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Abstract: Landslides pose a serious threat to human lives and property. Accurate landslide sus-
ceptibility mapping (LSM) is crucial for sustainable development. Machine learning has recently
become an important means of LSM. However, the accuracy of machine learning models is limited
by the heterogeneity of environmental factors and the imbalance of samples, especially for large-scale
LSM. To address these problems, we created an improved random forest (RF)-based LSM model
and applied it to Guangdong Province, China. First, the RF-based LSM model was constructed
using rainfall-induced landslide samples and 13 environmental factors and by exploring the optimal
positive-to-negative and training-to-test sample ratios. Second, the performance of the RF-based
LSM model was evaluated and compared with three other machine learning models. The results
indicate that: (1) the proposed RF-based model has the best performance with the highest area under
curve (AUC) of 0.9145, based on optimal positive-to-negative and training-to-test sample ratios of
1:1 and 8:2, respectively; (2) the introduction of rainfall and global human modification (GHM) can
increase the AUC from 0.8808 to 0.9145; and (3) rainfall and topography are two dominant factors in
Guangdong landslides. These findings can facilitate landslide risk prevention and serve as a technical
reference for large-scale accurate LSM.

Keywords: landslide susceptibility mapping (LSM); machine learning; random forest (RF); sample
balance; rainfall-induced landslide; global human modification (GHM)

1. Introduction

As one of the main types of geological hazards, landslides refer to the sliding of rock
and soil masses along a slope. They are generally influenced by both natural factors and
human interference and are characterized by wide distribution and frequent occurrence [1].
Landslide disasters in China have caused considerable casualties and property damage due
to their sudden and unpredictable nature [2–4]. During the period from 2002 to 2014, a total
of 246,768 landslides occurred in China, which led to the injury or death of 17,296 people
and direct economic losses of CNY 58.75 billion [5]. It is evident that landslide disasters
have imposed constraints on sustainable development [6,7]. The International Consortium
on Landslides (ICL) has advocated for harmonizing regulations of the Sendai Landslide
Partnerships 2015–2025 and the 2030 Agenda Sustainable Development Goals, among
others [7]. Understanding where landslides can occur is, therefore, of great importance for
reducing casualties, addressing ecological and economic losses, and promoting sustainable
development [8]. This understanding generally includes two main aspects: landslide
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susceptibility assessment (LSA) and landslide susceptibility mapping (LSM). The LSA
refers to obtaining the probability of landslide occurrence at a certain location under certain
environmental conditions [9]. It is the basis of landslide hazard assessments and landslide
risk assessments [1,3,10,11]. LSM is generated by the LSA. It can rapidly visualize and
determine the distribution patterns of landslide susceptibility in a region using geographic
information system (GIS) and remote sensing (RS) technologies. More importantly, an
accurate LSM plays an essential role in identifying such disasters and developing principles
for sustainable development [8,12,13]. However, there are many challenges in optimiz-
ing LSM due to the complex mechanism and many uncertainties involved in landslide
disasters [14–17].

Recently, LSM studies have shifted from empirically driven qualitative analysis to
knowledge-driven and data-driven quantitative analysis [18]. Among these quantitative
studies, two types of models are often used, namely deterministic models and statistical
models [5,19]. Deterministic models mainly adopt the traditional slope damage mechanics-
based model and basic spatial data to estimate the probability of landslide occurrence [5].
These models rely on large amounts of data on geology and hydrology and, thus, are often
used in small-scale studies [19]. The statistical model, a type of non-deterministic model,
adopts statistical methods to determine the relationship between historical landslides and
environmental factors and to estimate the probability of landslides on a regional scale [5,19].
Compared with deterministic models, statistical models do not require a large amount of
data on the physical characteristics of landslides and are, therefore, more suitable for LSM
on a large scale [18,19]. However, statistical models cannot be used to express the complex
nonlinear relationships between landslide susceptibility and environmental factors [20,21].
Studies have found that machine learning models, such as random forest (RF) [22–27],
support vector machine (SVM) [28,29], multilayer perceptron (MLP) [30,31], and logistic
regression (LR) [21,32], have the ability to automatically learn and mine the complex
relationships among high-dimensional complex data and can provide a promising pathway
for LSM [17,18,33–35]. Machine learning models have shown better performance in LSM
studies [17,18,36]. Although the best machine learning model for LSM is under debate [18],
the RF model is currently relatively robust because of its excellent performance in handling
large amounts of nonlinear data [17]. Recently, several deep learning models, including
convolutional neural network, feedforward neural network, and recurrent neural network,
have also been explored [11,37,38]. However, deep-learning-based landslide susceptibility
models generally face the problem of data dependence. In particular, the computational
complexity of deep-learning-based models may increase significantly when the sample
size of landslides is insufficient [39]. Therefore, in contrast, machine learning models are
more suitable for small-sample studies. However, the accuracy of machine learning models
for LSM at a large scale is generally limited by the diversity of landslide types [40] and the
heterogeneity of environmental factors affecting landslides [5,17,18].

