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Abstract: The ambitious spread of fuel cell usage is facing the aging problem, which has a significant
impact on the cells’ output power. Therefore, it is necessary to develop reliable techniques that are
capable of accurately characterizing the cell throughout its life. This paper proposes an adaptive
parameter estimation technique to develop a robust proton exchange membrane fuel cell (PEMFC)
model over its lifespan. This is useful for accurate monitoring, analysis, design, and control of
the PEMFC and increasing its life. For this purpose, fair comparisons of nine recent optimization
algorithms were made by implementing them for a typical quasi-empirical PEMFC model estimation
problem. Investigating the best competitors relied on two conceptual factors, the solution accuracy
and computational burden (as a novel assessment factor in this study). The computational burden
plays a great role in accelerating the model parameters’ update process. The proposed techniques
were applied to five commercial PEMFCs. Moreover, a necessary statistical analysis of the results
was performed to make a solid comparison with the competitors. Among them, the proposed coot-
bird-algorithm (CBO)-based technique achieved a superior and balanced performance. It surpassed
the closest competitors by a difference of 16.01% and 62.53% in the accuracy and computational
speed, respectively.

Keywords: adaptive fuel cell model; model parameters’ optimization; coot bird algorithm; computational
burden; numerical statistical assessment

1. Introduction

Currently, the turbulent prices of fossil fuel due to current conflicts have had greatly
adverse effects on the supply of energy and on dependent economies. That is why decision-
makers and researchers are paying great attention to the rapid shift to renewable and
sustainable energy sources. Among those transitional strategies, hydrogen fuel cells repre-
sent promising energy conversion devices, which could provide an innovative solution for
sustainable energy systems. Specifically, polymer electrolyte membrane fuel cell (PEMFC)
technology is considered as a potential contender in this pathway as it excels with various
advantages, such as fast starting up due to the low operating temperature (70–85 ◦C),
high efficiency (50–70%), high current intensity, zero emissions (just water vapor), reli-
ability, longer lifetime (due to using a solid polymer electrolyte), high energy density
(39.7 kWh/kg), and compact modular design [1–3]. These merits have led the PEMFC
to be a widely spreading integral part of modern energy applications such as stationary
renewable power systems, transportation, spacecraft, and military applications [4,5]. Like
any unmature technological system, it has some drawbacks. The main one is the lifetime
with respect to the PEMFC’s initial cost due to the fuel cell degradation process, which
slows the widespread adoption of this technology [6,7]. The PEMFC degradation process
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includes the cell membrane aging, catalyst dissolution, and wear of the electrodes occurring
along the operating lifetime of the cell, scaling down its performance and changing its
characteristics. Fuel cell aging is accelerated by means of aggressive operating conditions,
which should be avoided, such as power peaks, start/stop operation, and cold start up [8].
There is a bright side though, as the research race heats up to develop long-life-cycle ma-
terials to enhance the potential of emerging fuel cell technologies. Recent improvements
in the PEMFC’s lifetime and energy density could lead to a major breakthrough for this
technology in the power system suite [9–11]. Mathematical modeling of the PEMFC is
of interest to determine the best performance conditions depending on the mass of the
reactants and heat transfer [12–15].

The challenge here is to develop an efficient adaptive PEMFC model that is capable of
precisely predicting its characteristics. This can help the cell controller make convenient
decisions and effectively adjust the PEMFC operating point. Whatever the operating
conditions, the adaptive estimated model can help achieve the desired performance. Indeed,
the modeling criteria of the PEMFC have seen extensive efforts from researchers to express
the dynamic characteristics of the cell. Three models have been nominated, categorized
as: (i) the physical model depending on the cell material characteristics (1D, 2D, and 3D),
targeted at studying the distribution of the gas pressure and temperature in the membrane,
so it is useful for the design and testing stages; (ii) the empirical model derived from
collected data from extensive experiments based on artificial intelligence regardless of
the physical background of the cell, for which collecting the experimental data is difficult
and requiring difficult computational processes; (iii) the quasi-empirical model, which is
developed based on experimental data based on the physical mechanistic background;
consequently, it accumulates the advantages of the two aforementioned models [16]. The
quasi-empirical model voltage–current (V–I) polarization curves depend on many operating
variables such as the hydrogen gas pressure, air flow rate, and cell temperature. This is why
it has been utilized in many studies such as the simulation, modeling, performance analysis,
and design of fuel cell systems, so it was taken into consideration in this study [17–20].

