.7770
Chongqing 0.1836 0.1799 0.2731 0.3135 0.3586 0.4022 0.4316 0.4702 0.3463 0.5459 0.5840 0.6504 0.6777 0.8058 0.7716 0.8597
Sichuan 0.2863 0.1991 0.2652 0.2838 0.3409 0.3943 0.4409 0.4963 0.4324 0.5500 0.6055 0.6621 0.7168 0.7955 0.8454 0.9329
Guizhou 0.1505 0.1389 0.1854 0.2377 0.3285 0.3908 0.3434 0.4299 0.3156 0.5567 0.6473 0.6815 0.7108 0.8263 0.8163 0.8760
Yunnan 0.2450 0.2365 0.2860 0.2806 0.3061 0.3565 0.4184 0.3853 0.3503 0.5721 0.6023 0.6944 0.7392 0.7904 0.7975 0.9180
Tibet 0.4038 0.3302 0.3696 0.4291 0.4532 0.4899 0.5055 0.5015 0.5362 0.5182 0.4997 0.5538 0.6921 0.7936 0.8594 0.8062
Shaanxi 0.3239 0.3182 0.3070 0.3044 0.4841 0.5195 0.5827 0.5966 0.4052 0.4454 0.5566 0.5362 0.5745 0.6674 0.7717 0.8296
Gansu 0.2319 0.1106 0.2081 0.2428 0.3966 0.4358 0.5071 0.5831 0.5307 0.5676 0.6037 0.6021 0.6474 0.7059 0.8312 0.9244
Qinghai 0.2725 0.2342 0.1868 0.3307 0.5151 0.5263 0.5282 0.5036 0.3916 0.5155 0.5362 0.5511 0.6427 0.7138 0.8240 0.8998
Ningxia 0.1925 0.2290 0.2288 0.2569 0.4003 0.4454 0.4779 0.5719 0.4476 0.5692 0.5764 0.5875 0.5987 0.7119 0.8080 0.8643
Xinjiang 0.2330 0.2217 0.2684 0.2514 0.3486 0.4108 0.4178 0.4572 0.4367 0.5925 0.6698 0.6430 0.6398 0.6785 0.7368 0.7263
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Table A2. Spatial differences of agricultural sustainability levels (2005–2020).

Region 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Beijing 0.4347 0.4660 0.4309 0.4925 0.4990 0.4973 0.4826 0.4475 0.4516 0.4419 0.4429 0.4292 0.4409 0.4219 0.4171 0.4422
Tianjin 0.4093 0.4247 0.4055 0.3793 0.3856 0.3916 0.4073 0.3745 0.3721 0.3829 0.3940 0.3871 0.3830 0.3298 0.3676 0.3755
Hebei 0.3867 0.4102 0.3908 0.4109 0.4175 0.4219 0.4196 0.4064 0.3376 0.3459 0.3685 0.3446 0.3363 0.2827 0.3302 0.3303
Shanxi 0.2589 0.2979 0.2757 0.2932 0.2978 0.3155 0.3134 0.3199 0.3115 0.3196 0.3192 0.3043 0.2732 0.2441 0.2712 0.2658
Neimeng 0.4434 0.4595 0.4644 0.4787 0.4788 0.4869 0.4911 0.4910 0.4609 0.4601 0.4667 0.4550 0.4343 0.4217 0.4564 0.4352
Liaoning 0.4647 0.4729 0.4626 0.4610 0.4625 0.4706 0.4867 0.4745 0.4427 0.4086 0.4130 0.4186 0.4189 0.3820 0.4191 0.3989
Jilin 0.5219 0.5183 0.4894 0.5027 0.4816 0.4906 0.5081 0.4836 0.4694 0.4595 0.4472 0.4658 0.4547 0.4413 0.4466 0.4310
Heilongjiang 0.4712 0.4940 0.4846 0.5031 0.5045 0.5224 0.5343 0.5329 0.5338 0.5366 0.5182 0.5328 0.5251 0.5817 0.5386 0.5169
Jiangsu 0.3583 0.3875 0.3790 0.3869 0.4291 0.4210 0.4352 0.4225 0.4281 0.4241 0.4307 0.4229 0.4355 0.3682 0.4175 0.4351