To overcome the limitations faced by machine-learning-based LSM studies, scholars
have made improvements in three aspects. One is to construct the machine learning
model for LSM with multi-source data and improve the evaluation effect of machine
learning by using a complete landslide sample dataset by increasing the sample number
of all landslide types in the study area. Multi-source landslide data, including survey
data [13,41], disaster reports [36,42], and remote sensing images [20,43], have been used to
train machine learning models [14,16]. Meanwhile, semi-supervised learning has also been
used to expand the landslide sample dataset [14]. However, this method cannot guarantee
that each type of landslide will have the same number of samples, and the features of
a landslide type with a small sample may not be fully learned [9,18]. The second is to
enhance the accuracy of the machine learning model by introducing key environmental
factors, such as elevation, slope, and lithology [16,22,44]. Recently, several studies have
focused on choosing appropriate environmental factors by considering specific regional
characteristics and landslide types [42,45]. In the existing LSM studies, the variables related
to human activities mainly include distance to road and land use types [18]. Although
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these variables may reflect one or a few aspects of human activity, this is not sufficient to
reflect the comprehensive effect of human activities on landslides [46,47]. The third is to
divide the study area into multiple regions using the clustering analysis method based
on the distribution of landslides in the study area and the similarity of environmental
factors and to use the category attribute of each region as one of the input variables of the
machine learning model [16,41]. The introduction of more variables, however, may lead to
a decrease in the generalization ability in the clustering analysis method [48]. In addition,
it is difficult to quantitatively evaluate the clustering result, which may further increase the
uncertainty of the LSM model [48].

Moreover, machine-learning-based LSM studies are often affected by evident sample
imbalances. Yu et al. [5] indicated that the sample imbalance issue may affect the reliability
of the LSM. Reichenbach et al. [18] also indicated that there are far more negative samples
(i.e., non-landslide samples) than positive samples (i.e., landslide samples) in LSM studies,
and the imbalance between positive and negative samples may affect the accuracy of
the LSM. In particular, the selection of the training-to-test sample ratio is critical to the
results of the machine-learning-based LSM models [18]. The training-to-test sample ratios
of 7:3 [14,44] and 8:2 [49,50] are generally applied in existing LSM studies, while the
performance of different ratios in constructing LSM models is seldom explored. In general,
the selection of the positive-to-negative sample ratio and the training-to-test sample ratio
affects the accuracy of LSM models. Most LSM studies have to rely on a small amount of
sample data [14,51] and, hence, suffer from the problem of sample imbalance [18]; this is
because it is difficult and expensive to obtain adequate landslide samples and their genesis
types on a large scale in a tight timeframe [14,18]. Although some landslide inventories
are available at national and global scales, they normally consist of major landslide events
only. Therefore, making full use of the limited sample data and setting reasonable ratios of
landslide samples are crucial for constructing LSM models.

In view of the above problems, this study proposes an improved RF-based model
by considering sample type and balance for LSM in Guangdong Province. The proposed
method aims to improve the existing LSM methods in terms of three aspects: (1) improving
LSM accuracy by considering the comprehensive impact of multiple environmental factors,
such as topography, geography, land cover type, rainfall, and human activities; (2) reducing
the error caused by multiple types of landslide samples by using rainfall-induced landslide
samples only as the model input; (3) mitigating the adverse effects of sample imbalance by
optimizing the positive-to-negative sample ratio and training-to-test sample ratio of the
LSM model based on quantitative analysis.

2. Materials and Methods
2.1. Study Area

The study area is Guangdong Province (20◦13′ N~25◦31′ N, 109◦39′ E~117◦19′ E)
(Figure 1), located in Southern China, with a land area of 178,000 km2. The area is made up
of 31.4% mountains, 25.61% hills, 20.26% tablelands, and 22.73% plains and valleys [52].
The intrusive rocks dominated by granite account for one-third of the total area of Guang-
dong Province, while migmatite and gneiss also exist widely [45,52]. Guangdong belongs
to a subtropical monsoon climate, with an average annual rainfall of 1758.8 mm and char-
acterized by perennial mild and humid weather. Under the pressure of abundant rainfall
and frequent landing typhoons, the probability of landslides in Guangdong Province
is high [2,45,51]. Considering that Guangdong has a high population density and eco-
nomic activity intensity, the multiple effects of geography, economy, and demographics
in Guangdong create conditions susceptible to the occurrence of landslide disasters [4].
Due to the lack of data on the environmental factors of some islands (e.g., Dongsha Is-
lands), this study mainly investigates the landslide susceptibility of the major land areas in
Guangdong Province.
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Figure 1. Location of the study area and the elevation image of Guangdong Province (using 50 m
spatial resolution for better visualization).

2.2. Data
2.2.1. Landslide Inventory

Landslide inventory refers to a detailed register of the spatial distribution, geometry,
and attributes of landslides [9]. In this study, two classes of landslide inventory were used:
(1) Class I: data of 335 historical landslide points in Guangdong Province from 2015 to
2019, which were collected from geological disaster reports published by the Department
of Natural Resources of Guangdong Province. These reports provide information on the
occurrence time, detailed location, coordinates, primary causal factor (rainfall-induced or
human activity–induced), and geological hazard type (rock fall, landslide, ground collapse,
and debris flow), etc. Among these landslide events, 254 belong to the rainfall-induced
type; the remainder are triggered by both rainfall and slope excavation and, thus, belong to
the mixed type of rainfall-induced and human activity-induced landslides. Generally, the
Class I landslide data are mainly rainfall-induced, with some mixed with human activity
effects. (2) Class II: data of 586 landslide polygons in Longchuan County and Zijin County,
Heyuan City in Guangdong Province. The Class II landslide data were obtained through a
two-step procedure, which include visual interpretation of the GaoFen-2 images in 2021
and verification based on field investigation. This indicates that the Class II landslide data
have a high accuracy and can be used as ground truth data in the region. The Class II
landslide data used in this study are of mixed types, covering all landslide events detected
in the study area; however, attribution categories are not specified. In this study, the
Class I landslide data were used as the landslide samples for training and testing the
RF-based model for LSM, while the Class II landslide data were employed to validate the
effectiveness of the RF-based model for multiple types of landslides; there is no overlap
between the two classes of landslide data.