As is well known, the PEMFC model is a time-varying nonlinear multi-variable system.
This represents a sophisticated problem for estimating the optimal values of its unknown
parameters. However, the deterministic techniques struggle in dealing with this type
of problem, and the nature-inspired meta-heuristic algorithms have shown a significant
performance in solving this type of problem. This is due to the multiple advantages of
meta-heuristic algorithms such as the flexibility of implementation, unconditional problem
formulation, and being derivative free. Thus, many studies have concerned the PEMFCs’
parameter estimation and efficient model development based on nature-inspired meta-
heuristic algorithms and artificial intelligence [21,22]. In this context, the PEMFC model
parameters’ estimation was attempted in [23] using a hybrid genetic algorithm (HGA).
After that, many modifications of the genetic algorithm have been applied to the fuel
cell modeling problem such as the real coded GA (Real GA) and adaptive RNA genetic
algorithm (ARNA-GA), as addressed, respectively, in [24,25]. However, genetic algorithms
suffer from inherently premature convergence. Consequently, particle swarm optimization
(PSO) was adopted in [26]. These techniques achieve recognized results that have paved
the way for attempting other efficient algorithms such as differential evolution (DE) and
its modifications, which have been adapted to the PEMFC problem in the pursuit of im-
proving the model parameter estimation accuracy [27]. Furthermore, the vortex search
algorithm (VSA) and differential evolution hybridization (VSDE) have been implemented
to improve the accuracy of the PEMFC model. The results of the proposed hybrid approach
outperformed the original VSA optimizer and grass hooper optimizer (GOA) [28]. Fur-
thermore, the implementation for the same problem using a novel P-system-based method
(BIPOA) [29], the harmony search algorithm (HSA) [30], and teaching–learning-based
optimization was described in [31]. In the same context, a hybrid stochastic strategy based
on the selectivity feature was applied for the PEMFC’s parameter identification in [32]. The
experimental data of different commercial types of PEMFCs were adapted to the grey wolf
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optimizer (GWO) in order to develop more accurate models, as investigated in [21]. In [17],
an attempt was made to enhance the PEMFC models for commercial devices using the
flower pollination optimizer (FPO). The author of [33] utilized the salp swarm optimization
(SSO) technique to deal with the PEMFCs’ modeling problem, achieving good matching
between the developed model curve and the measured data. Another methodology called
the shark smell optimizer has been adopted to accurately extract the PEMFC’s model
parameters [34]. The accuracy of the PEMFC’s parameter estimation was demonstrated
by using the Levenberg–Marquardt backpropagation algorithm, where an artificial neural
network (ANN) was used to tackle the insufficient experimental data problem [35]. Meta-
heuristic algorithms have been adopted for the PEMFC parameter identification problem
with noisy experimental data. A Bayesian regularization neural network was utilized as a
noisy data filter to enhance the optimization process [36]. In [37], the authors attempted
a machine learning method based on an artificial neural network to develop a PEMFC
model for different operating conditions that could reduce the need for more experimental
data. It is worth noting that there are some difficulties in the implementation of the ANN
due to its complexity and increased computational burden. Recently, an improved fluid
search algorithm (IFSO) was adopted to estimate the parameters of five PEMFC models
based on the summation of squared errors (SSE) objective [38], in addition to utilizing
the marine predator optimizer technique for the same problem, and good results were
reported [39]. The authors of [40] utilized the improved evaporation rate water cycle algo-
rithm to optimize the static models of two commercial fuel cells, namely the BCS 500 W and
Ballard Mark-V 5 kW. Five different algorithms were employed to identify seven unknown
parameters of the mathematical model of the SR-12 PEM 500 PEMFC [41].

From this survey, it is clear that most of the reported studies in the domain of PEMFC
modeling mainly concern the accuracy of the models’ estimated parameters. Fewer studies
concern developing adaptive PEMFC models, which depend on extensive computation.
No attention is paid to the computational time elapsed in this process. Since computational
speed represents a crucial factor in adaptive modeling applications, it is strongly recom-
mended to take it into consideration. It is important for real-time applications to develop an
adaptive model that can enhance the PEMFC’s performance with less computational effort.
According to the concept of the no free lunch theory [42], there is no solution technique
suited to all optimization problems under different circumstances. These reasons were the
motivation to conduct this study to propose a novel adaptive PEMFC modeling solution.
This can reflect the cell’s dynamic changes in the polarization curve and performance
aberrations caused by aging throughout its lifespan. The proposed technique comprises
the accuracy, speed of computation, and simplicity of implementation, which makes it
more suitable for on-line applications. In this regard, this technique was validated by
implementing it using the experimental data of six PEMFC stacks. The developed models’
characteristics are presented with the corresponding statistical analysis and comparisons to
other approaches for the evaluation.

The main contributions of this work can be summarized as follows:

• A novel adaptive CBO-based technique was developed for PEMFC modeling.
• The results of the CBO-based technique were compared to those of other state-of-the-

art competitors, and the required statistical analysis was performed.
• The proposed technique was applied to model a variety of PEMFC devices under

different operating conditions, namely the Ballard-Mark-V 5 kW, Nedstack-PS6 6 kW,
250 W PEMFC, Temasek 1 kW, SR-12-PEM 500 W, and BCS 500 W.

• The PEMFCs’ model parameters were accurately optimized for six PEMFC devices
with minimum computational burden.