Zhejiang 0.5365 0.5487 0.5296 0.5348 0.5427 0.5357 0.5492 0.5419 0.5503 0.5449 0.5474 0.5429 0.5493 0.5340 0.5475 0.5741
Anhui 0.3240 0.3435 0.3164 0.3434 0.3434 0.3664 0.3543 0.3694 0.3616 0.3236 0.3630 0.3600 0.3483 0.2891 0.3450 0.3680
Fujian 0.5524 0.5465 0.5448 0.5341 0.5388 0.5386 0.5434 0.5508 0.5758 0.5600 0.5685 0.5724 0.5619 0.5295 0.5654 0.5703
Jiangxi 0.4697 0.4797 0.4849 0.4923 0.4900 0.4842 0.4923 0.4624 0.4594 0.4898 0.4904 0.4770 0.4685 0.4136 0.4595 0.4644
Shandong 0.3524 0.4121 0.3973 0.3862 0.3910 0.4025 0.4102 0.3975 0.3396 0.3430 0.3346 0.3348 0.3448 0.2720 0.3212 0.3376
Henan 0.3438 0.3723 0.3715 0.3809 0.3995 0.3869 0.3815 0.3683 0.3425 0.3428 0.3312 0.3198 0.3259 0.2428 0.3111 0.3299
Hubei 0.3614 0.3712 0.3564 0.3816 0.4139 0.4075 0.3977 0.4355 0.4319 0.4063 0.4091 0.4158 0.4267 0.3695 0.4055 0.4266
Hunan 0.3614 0.3978 0.4039 0.4369 0.4580 0.4518 0.4605 0.4385 0.4360 0.4528 0.4602 0.4517 0.4532 0.3844 0.4417 0.4607
Guangdong 0.4474 0.4673 0.4324 0.4570 0.4663 0.4729 0.4784 0.4742 0.4413 0.4563 0.4593 0.4493 0.4379 0.4032 0.4312 0.4528
Guangxi 0.4073 0.4063 0.3828 0.3908 0.4088 0.3927 0.3984 0.3950 0.3963 0.4052 0.4159 0.4161 0.4120 0.4075 0.4129 0.4194
Hainan 0.4143 0.4326 0.4134 0.4420 0.4425 0.4383 0.4481 0.4512 0.4524 0.4394 0.4385 0.4407 0.4342 0.4209 0.4336 0.4289
Chongqing 0.3040 0.2828 0.2735 0.2850 0.2958 0.3108 0.3204 0.3298 0.3017 0.3244 0.3425 0.3374 0.3346 0.3192 0.3491 0.3653
Sichuan 0.4035 0.3978 0.4120 0.4031 0.4201 0.4207 0.4298 0.3844 0.4097 0.3992 0.3921 0.3830 0.3966 0.3601 0.4142 0.4124
Guizhou 0.3404 0.3302 0.3343 0.3377 0.3193 0.3698 0.3532 0.3707 0.3294 0.3678 0.3907 0.3911 0.3905 0.4011 0.3950 0.3973
Yunnan 0.4199 0.4182 0.4261 0.4139 0.4148 0.4171 0.4440 0.4321 0.4466 0.4720 0.4696 0.4721 0.4743 0.4593 0.4760 0.4827
Tibet 0.3993 0.3915 0.3862 0.3968 0.4015 0.4042 0.4142 0.4105 0.4178 0.3824 0.3810 0.3749 0.4070 0.4001 0.4388 0.4135
Shaanxi 0.3668 0.3765 0.3627 0.3698 0.3814 0.3929 0.3943 0.3809 0.3653 0.3516 0.3799 0.3367 0.3286 0.3118 0.3586 0.3586
Gansu 0.2298 0.2169 0.2395 0.2113 0.2153 0.2155 0.2205 0.2295 0.2882 0.2910 0.2898 0.2680 0.2678 0.2493 0.2992 0.2991
Qinghai 0.2376 0.2322 0.2063 0.2120 0.2227 0.2582 0.2519 0.2356 0.2436 0.2511 0.2609 0.2357 0.2639 0.2567 0.2959 0.2835
Ningxia 0.3108 0.3152 0.3016 0.3061 0.3144 0.3252 0.3214 0.3133 0.3198 0.3166 0.3099 0.2921 0.2820 0.2720 0.3239 0.3057
Xinjiang 0.2909 0.3053 0.2818 0.2757 0.2951 0.3164 0.3104 0.3116 0.3557 0.3481 0.3483 0.3324 0.3235 0.3123 0.3347 0.3108
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