2.2.2. Environmental Factors

Considering the regional characteristics of Guangdong Province and the main type
of landslide samples (i.e., Class I landslide data), 13 environmental factors were selected,
which can be categorized into topography, geology, land cover, meteorology, hydrology,
and human activities. Detailed information and data sources of these factors are listed
in Table 1. These environmental factors were resampled into 1 km spatial resolution grid
cells using the WGS1984 coordinate system; the spatial distributions of these factors in
Guangdong Province are shown in Figure 2. To ensure the consistency of the grid unit,
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287 grids were labeled as landslide samples, with one or more historical landslide points
falling into their grid area.

Table 1. The 5 categories of 13 environmental factors selected in this study and their information.

Category Resolution Factor Data Type Classes Source

Topographic 30 m

Elevation (m) Continuous 0~1701

ASTER GDEM V2 DEM
(earthexplorer.usgs.gov,

accessed on 15
November 2021)

Slope (◦) Continuous 0~23.41

Aspect Categorical

1: Flat, 2: North, 3:
Northeast, 4: East, 5:

Southeast, 6: South, 7:
Southwest, 8: West, 9:

Northwest

Profile
curvature Continuous 0~0.56

Plane
curvature Continuous 0~0.24

Geological 1000 m
Lithology Categorical

0: Unknown, 1:
Extrusive rock, 2:

Hypabyssal rock, 3:
Plutonite rock, 4: Clastic

rock, 5: Clay rock, 6:
Clastic and Clay rock, 7:

Biochemical
sedimentary rock, 8:
Metamorphic rock, 9:

Melange rock, 10:
Quaternary system

National Geological
Archive

(www.ngac.cn, accessed
on 17 November 2021)

Distance to fault
(m) Continuous 0~133,212

Land cover 30 m

Normalized
difference

vegetation index
(NDVI)

Continuous 0.04~0.85

Google Earth Engine
(GEE) Landsat 8
Collection Tier 1

(earthengine.google.
com, accessed on 16

November 2021)

Land cover type Categorical

10: Cropland, 20: Forest,
30: Grass, 40: Shrub, 50:
Wetland, 60: Water, 80:
Artificial, 90: Bareland

GlobeLand30 2020
(www.globallandcover.

com, accessed on 2
December 2021)

Meteorological
and

hydrological
1000 m

Distance to river
(m) Continuous 0~13,347

OpenStreetMap
(www.openstreetmap.

org, accessed on 2
December 2021)

Rainfall (mm) Continuous 1403.6~2500.7

National Earth System
Science Data Center
(www.geodata.cn,

accessed on 15
November 2021) [53]

Human
activity 1000 m

Distance to road
(m) Continuous 0~13,642.6

OpenStreetMap
(www.openstreetmap.

org, accessed on 2
December 2021)

Global
human

modification
(GHM)

Continuous 0.08~0.98

GEE CSP GHM
(earthengine.google.
com, accessed on 1

December 2021) [54]

earthexplorer.usgs.gov
www.ngac.cn
earthengine.google.com
earthengine.google.com
www.globallandcover.com
www.globallandcover.com
www.openstreetmap.org
www.openstreetmap.org
www.geodata.cn
www.openstreetmap.org
www.openstreetmap.org
earthengine.google.com
earthengine.google.com


Sustainability 2023, 15, 9024 6 of 23Sustainability 2023, 15, 9024 6 of 23 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. Cont.



Sustainability 2023, 15, 9024 7 of 23Sustainability 2023, 15, 9024 7 of 23 
 

  
(g) (h) 

  
(i) (j) 

  
(k) (l) 

Figure 2. Cont.



Sustainability 2023, 15, 9024 8 of 23Sustainability 2023, 15, 9024 8 of 23 
 

 
(m) 

Figure 2. The spatial distributions of 13 environmental factors in Guangdong Province: (a) elevation; 
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1. Topographic data
The elevation, slope, aspect, profile, and plane curvature were extracted from the 30 m
spatial resolution ASTER global digital elevation model (GDEM) V2 version data after
resampling (data year 2011). The ASTER GDEM V2 version was adopted in this study
because it has been proven to be more accurate than the V1 version and it has more
practical use and allows for greater verification than the V3 version [55]. Topographic
data are the most commonly used factor in LSM studies [18]. Landslides can occur
when elevation and slope exhibit certain conditions [18,48]; a higher curvature means
that the slope has a stronger capacity for water accumulation and is more prone to
landslides [34,48]; meteorological processes regulate sunlight, hydrological elements,
and wind direction, which affect slope stability [48].

2. Geological data
Landslides are related to geological conditions [18]. They primarily occur in areas
with a weathered soil layer on the bedrock surface [51] as well as with tectonic ac-
tivity [18]. Thus, the geological data of the study area mainly include lithology and
distance to fault, which were derived from the geological vector map of Guangdong
Province provided by the National Geological Archive (NGA). The lithology fac-
tor was reclassified into the quaternary system, plutonic rock, metamorphic rock,
melange (or mélange) rock, hypabyssal rock, extrusive rock, clay rock, clastic rock,
and biochemical sedimentary rock, in accordance with the original data description
and the study of Liu et al. [41]. The distance to fault factor was calculated using the
Euclidean distance between each grid and the nearest fault structure.