• The proposed adaptive modeling technique is capable of reflecting uncertainties in
PEMFC performance due to degradation and changes in operating conditions.
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2. Description of PEMFC Model
2.1. PEMFC Notion

The PEMFC is a static electro-chemical device that is capable of developing electrical
energy efficiently through internal membrane reactions. The main parts of the cell are two
catalyst-coated electrodes (one is called the anode, and the other is the cathode) separated
by a solid polymer electrolyte. The construction of the cell membrane is depicted in Figure 1.
The hydrogen fuel is supplied through the anode channels, reaching the catalytic layer to
initiate the reaction. Then, the hydrogen protons migrate across the membrane to meet the
oxygen atoms fed through the cathode channels.
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Figure 1. PEMFC layout.

The entire chemical reaction takes place in the PEMFC membrane, which can be
expressed by:

H2 +
1
2

O2 → H2O + Energy (1)

From Equation (1), the term energy refers to the output electricity produced by the
cell by electrons extracted from the hydrogen atoms at the anode side crossing the external
electric circuit (supplying a load) to finally reach the cathode side to equalize the chemical
reaction, as in Figure 1 [2,4].

2.2. PEMFC Quasi-Empirical Model

The most-commonly recognized formulation in PEMFC modeling studies was devel-
oped by Amphlett et al. [3]. This model formulation was utilized in this study by taking
into account the enhancements, which followed [1,18,28], in which the output voltage at
the terminals of the PEMFC (VFC) is expressed by the following equation:

VFC = NCells × ENernst −VAct −VOhmic −VConc (2)

where NCells is the number of PEMFC stack cells, ENernst represents the PEMFC’s theoretical
voltage, also called the reversible voltage, given by Equation (3), while the terms VAct (the
cell activation loss due to reaction initiation at the anode and cathode electrodes), VOhmic
(the cell ohmic loss due to the resistance of the polymer electrolyte membrane met by
the migrating protons), and VConc (the mass transfer loss, also called the concentration
loss, which takes place due to the overcrowding of hydrogen and oxygen migrating in the
membrane), respectively, express the entire potential losses internally occurring through
the cell membrane [21,27].

The complete model equations and details of the above terms are illustrated in
Supplementary Materials.

The mathematical equations of the quasi-empirical PEMFC model contain seven
unknown parameters, which are (ξ1, ξ2, ξ3, ξ4, Ψ, Rc, and B). They need to be optimally
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estimated to complete the modeling process and to obtain the accurate characteristic curve
of a certain PEMFC device.

3. CBO Algorithm

The recently proposed CBO is a meta-heuristic optimization algorithm. It is inspired
by the natural swarming behavior of an amazing kind of water bird called the coot [43,44].
The coot birds arrange themselves repetitively while surfing the water in an astonishing
configuration to overcome strong waves, and this is performed by forwarding the stronger
leaders to the flock head. This process is repeated by replacing weak leaders with stronger
candidates. This swarming behavior saves the energy of the flock members and accelerates
the flock to reach its goal. A brief description of the nature-inspired CBO algorithm is
demonstrated below.

3.1. CBO Inspiration

The arrangement of the coot flock while swarming is very inspiring, in which they
change between two strategies for the purpose of foraging. The first strategy of movement
is irregular with no uniform distribution and a low-density coot flock. The second one
is regularized, taking a more uniform distribution with a high-density coot flock. They
can move in two directions on the water surface in addition to flying as a third direction
to accelerate their surfing on the water in search of food [45]. These strategies have
been translated as exploration and exploitation mechanisms, forming the core of the
CBO algorithm [46].

3.2. CBO Code

According to the original algorithm in [43], the coot flock consists of leader and
subordinate coots, each being a percentage of the total flock population (NPop), and this
can be expressed mathematically by NPop = Nleader + Ncoot. The movement of coots and
the promotion of qualified subordinate coots to replace less well-performing leaders are
expressed by the symbols Poscoot and Posleader, respectively. The positions of coots are
initially randomized to start the algorithm by the following equations:

Poscoot = randcoot·(Ub − Lb) + Lb (3)

Posleader = randleader·(Ub − Lb) + Lb (4)

where the symbols Ub and Lb refer to the problem’s upper and lower boundaries, respec-
tively. Accordingly, the fitness of each subordinate coot can be extracted from Equation (5),
and the optimal score and optimal position can be computed as follows:

Fitcoot(1·i) = Fobj(Poscoot(i)) (5)

Since Fobj represents the fitness objective function and i takes values from 1 to Ncoot:

If Optimscore > Fitcoot(1, i)

Optimscore = Fitcoot(1, i)

Optimpos = Pos
coot

(i)
(6)

Similarly, the fitness of each leader can be extracted from Equation (7), and the optimal
score and optimal position can be computed as follows:

Fitleader(1·i) = Fobj(Posleader(i)), i belongs to Nleader (7)
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If Optimscore > Fitleader(1, i)

Optimscore = Fitleader(1, i)

Optimpos = Pos
leader

(i)
(8)

Since Nleader is the number of coot flock leaders, which represent a part of the total
flock NPop, the rest of NPop is given by the number of subordinate coots NCoot.

The algorithm identifies a subordinate coot for each leader coot randomly, then their
positions are upgraded at each iteration till reaching the maximum limit of iterations (Itmax)
using Equations (9) and (10). From Equation (10), the new subordinate coot position is
ensured to be within the limits.