3. Land cover data
The normalized difference vegetation index (NDVI) and land cover type were used to
represent land cover in the study area, as they can affect slope stability by altering
the density of vegetation, soil moisture content, land evapotranspiration, and root
strength [18,35]. The NDVI was generated via the Landsat8 Collection 1 Tier 1 8-Day
from 2015 to 2019 on the Google Earth Engine (GEE) platform; the maximum values
during the study period were adopted as the NDVI factor. The land cover type was ob-
tained from the land cover product GlobeLand30 for 2020. Since Guangdong Province
is located in a low-latitude area and has a tropical and subtropical climate, eight land
cover types, including cultivated land, forest, grassland, shrubland, wetland, water
bodies, artificial surfaces, and bare land, were considered in the study area (excluding
tundra and permanent snow and ice).

4. Meteorological and hydrological data
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Rainfall is an important trigger of landslides [56]. Because the rainfall in Guangdong
Province is significant and the samples input to the model are all rainfall-induced
landslides, it is necessary to consider the rainfall factor. The annual average rainfall
represents the average rainfall condition over the long term in the region [24], which
has been validated in previous machine learning LSM studies [16,41]. The average
annual rainfall of the study area from 2015 to 2019 is used as the rainfall factor; it was
calculated by processing the primitive data of the monthly rainfall dataset provided
by the National Earth System Science Data Center [53]. The river can carry away the
rock and soil mass at the slope toe, resulting in the slope toe near the river easily
forming an aerial surface and promoting the occurrence of landslides [24]. Thus,
the factor of distance to river was added; it was obtained by calculating each grid’s
Euclidean distance to the nearest river. The river network data were obtained from
OpenStreetMap.

5. Human activity data
The road construction near slopes can considerably reduce the stability of slopes [24]
and even directly lead to landslide occurrence [47]. Therefore, the factor of distance to
road indicates a trigger of human activity; it was obtained by calculating the Euclidean
distance from each grid to the nearest road based on road data downloaded from the
OpenStreetMap. In particular, to fully measure the complicated impact of human
activities on landslides [47], the Global Human Modification (GHM) data with a 1 km
spatial resolution on the GEE platform were also incorporated (data year 2016) [54].
The GHM is a continuous index ranging from 0 (no human impact) to 1 (high impact),
where a greater value indicates more intense human modification of terrestrial lands.
It provides an insight into the impact of human activities by analyzing various types of
data, including human settlements, agricultural activities, transportation, mining and
energy production activities, and electricity infrastructure. As an integrated variable,
the GHM considers the impact of different types of human modification.

2.3. Methods

This study constructed an RF-based LSM model to analyze the distribution pattern of
landslide susceptibility in Guangdong Province and its dominant environmental factors.
First, the normalization and correlation test for the preprocessing of the input data of LSM
was performed. Second, the RF-based LSM model with the optimal ratio of positive-to-
negative samples and training-to-test samples was constructed. Third, the performance of
the proposed RF-based LSM model was evaluated and compared with the SVM, MLP, and
LR-based models using the area under curve (AUC) method. All steps were performed
through the scikit-learn open-source library in Python and the ESRI ArcGIS software.

2.3.1. Normalization and Correlation Test of Model Inputs

To avoid the inconsistent influence in the data dimension of different input factors for
the LSM model, min–max normalization pre-processing was performed for the 13 environ-
mental factors using the following formula:

x′ =
x− xmin

xmax − xmin
(1)

where x is the original value of the independent variable (i.e., environmental factor), xmax
and xmin are the maximum and minimum values of the independent variable, respectively,
and x′ is the normalized independent variable.

Considering the correlation effect between 13 environmental factors in the machine
learning model [33], the variance inflation factor (VIF) was calculated to detect multi-
collinearity among these factors (VIF values above 5 indicate the presence of multicollinear-
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ity) [34]. An appropriate combination of environmental factors could then be determined.
The formula for VIF is as follows:

VIFi =
1

1− Ri
2 (2)

where Ri is the correlation coefficient of regression analysis of xi for the remaining indepen-
dent variables.

2.3.2. Construction of LSM Model Considering Sample Type and Balance

This study employed the RF algorithm to construct the LSM model based on Class I
landslide data and environmental factors. To minimize the model fitting error caused by
the heterogeneity of landslide samples, the rainfall-induced landslides derived from the
Class I landslide data were used as positive samples. In addition, the negative samples
were selected from non-landslide regions and defined as non-road and non-river regions
more than 1 km away from the positive samples [44].

The selection of the positive-to-negative sample ratio (i.e., landslide to non-landslide
sample ratio) and the training-to-test sample ratio is essential for machine-learning-based
LSM models [5,18]. The grid cells where the landslides occur were selected as the landslide
samples, while the grid cells in the area outside the occurrence of landslides were used
as the non-landslide samples [18]. Thus, the number of available landslide samples was
much lower than the number of the non-landslide samples. To obtain the optimal positive-
to-negative sample ratio of the LSM model, a positive-to-negative sample ratio of 1:1 was
used to represent the case of balanced positive and negative samples, and ratios of 1:2
and 1:3 represented the case of unbalanced positive and negative samples. Considering
that the area under curve (AUC) is insensitive when there is a quantitative difference
between positive and negative samples [57], the Sensitivity from the confusion matrix was
employed to evaluate the landslide identification precision. As shown in Figure 3, TP,
FN, TN, and FP are four metrics of the confusion matrix. TP is the true positive, i.e., the
number of landslide samples correctly predicted by the model; FN is the false negative,
i.e., the number of samples where the model misclassifies landslides as non-landslides;
TN is the true negative, i.e., the number of non-landslide samples correctly predicted
by the model; and FP is the false positive, i.e., the number of samples where the model
misclassifies non-landslides as landslides. The indexes of Sensitivity and Speci f icity can
be calculated using the following formulas:

Sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

FP + TN
(4)

where Sensitivity denotes a true-positive rate, i.e., the rate of landslides correctly predicted
number by the model to the number of landslide samples; Speci f icity denotes the true-
negative rate, i.e., the rate of non-landslides correctly predicted number by the model to
the number of non-landslide samples. In this study, the positive-to-negative sample ratio
with the greatest Sensitivity was selected as the optimal ratio.

Referring to several LSM studies, the training-to-test sample ratio of the sample set
was set to 7:3 [14,44] and 8:2 [49,50]. AUC values of the LSM model with different ratios
were calculated, and average AUC values were obtained by repeating the previous process
ten times. The AUC denotes the area enclosed by the receiver operating characteristic
(ROC) curve and the coordinate axis. It has been widely used to measure the accuracy of
models [34]. The range of the AUC value is from 0.5 to 1, where a higher value indicates
a stronger discriminative capability of the model [34]. Generally, values of AUC above
0.7 indicate high accuracy, while values above 0.9 indicate very high accuracy [58]. The ROC
curve is generated with Sensitivity as the horizontal axis and Speci f icity as the vertical axis.
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In this study, the training-to-test sample ratio with the highest average AUC value was
selected as the optimal ratio. The optimal combination of hyperparameters was determined
using the cross-validation and grid search methods.
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2.3.3. Machine-Learning-Based LSM Model Comparison

To verify the reliability of the proposed RF-based LSM model, the performance of
this model was compared with three other machine learning models, i.e., SVM, MLP, and
LR, using the optimal positive-to-negative sample ratio and training-to-test sample ratio.
Specifically, all samples were first divided into ten sample sets, each of which had the
optimal ratio of positive-to-negative samples, i.e., 287 positive samples and 287n (n = 1, 2,
or 3) negative samples. For each sample set, the optimal ratio of training-to-test samples
was adopted, i.e., 70% or 80% of the samples were used as the training set, while the
remaining 30% or 20% were used as the test set. Then, these ten sample sets were used to
train and test four machine learning models, and their performances were evaluated based
on the testing set and the ROC. Finally, AUC values corresponding to the sample sets of
each machine learning model were calculated, and the model with the largest average AUC
value indicated the highest accuracy of the LSM.

2.3.4. Model Application and Multidimensional Analysis

The model with the largest AUC value was employed to map the landslide susceptibil-
ity of Guangdong Province. We used the natural breaks method to identify four levels, i.e.,
low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility.
The distribution pattern of landslide susceptibility in the study area was further analyzed
at the provincial scale and the city scale.

To evaluate the effect of the model on landslide samples, the percentage of the number
of Class I landslides at each landslide susceptibility level to the total number of Class I
landslides (Pni) was calculated; it is defined as follows:

Pni =
ni
n
× 100% (5)

where ni donates the number of Class I landslides at each susceptibility level i (four levels,
including low, moderate, high, and very high), and n donates the overall number of Class
I landslides.

The susceptibility levels of landslides for each city in Guangdong Province were
evaluated by calculating the percentage of the area at different susceptibility levels in each
city of Guangdong Province (Paij). The formula of Paij is as follows:

Paij =
Aij

Aj
× 100% (6)

where Aij donates the area of each susceptibility level i (four levels, including low, moderate,
high, and very high) of city j, and Aj donates the administrative area of city j.
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Furthermore, the landslide susceptibility distribution pattern was the result of various
environmental factors. Considering that the RF model has also proven to be an effective
method for quantifying the importance of different variables, the RF model was used to
analyze the impact of 13 environmental factors on the landslides in Guangdong Province.

3. Results
3.1. The Correlation of Environmental Factors

Table 2 shows the multicollinearity test results, i.e., the VIF values of 13 environmental
factors. As shown in Table 2, the VIF values of the environmental factors are all less than 5,
which indicates there is no multicollinearity among these factors [34]. Therefore, this study
employed all 13 environmental factors for LSM.

Table 2. The VIF values of 13 environmental factors.

Factor VIF Value Factor VIF Value Factor VIF Value

Elevation 2.4 NDVI 2.69 Land cover type 1.53
Slope 2.21 Distance to river 1.26 Rainfall 1.04

Aspect 1 Distance to road 1.52 GHM 2.69
Profile curvature 1.53 Distance to fault 1.09
Plane curvature 1.04 Lithology 1.14

3.2. Performance Evaluation of Sample Ratios
3.2.1. Analysis of Positive-to-Negative Sample Ratio on Sensitivity

Figure 4 shows the confusion matrices of the RF-based LSM model with different ratios
of positive-to-negative samples (i.e., landslide samples and non-landslide samples) using
the testing sets. It can be found that the Sensitivity value (multiplied by 100% to show the
percentage) is the highest (79.31%) when the positive-to-negative sample ratio is 1:1. For
ratios of 1:2 and 1:3, the Sensitivity values drop to 44.83% and 25.86%, respectively. We can,
therefore, conclude that the ratio of positive-to-negative samples has a significant effect
on the sensitivity index, i.e., the precision of landslide identification. In other words, the
model’s ability to identify landslides would be greatly limited when there is a significant
quantitative difference between positive and negative samples. Therefore, 1:1 is selected as
the optimal positive-to-negative sample ratio.
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3.2.2. Analysis of Training-to-Test Sample Ratio of AUC