Poscoot(i) = 2·randcoot·cos(2·π·r)
since, r = 1 + 2·randcoot

(9)

[Posleader(k)− Poscoot(i)] + Posleader(k). i ∈ NCoot and k ∈ Nleader (10)

If Poscoot(i) > Ub, make Poscoot(i) = Ub

If Poscoot(i) < Lb, make Poscoot(i) = Lb
(11)

where randcoot and randleader are random operators to give the positions of the subordinate
and leader coots, respectively. The fitness of each type is computed through Equation (12)
in a way that enables comparing and replacing a more weakly performing coot by a stronger
subordinate coot and vice versa.

If Fitcoot(1·i) < Fitleader(1, k),

make Fitleader(1·k) = Fitcoot(1, i),

and Posleader(k) = Poscoot(i)

(12)

The positions of the leader coot are randomly enhanced using Equations (13) and (14).
Subsequently, the optimal score (Optimscore) and the corresponding positions (Optimpos)
are computed through Equation (15).

b= 2− (It(L)/It max)

r = 1 + 2·randleader
(13)

where (It(L) ) refers to the current iteration index and (Itmax) refers to the max number of
iterations at which the optimization process terminates.

Posleader = b·randleader·cos(2·π·r)[
Optimpos − Posleader(k)

]
+ Optimpos

(14)

If Optimscore > Fitleader(1·i),
make Fitleader(1·k) = Optimscore

make Posleader(i) = Optimpos

(15)

In Figure 2, the flowchart simply depicts the CBO’s mechanism of operation, where the
algorithm is initiated by two adjustable parameters (the number of coots in the population
and the max iterations required). Then, random positions for leader and subordinate coots
are generated. An evaluation process is started depending on the fitness of each coot to
enable upgrading the coots’ positions based on their performance. This evaluation and
repositioning process is repeated till reaching the max number of iterations, obtaining the
optimal solution. It is worth mentioning that the CBO algorithm has only two parameters
to be tuned: the population size, also called the search agents (NPop), and the max number
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of iterations (Itmax). This shows the merits of the CBO algorithm, whereby there is no need
for huge efforts in algorithm tuning.
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3.3. Objective Function Formulation

This section represents the main goal of developing a more accurate adaptive model
of the PEMFC in order to mimic its real performance in practical applications. In this
context, the CBO was implemented to minimize an objective function (Obj) formulated as
a summation of the squared errors equation, where these errors represent the difference
between the actual measured PEMFC data and those extracted from the corresponding de-
veloped model. The main output of this process is the optimal values of the aforementioned
unknown parameters (ξ1, ξ2, ξ3, ξ4, Ψ, Rc, and B) described in Supplementary Materials.

The objective function (Obj) is expressed as follows:

Minimize

(
Obj =

J

∑
j=1

(
Vactual·j −Vmdl·j

)2
)

(16)

where Vactual is the actual measured terminal voltage of a real PEMFC, Vmdl is the model-
estimated voltage, and j represents the number of collected data. The summation of squared
errors evaluates the quality of the developed model by comparing the V–I characteristics of
the real PEMFC and those for the mathematically estimated model. This evaluation process
depends on the estimated parameters of the developed model, so they are constrained by
inequality boundaries to prohibit the algorithm from searching in false regions as described
in Equation (17). The most-common ranges for these parameters were extracted from [21,35]
to be utilized here, as shown in Table 1.

ξ1 min ≤ ξ1 ≤ ξ1 max

ξ2 min ≤ ξ2 ≤ ξ2 max

ξ3 min ≤ ξ3 ≤ ξ3 max

ξ4 min ≤ ξ4 ≤ ξ4 max

Ψmin ≤ Ψ ≤ Ψmax

Rc min ≤ Rc ≤ Rc max

Bmin ≤ B ≤ Bmax

(17)

Table 1. Unknown parameters’ boundaries.

Model Parameter ξ1 ξ2 ξ3 ξ4 Ψ Rc B

Lower boundary −1.1997 0.001 3.6 × 10−5 −2.6 × 10−4 10 0.0001 0.0136
Upper boundary −0.8532 0.005 9.8 × 10−5 −9.54 × 10−5 24 0.0008 0.5

Upgrading the PEMFC model, precisely along the lifetime of operation, is considered
as an additional challenge. The upgraded model can predict the effect of the aged mem-
brane on the cell polarization curve with the corresponding changes in the cell terminal
voltage (V) and drawn current (I). This is necessary for fuel cell management and control
systems to guarantee a more efficient performance [8]. What is new in this paper is that
we propose a strategy that can effectively upgrade the PEMFC model, which depends on
monitoring the cell output (V–I) over of a full cycle of operation, then the accumulated
dataset was compared to previously recorded data to detect any changes in the cell charac-
teristics. Based on this comparison, the strategy makes a decision to renew itself or keep
the old model. This strategy excels with the simplicity of implementation depending on
the meta-heuristic CBO algorithm in optimizing the model described in Section 2.2. There
is no need for complex calculations, and therefore, it can minimize the computational
burden and decrease the cost of the PEMFC management and control system. A flowchart
describing the entire strategy is depicted in Figure 3.
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4. Cases Studies

An accurate adaptive model of the PEMFC stack can guarantee the appropriate simu-
lation and analysis of the fuel cell stack’s performance. Therefore, it is greatly needed for
real-time applications. In this regard, this work included the implementation of nine rep-
utable meta-heuristic algorithms for the PEMFC mathematical modeling problem. Firstly,
for the purposes of bench marking, the algorithms were adopted to optimize a well-known
model in the research community of a 250 W PEMFC with the specifications in Table 2 [23].
The selected algorithms for evaluation in this study have demonstrated good performance
in dealing with similar engineering problems. They are named as multi-trial vector-based
differential evolution (MTDE) [47], the ant–lion optimizer (ALO) [48], the dragonfly al-
gorithm (DA) [49], atom search optimization (ASO) [50], the grasshopper optimization
algorithm (GOA) [51], the improved grey wolf optimizer [52], the marine predator algo-
rithm [53], and the coot bird optimization algorithm (CBO) [43].
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Table 2. The first case bench mark, the 250 W PEMFC’s specifications [27,28].

Stack Parameters Operation Ranges

Number of cells in series NCells 24 Inlet anode pressure pa (bar) 1–3
Cell’s active area A (cm2) 27 Inlet cathode pressure pc (bar) 1–5
Nafion 115:5 mil l (µm) 127 Stack temperature T (K) 353.15–343.15
Maximum current density iL (mA/cm2) 860 Relative humidity in anode RHa 1
Rated power (W) 250 Relative humidity in cathode RHc 1

The algorithms’ bench marking process utilizes the described mathematical semi-
empirical model in Section 2.2 with the boundaries for the seven unknown parameters
in Table 1. The adopted PEMFC model has four measured dataset (V–I) characteristics at
different operating conditions (inlet pressures and cell temperature) as follows: 3/5 bar,
353.15 K, 1/1 bar, 343.15 K, 2.5/3 bar, 343.15 K, and 1.5/1.5 bar, 343.15 K. This process is
considered the first stage of study, which qualifies the algorithm with the best results to go
to the second stage of verification.

In the second stage of the study, the qualified approach from the first stage under-
goes further verification to deal with five commercial PEMFC models. The five PEMFCs
utilized in this stage were the Ballard-Mark-V 5 kW [21,35], Nedstack-PS6 6 kW [18],
Temasek 1 kW [39], SR-12-PEM 500 W, and BCS 500 W [28]. Their corresponding specifica-
tions, data, and experimental characteristics were extracted from the literature as described
in Table 3 and a later section, respectively.

Table 3. Commercial PEMFCs’ specifications (Stage 2: verifications).

Stack Type Ballard-Mark-V
5 kW [21,35]

Nedstack-PS6
6 kW [18,33]

Temasek
1 kW [21,39]

SR-12 PEM
500 W [20,28]

BCS 500 W
[28,33]

Number of cells NCells 35 65 20 48 32
Cell’s active area A (cm2) 232 240 150 62.5 64
Nafion 115:5 mil l (µm) 178 178 51 25 178
Max current density iL (mA/cm2) 1500 1200 1500 672 469
Stack temperature T (K) 343 343 323 323 333
Hydrogen pressure pH2 (atm) 1 0.5–5 0.5 1.47628 1
Oxygen pressure pO2 (atm) 1 0.5–5 0.5 0.2095 0.2095

5. Methodology and Result Discussions

The bench marking process of the aforementioned algorithms was implemented
with the MATLAB software Version R2020a (9.8.0.1323502) 64-bit [54], running on an
Intel® core™ i5-5200U CPU, 2.7 GHz, 6 GB RAM laptop. In the first stage, the eight
aforementioned algorithms were subjected to a qualifier bench marking for developing an
optimal PEMFC model for the 250 W fuel cell. To ensure a fair comparison with those in
the literature, the qualifier bench marking stage was designated as 100 separate runs for
each algorithm with the same population size (particles, agents, or individuals) equal to 20
and 500 iterations as a maximum limit in a single run.

The bench marking results of the adopted algorithms are given in Table 4, compared
to the same problem solution reported in the literature under the same conditions. The
compared literature results included those of the VSDE [28], teaching–learning-based
optimization-differential evolution (TLBO-DE) [19], quantum-behaved particle swarm
optimizer (QPSO) [21], simulated annealing-differential evolution (Sa-DE) [31], innovative
harmony search (IHS) [31], simplified TLBO (STLBO) [31], and modified particle swarm
optimizer (MPSO) [21]. From a close look at this table, it is clear that the best obtained
results were for the CBO, IGWO, and GOA, respectively, based on the fitness scale, where
the best fitness was configured as the minimal value of the summation of squared errors
between the estimated polarization curve and the actual experimental data. This is a key
factor to ensure the high accuracy of the developed model and suggested the CBO, IGWO,
and GOA as the strongest candidates in this case. Despite this, the best fitness values of the
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implemented algorithms were close, and there was diversity from the point of view of the
time consumed in the optimization process.