Figure 5 shows that the ROC curves and AUC values are based on the same sample
set with a positive-to-negative sample ratio of 1:1. The RF model was constructed using
training-to-test sample ratios of 8:2 and 7:3, and the model construction process was
repeated 10 times. The results show that the AUC values range from 0.7609 to 0.8852,
with an average of 0.831, when the training-to-test sample ratio is set as 8:2. Meanwhile,
the AUC values range from 0.7468 to 0.8569, with an average value of 0.7973, when the
training-to-test sample ratio is set as 7:3. The values of both the highest AUC and the
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average AUC with a training-to-test sample ratio of 8:2 are higher than those of the 7:3 ratio.
Thus, in this study, the optimal training-to-test sample ratio for the RF model was set as 8:2.
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3.3. Comparison of Machine Learning Models

The proposed RF-based LSM model was compared with three other machine learning
models, namely SVM, MLP, and LR, which were all trained and tested using 10 different
sample sets with the optimal positive-to-negative sample ratio (1:1) and training-to-test
sample ratio (8:2). In addition, the optimal combination of hyperparameters was found and
is shown in Table 3. Figure 6 illustrates the ROC and AUC values of these four models. In
general, the AUC values of SVM, MLP, and LR models are between 0.6322 and 0.7901, with
average AUC values around 0.7. Among these machine learning models, the RF model
has the best performance on landslide susceptibility mapping, with the highest average
AUC value of 0.8116 and the highest AUC value of 0.9145 (Figure 6a). These findings
indicate that the RF model is superior to the other three machine learning models. This is
likely because the RF model can prevent overfitting of the training set by creating multiple
decision trees and handling missing values and outliers [17].

Table 3. The optimal combination of main hyperparameters involved in RF.

Hyperparameter Explanation Value

n_estimators The number of decision trees. 200
criterion The sample segmentation criteria. gini

max_depth The maximum depth of decision trees. None

min_samples_split the minimum number of samples
required to split an internal node. 2

min_samples_leaf the minimum number of samples
required to be at a leaf node. 1
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Figure 6. The ROC curves and AUC values of four machine learning models (the red dash line
represents the reference line, above which the ROC curves are valid), (a) random forest (RF), (b) sup-
port vector machine (SVM), (c) multilayer perceptron (MLP), and (d) logistic regression (LR), with
10 different sample sets (Ai represents the AUC value of the i-th sample set; mean represents the
average AUC value of the 10 sample sets).

3.4. Analysis of Landslide Susceptibility Distribution Pattern and Factor Importance
3.4.1. Distribution Pattern Analysis of Landslide Susceptibility at the Provincial Scale

Following the analysis outlined above, the optimal positive-to-negative sample ratio
of 1:1 and training-to-test sample ratio of 8:2 were determined. We also found that the RF
model outperformed the SVM, MLP, and LR models. Therefore, the RF-based LSM model
with the highest AUC value (A1 in Figure 6a) was employed in Guangdong Province to
obtain the landslide susceptibility index for each grid. The landslide susceptibility raster
layer of the study area was then classified into four levels using the natural breaks method,
with the four levels being low susceptibility (0–0.28), moderate susceptibility (0.29–0.43),
high susceptibility (0.44–0.6), and very high susceptibility (0.61–0.98). Figure 7 shows the
distribution of the four landslide susceptibility levels in Guangdong Province. As shown
in Figure 7, regions of high landslide susceptibility are mainly located in the north and east
part of Guangdong, while regions of low landslide susceptibility are mainly located in the
south and west part of Guangdong Province. It can be found that mountainous regions
tend to have higher landslide susceptibility, while regions with gentle terrain, such as the
Pearl River Delta, the Hanjiang Delta, and the coastal areas, tend to have lower landslide
susceptibility. This also indicates that the landslides of Guangdong are closely related
to topography.
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landslide points provided by the Class I landslide data (note: since the elevation data of the sea
around some offshore land is missing, its slope, aspect, and curvature could not be calculated, so the
boundary of this figure may be slightly different from the boundary of Figure 1).

Table 4 shows the percentage of the Class I landslide number in each landslide suscep-
tibility level region to its overall number in the study area (Pni). The results showed that
98.5% of historical landslide points in the study area have high and very high landslide
susceptibility. Moreover, as shown in Figure 7, the areas surrounding the landslide points
are mainly categorized as high landslide susceptibility regions. This indicates that the
landslide susceptibility levels of Guangdong Province have excellent spatial consistency
with the Class I landslide data.

Table 4. The Pni values of four landslide susceptibility levels in Guangdong Province.

Susceptibility Level Low Moderate High Very High

Pni (%) * 0.6 0.9 6.56 91.94
* Pni is calculated using Equation (5).