Table 4. CBO algorithm results of 250 W PEMFC in comparison with other competitors.

Algorithm Fitness AV_Time b ξ1 ξ2 ξ3 ξ4 Ψ Rc B

CBO [43] 0.84042 0.38 −0.8593 0.0032844 9.80 × 10−5 −9.54 × 10−5 24 0.0001 0.0136
IGWO [52] 1.0006 0.95 −0.85321 0.0032678 9.799 × 10−5 −9.541 × 10−5 24 0.0001 0.013602
GOA [51] 1.0897 5.32 −1.14622 0.00379843 8.06 × 10−5 −9.54 × 10−5 24 0.0001 0.0136
MPA [53] 1.1415 0.8 −0.93466 0.0034948 9.80 × 10−5 −9.54 × 10−5 24 0.0001 0.0136
MTDE [47] 1.1531 3.8 −1.061 0.0038525 9.80 × 10−5 −9.54 × 10−5 24 0.0001 0.0136
DA [49] 1.1655 33.24 −0.8532 0.00326576 9.80 × 10−5 −9.54 × 10−5 24 0.0001 0.0136
ALO [48] 1.1659 2.75 −0.87109 0.00303416 8.16 × 10−5 −9.54 × 10−5 24 0.0001 0.0136
ASO [50] 1.3483 0.72 −1.00738 0.00318212 6.75 × 10−5 −9.54 × 10−5 23.72 0.0005574 0.014613
VSDE [28] 1.0526 NR a −1.1921 3.199 × 10−3 3.79 × 10−5 1.870 × 10−4 22.81 1.202 × 10−4 0.02903
TLBO-DE [19] 7.2776 NR a −0.8532 2.6505 × 10−3 8.0016 × 10−5 −1.360 × 10−4 15.65 1.0000 × 10−4 0.0364
QPSO [21] 7.2776 NR a −0.8569 2.5665 × 10−3 7.2708 × 10−5 −1.303 × 10−4 13.54 3.9173 × 10−4 0.0299
ITHS [31] 7.5798 NR a −0.9228 2.7348 × 10−3 7.0967 × 10−5 −1.426 × 10−4 16.52 1.0091 × 10−4 0.0362
Sa-DE [31] 7.6276 NR a −0.8534 2.5846 × 10−3 7.5880 × 10−5 −1.154 × 10−4 12.6 1.0000 × 10−4 0.0329
STLBO [31] 7.6426 NR a −0.8532 2.5843 7.6892 × 10−5 −1.154 × 10−4 12.6 1.0000 × 10−4 0.0329
BIPOA [29] 7.9416 NR a −0.8016 2.6673 × 10−3 8.1288 × 10−5 −1.271 × 10−4 13.51 0.80 0.0324
ARNA-GA [25] 8.1039 NR a −0.8806 2.9450 × 10−3 8.4438 × 10−5 −1.288 × 10−4 13.48 1.0068 × 10−4 0.0316
RGA [24] 8.4854 NR a −1.1568 3.4243 × 10−3 6.4161 × 10−5 −1.154 × 10−4 12.89 1.4504 × 10−4 0.0343
MPSO [21] 9.7539 NR a −0.9479 3.0835 × 10−3 7.7990 × 10−5 −1.880 × 10−4 20.76 2.8666 × 10−4 0.0296

a NR means not reported in original reference. b Av_time means average computational time in seconds.

In Table 5, a statistical analysis of the results was performed in the IBM SPSS envi-
ronment (Version 22) [55]. It was seen that the GOA approach had some problems in its
performance with respect to the standard deviation and variance with significant values of
133.37 and 17968.8, respectively. This performance made the GOA an unreliable approach
to deal with this problem, and thus, it was removed from the competition. On the other
hand, the CBO and IGWO gave a more optimistic impression with very close results for the
standard deviation and variance. Therefore, the investigation results depicted the strengths
of the best candidates (CBO and IGWO). Over 100 separate runs with frequent results,
the CBO surpassed the IGWO in statistical terms (i.e., best fitness, average value, and
median). In Figure 4, a boxplot graph describes the resulting fitness distribution of the
nine competing algorithms from 100 independent runs. It is noticeable that the GOA’s
results had the worst distribution with a maximum value of 871.0382, which gave a bad
impression of its performance and qualified the previous analysis. The distributions of
the DA, ASO, and PSO also had some outliers that affected their reliability in tackling this
problem. On the other hand, the superiority of the CBO was clear with very concentrated
results at the median. Another key factor of the evaluation was the computational time. In
this regard, the CBO-based approach achieved only 0.38 s compared to the 0.98 s for the
IGWO approach and far away from that of the GOA approach with a value of 5.32 s.

Table 5. The results of different algorithms applied to the bench mark model and statistical analysis.

Algorithm Best Fitness
(min. Obj)

Stand.
Deviation Average Median Worst

Fitness (Max. Obj) Variance Average
Elapsed Time

ASO [50] 1.3483 2.9229 4.8585 4.1624 18.323 8.6297 0.7278
ALO [48] 1.1659 0.008722 1.176198 1.17455 1.1937 7.684 × 10−5 2.75704
DA [49] 1.1655 1.206342 1.390042 1.1773 11.7925 2.253582 33.24938

MTDE [47] 1.1531 1.99 × 10−15 1.1531 1.1531 1.1531 4.03 × 10−30 4.14063
MPA [53] 1.1415 1.11 × 10−15 1.1415 1.1415 1.1415 1.245 × 10−30 0.8052
GOA [51] 1.0897 133.37 87.573 33.951 871.03 17968.8 5.3231

IGWO [52] 1.0006 0.00605587 1.010265 1.0088 1.0262 3.704 × 10−5 0.986453905
CBO [43] 0.84042 0.005467 0.845162 0.841525 0.85763 3.019 × 10−5 0.387034

An additional statistical non-parametric analysis using the Wilcoxon signed rank test
was performed to compare the results of the nearest competitors (CBO, IGWO, and GOA),
in which the medians of the best fitness results of 100 separate runs were compared based
on a significant value of 0.05. The analysis output of the related pairs’ comparison (p-values,
positive rank, and negative rank) is listed in Table 6, taking into consideration the CBO’s
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superior performance. It was deduced from the analysis outputs that there were statistically
significant differences between the frequency results of the compared algorithms. This
means the contrastive performance of each.
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Table 6. Statistical non-parametric Wilcoxon analysis for CBO and nearest competitors.

Comparison CBO-EO CBO-GOA IGWO-GOA

p-value 0 0 0
Positive rank 0 0 0

Negative rank 100 100 100
Decision Reject the null hypotheses Reject the null hypotheses Reject the null hypotheses

In regard to the nearest competitors in terms of the solution accuracy, further investiga-
tions were performed as shown in Figure 5a–c, which depict the convergence curves of the
CBO, IGWO, and GOA, respectively. The convergence curves proved that the performances
of the CBO and IGWO were very close in terms of the fast convergence rate towards the
optimal solution with the least convergence time compared to the nearest competitor, the
GOA. The corresponding histograms of the frequent results of the CBO, IGWO, and GOA
are displayed in order in Figure 5d–f, where the GOA’s fitness frequencies were distributed
in a wide range between (1.0897 and 871.03). This resulted in bad expectations about its
reliability for every run. On the other hand, the majority of the IGWO’s frequencies were
concentrated about the median in a narrow range between 1.0006 and 1.0262. In a better
situation, almost all of the CBO frequencies were approximately confined between the
values of 0.84042 and 0.85763. It was concluded from these histograms that the CBO and
IGWO were more trusted in terms of the accuracy of the solution for every run. Conse-
quently, there was a need for a crucial factor that would give the preference for one of the
two algorithms to be qualified for the second stage of study.
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A newly added factor, the average elapsed computational time, was considered as
a judgement factor. This represents the core of this study to propose an effective PEMFC
modeling strategy suitable for real-time implementation. According to the results, it gave
the weight of the CBO-based approach with a difference of 0.59 s less than the nearest
competitor, the IGWO approach.

This all revealed that the CBO outperformed the nearest competitor (the IGWO algo-
rithm) and validated it for implementation in real-time fuel cell applications due to the
accuracy, fastness, and less computational burden.

The developed model of the 250 W PEMFC under study by the CBO-based approach
and relevant verification data are shown in Figure 6. The process was carried out through
the data of four different operating conditions. The perfect match between the estimated V–I
curves and the actual data points in the figure revealed how well the proposed technique
resolved the problem.
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(b) verification data.

The second stage of study was designed to verify the performance of the qualified
approach (CBO) by dealing with five commercial PEMFCs. The CBO-based technique
was adapted to the Ballard Mark-V 5 kW PEMFC’s modeling, where the estimated model
parameters, the fitness of the solution, and the computational time are described in the
Ballard Mark-V part of Table 7. Next to them are the results of the competing methods
in the literature. It was obvious that the CBO approach achieved the best fitness value of
0.00061592, surpassing the nearest competitor by a value of 4.48 × 10−6. On the other hand,
from the viewpoint of the computational time elapsed during the optimization process,
the CBO surpassed the reported measured time of the IFSO approach [35] by a significant
difference of 3.55 s. The estimated model V–I and P–I curves are depicted in Figure 7a,b,
respectively. The figures reflect the perfect match between the model estimated by the
CBO-based approach and the actual measured data of the Ballard Mark-V.

Similarly, the CBO-based technique was applied to model the commercial PEMFC
device named Nedstack-PS6 6 kW. The results emphasized the same effectiveness as listed
in the Nedstack-PS6 part of Table 7. In addition, the estimated V–I and P–I curves are
depicted in Figure 8a,b, respectively. The CBO-based approach recorded a fitness value
of 1.5734 with a difference from the nearest competitor of 0.51509. On the other hand, the
proposed technique consumed very little computational time, 0.35 s, and no data on the
elapsed time are reported for the other competitors dealing with the same device model.
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Table 7. Modeling of commercial PEMFC devices by CBO for further investigations.