3.4.2. Distribution Pattern Analysis of Landslide Susceptibility at the City Scale

To further investigate the hierarchical structure of the landslide susceptibility level at
the city scale, the Paij values for all the 21 cities in Guangdong Province were calculated
and ranked in descending order. Figure 8 shows that the landslide susceptibility level
varies from city to city. The landslide susceptibility of these cities can be classified into
four categories for multi-level construction works for disaster reduction. The first category
includes cities with large Paij values at the very high susceptibility level, among which
Heyuan has the largest Paij value of 29.37%; the cities of Qingyuan, Zhaoqing, Shaoguan,
Guangzhou, and Meizhou have Paij values over 20% at the very high susceptibility level.
These cities should, thus, further strengthen landslide prevention measures. The second
category includes cities with large Paij values at the high susceptibility level, such as
Chaozhou, Shenzhen, Jieyang, Shanwei, and Shantou. Although their Paij values at the
very high landslide susceptibility level were not prominent, their Paij values at the high
landslide susceptibility level were over 25%, indicating that these cities have potential risks
of landslides. The third category includes Jiangmen, Zhuhai, Yangjiang, and Zhanjiang,
which are all coastal cities. Their Paij values at the very high susceptibility level were less
than 2%, while the Paij values at the low susceptibility level were more than 50%. This
result shows that the probability of landslides in these cities is low. The fourth category
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consisted of the cities with relatively large Paij values at the moderate susceptibility level,
including Zhongshan, Dongguan, Foshan, Yunfu, Huizhou, and Maoming; these areas
require regular inspection of potential landslide hazards.
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3.4.3. Analysis of Environmental Factor Importance

The selection of environmental factors may also influence the model’s accuracy. Thus,
the 13 environmental factors of landslide susceptibility in the study area were analyzed
and ranked according to their importance. As shown in Figure 9, rainfall is the most
important factor contributing to landslides in the model, which is consistent with the Class
I landslide data from disaster reports, indicating that most landslides are rainfall-induced.
The elevation, profile curvature, slope, and plane curvature rank from second to fifth place,
which indicates that topography factors (except for the aspect), also have great influence
on landslides in Guangdong Province. The GHM has higher importance than the distance
to roads, which means it can serve as a better index for representing human activities.
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Additionally, the NDVI and the distance to fault ranked sixth and seventh, respectively,
whereas the importance of the distance to river, lithology, slope direction, and land cover
type is relatively low, representing the relatively low contribution of these environmental
factors to landslide susceptibility in Guangdong Province.

Given that the landslides are generally related to geological conditions, the landslide
susceptibility model was constructed by adopting two geological factors commonly used in
existing LSM studies, i.e., lithology and distance to fault [18]. The landslides of Guangdong
Province have proven to be predominantly rainfall-induced; the rising groundwater levels
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have led to an increase in the soil pore water pressure, reduction in the geotechnical
strength, and an increase in slope stress state [52,59]. Therefore, lithology has a relatively
lower impact on landslides; its influence may be considered theoretical and indirect.

4. Discussion
4.1. Impact of Rainfall and GHM on Landslide Susceptibility Mapping

In this study, GHM was introduced to LSM for the first time, and the importance of
rainfall as an environmental factor for landslides in Guangdong Province was verified. As
shown in Table 5, the AUC values of the optimal model (RF) with and without the rainfall
and GHM factors were calculated to investigate the effectiveness of these two environ-
mental factors. When the GHM factor was removed from the RF model, the AUC value
decreased from 0.9145 to 0.8991; when the rainfall factor was removed, the AUC value
decreased from 0.9145 to 0.8917; when both factors were removed, the AUC value dramati-
cally decreased from 0.9145 to 0.8808. The results indicated that the introduction of rainfall
and GHM can significantly improve the mapping accuracy of landslide susceptibility.

Table 5. Effectiveness of rainfall and GHM on AUC values of the optimal model.

Model Category Optimal Model Without GHM Without Rainfall Without Rainfall
and GHM

AUC value 0.9145 0.8991 0.8917 0.8808

The model accuracy and factor weights vary at different spatial resolutions in the
same region [41]. Considering the limitations on the spatial resolution, the importance and
impact of some factors with high heterogeneity (such as GHM) may also be underestimated.
Therefore, the increase in the resolution can help us to analyze the impact of factors more
accurately, as long as the computational power allows.

Other rainfall characteristics, such as intensity and duration, have also proven help-
ful for LSM studies [18]; these factors are more applicable to the modeling of landslide
inventories after rainfall or typhoon events [51,60] as well as for landslide prediction under
multiple scenarios [59,61].

4.2. Analysis of Landslide Environmental Factors in Guangdong Province

To reveal the nonlinear relationship between landslide susceptibility and each environ-
mental factor, partial dependence plots were drawn. As shown in Figure 10, among all the
factors, the most dramatic increase in the probability of landslide occurrence is observed
when the rainfall range is 1650–1900 mm. The probability of landslide occurrence is also
more prominent at 50–250 m of elevation and for the land cover type of artificial surfaces
(code is 80). Moreover, the profile curvature, plane curvature, distance to road, and distance
to fault show a linear relationship with the probability of landslide occurrence within a
certain range. It is worth mentioning that the GHM increases rapidly around the interval
0.25–0.35 and then decreases slowly. The reasons may be twofold. On the one hand, initial
human activities are destructive to the land (e.g., agricultural reclamation and large-scale
deforestation [47]); however, as human activities increase, greater attention is paid to the
construction of infrastructure to prevent landslide occurrence (e.g., conversion of farmland
to forestry [47] and the installation of well-maintained drainage systems [46]). On the
other hand, the most intensive human activities in Guangdong Province occur in the Pearl
River Delta, which mostly consists of plains and, thus, has a very low landslide probability.
Although the linear relationship between distance to road and the probability of landslide
occurrence is more obvious, the potential advantage of the GHM is that it quantifies the
intensity of human modification. In other words, GHM may be able to show to what extent
human modification would promote landslide occurrence and, thus, help identify regions
under threat.

However, it should be noted that the partial dependence plots are incapable of reveal-
ing the combined effect of high-dimensional data [62]. The partial dependence plots in
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Figure 10 should not be interpreted as a simple linear relationship between the generation
of landslides and individual environmental factors. Occurrences of landslides are, in most
cases, the result of the combined effects of multiple environmental factors, with intricate
and complex mechanisms [13,17]. For example, Yangjiang City and Jiangmen City are
located in an area with the most abundant rainfall in Guangdong and boast intense human
activity. However, the terrain in this area consists of mostly plains and low hills. The occur-
rence of landslides is, therefore, quite low in this region. This explains why there is a sharp
decline when the annual rainfall amount surpasses 2100 mm in the partial dependence plot
of rainfall.

To summarize, the partial dependence plots can help elucidate the relationship be-
tween landslide susceptibility and different environmental factors to some extent; however,
the complexity of the interactions among these factors should be taken into account.
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Interestingly, in the LSM studies that have adopted the RF algorithm, almost all of
them have used a larger number of factors (more than 10) as inputs [22–27]. The reason may
be that the RF model allows for the input of both categorical and continuous factors [17];
thus, it does not require much preprocessing and avoids the loss of information. This
may also be one of the reasons why the RF model accuracy was better than the other
models in the study. However, it is noteworthy that different classification criteria for
categorical factors may still affect the result [18], especially for the factors that lack uniform
classification criteria, such as lithology.

4.3. Model Evaluation for Multiple Types of Landslides

To further verify the reliability of the LSM model, multiple types of landslides were
involved in the validation process. Longchuan County and Zijin County in Heyuan City
were selected as the study cities because Heyuan City had the highest susceptibility value
among all the 21 cities (Paij = 29.37%). The landslide susceptibility map of these two
counties was overlaid with Class II landslide data. Figure 11 shows that the distribution
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patterns of landslides in Longchuan County and Zijin County are positively associated
with the landslide susceptibility level. As shown in Table 6, the percentage of the area
at different susceptibility levels in each county (such as Paij) was applied in these two
counties. The percentages of landslide areas at high and very high susceptibility levels are
over 88% for both Longchuan County and Zijin County. Regions with high and very high
susceptibility levels in Longchuan County and Zijin County are spatially consistent with
the actual landslide locations. This further proves the reliability and generalizability of the
model for application in Guangdong Province. Nevertheless, this paper only used remote
sensing interpretation data in local areas for preliminary validation, because it is difficult to
obtain a comprehensive sample of landslides in the whole province. Additional validation
should be performed when more landslide samples are available.

The Class II landslide data were obtained via remote sensing interpretation and
field verification. The Class II landslide data cover almost all landslide events that can
be detected in the study area but do not contain their attribution categories. Thus, we
considered the Class II landslide data as the mixed type and applied them to validate the
LSM model. To further improve the model effect, detailed information on landslide type
is needed.
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Figure 11. The Class II landslide data and the landslide susceptibility map of two counties in Heyuan
City: (a) Longchuan County, (b) Zijin County.

Table 6. Percentage of landslide area at each susceptibility level to the overall landslide area.

Susceptibility Level Longchuan County Zijin County

Low 0% 1.11%
Moderate 2.33% 10.25%

High 25.79% 37.31%
Very high 71.88% 51.33%

4.4. Importance of Sample Type and Balance

This study employed the RF model for mapping the landslide susceptibility of Guang-
dong Province. Compared with previous large-scale landslide susceptibility studies [16,41,44],
the RF-based LSM model can provide satisfactory mapping accuracy when multiple landslide
sample types and sample imbalance issues are considered. It is, therefore, necessary to select
the landslide type with similar genesis and relevant environmental factors as input variables
and to optimize the positive-to-negative sample ratio and training-to-test sample ratio. The
sample balance issue has been reported in some LSM studies [5,18]; however, the landslide
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sample ratio selection is rarely explored. In this study, the sample ratios were analyzed quanti-
tatively using confusion matrices and AUC values. The RF-based LSM model with optimal
sample ratios has better generalization ability and operability, as it does not require a large
amount of landslide data or the introduction of many variables [16]. Moreover, compared
with other machine learning models, the improved RF-based model is more suitable for
LSM studies on a large scale, especially when the sample size is small and there are multiple
sample types.

5. Conclusions

To address the issues of environmental heterogeneity and sample imbalance in large-
scale landslide susceptibility mapping, this study proposes an improved RF-based LSM
model considering the sample type and balance and introducing GHM to the LSM model
for the first time. The results indicate the importance of the impact of sample type and
balance as well as appropriate environmental factors on the accuracy of LSM.

For the LSM models, the optimal positive-to-negative sample ratios of 1:1 and training-
to-test sample ratio of 8:2 were obtained with confusion matrices and AUC values. Com-
pared with the SVM, MLP, and LR models, the RF model, with the highest AUC value
of 0.9145, had excellent accuracy for LSM in Guangdong Province. In the study area,
rainfall and topography are the two primary influencing factors of landslides, with higher
importance rankings. Moreover, the newly introduced GHM can be used for the LSM
model to improve the AUC value. In Guangdong Province, the regions of high landslide
susceptibility are mainly located in the northeast, while the regions of low landslide sus-
ceptibility are mainly located in the southwest. Heyuan, Qingyuan, Zhaoqing, Guangzhou,
Shaoguan, and Meizhou in Guangdong Province show higher landslide susceptibility.
These findings can provide an effective technical reference for LSM studies and can con-
tribute to landslide prevention and disaster reduction, ensuring sustainable development
of the regional economy.
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