Device Approach Fitness Elapsed
Time ξ1 ξ2 ξ3 ξ4 Ψ Rc B

Ballard-
Mark-V

5 kW

CBO 0.00061592 0.25 −1.1788 0.0028743 3.64 × 10−5 −1.195 × 10−4 12.08 0.0008 0.0136
FPO [17] 0.0006204 NR a −1.0257 3.4 × 10−3 6.79 × 10−5 −1.285 × 10−4 15.644 5.2906 × 10−4 0.0614

GWO [21] 0.002067 NR a −1.1827 3.7080 × 10−3 9.36 × 10−5 −1.192 × 10−4 11.76 7.8773 × 10−4 0.0136
IFSO [38] 0.784 3.80 −1.12 3.57 × 10−3 8.01 × 10−5 −1.59 × 10−4 22.00 1.00 × 10−4 0.015

Nedstack-
PS6

6 kW

CBO 1.5734 0.35938 −1.0945 2.8818 × 10−3 5.66 × 10−5 −1.162 × 10−4 16.287 1.0125 × 10−4 0.1148
VSDE [28] 2.08849 NR a 1.1212 3.3487 × 10−3 4.67 × 10−5 9.54 × 10−5 13.000 1 × 10−4 0.0494
SSO [33] 2.18067 NR a 0.9719 3.3487 × 10−3 7.91 × 10−5 9.5435 × 10−5 13.000 1 × 10−4 0.0534
GOA [28] 2.18586 NR a 1.1997 3.5505 × 10−3 4.61 × 10−5 9.54 × 10−5 13.009 1.01 × 10−4 0.0579
VSA [28] 2.34260 NR a 0.8946 3.3480 × 10−3 9.75 × 10−5 9.54 × 10−5 13.000 1.03 × 10−4 0.0429

Temasek
1 kW

CBO 0.15204 0.29688 −0.9421 2.8427 × 10−3 8.70 × 10−5 −9.54 × 10−5 10 0.00059487 0.1319
FPO [17] 0.1881 NR a −0.4838 1.0 × 10−3 2.77 × 10−5 −7.578 × 10−5 11.322 1.1091 × 10−4 0.1287

GWO [21] 1.6481 NR a −1.0299 2.4105 × 10−3 4.00 × 10−5 −9.54 × 10−5 10.000 1.0873 × 10−4 0.1274

SR-12PEM-
500 W

CBO 1.1171 0.29688 −0.8863 0.0027936 8.92 × 10−5 −9.54 × 10−5 10 0.00067766 0.1631
VSDE [28] 1.266 NR a −0.8576 3.0100 × 10−3 7.78 × 10−5 −9.54 × 10−5 23.000 1.339 × 10−4 0.1516

Shark smell [34] 1.517 NR a −0.9664 2.2833 × 10−3 3.4 × 10−5 −9.54 × 10−5 15.797 6.685 × 10−4 0.1804
GWO [21] 1.517 NR a −0.9664 2.2833 × 10−3 3.40 −9.54 × 10−5 15.796 6.6853 × 10−4 0.1804

BCS 500 W

CBO 0.01161 0.5468 −1.0922 0.0028264 6.97 × 10−5 −1.212 × 10−4 23.154 1.4445 × 10−4 0.0141
VSDE [28] 0.01214 NR a −1.1970 4.2330 × 10−3 9.79 × 10−5 −1.9201 × 10−5 20.194 1.108 × 10−4 0.0157
SSO [33] 0.01219 NR a −0.8532 4.8115 × 10−5 9.43 × 10−5 −1.9205 × 10−4 23.000 3.49 × 10−4 0.0159

Shark smell [34] 7.18890 NR a −1.0180 2.3151 × 10−3 5.24 × 10−5 −1.2815 × 10−4 18.855 7.50 × 10−4 0.0136
GWO [21] 7.1889 NR a −1.0180 2.3151 × 10−3 5.24 × 10−5 −2.6 × 10−4 18.854 7.5036 × 10−4 0.0136

a NR means not reported in the original reference.
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In the same manner, the Temasek 1 kW PEMFC’s actual data were entered into the
proposed CBO-based technique, obtaining promising results, as shown in the Temasek part
of Table 7. It consumed only 0.29 s to finish the optimization process with a very good
fitness of 0.15204, in addition to the perfect match between the experimental data and the
developed model’s V–I and P–I curves shown in Figure 9a,b, respectively.

Correspondingly, the CBO-based technique was designated to develop the models for
the SR-12PEM 500 W and BCS 500 W fuel cells for further investigations. The resulting
models’ parameters are given in Table 7 in the SR-12PEM and BCS 500 W parts, respectively,
in comparison with competing studies’ results. As can be seen, the fitness of the estimated
parameters of the SR-12PEM 500 W device recorded a value of 1.1171, and this revealed
the quality of the solution compared to the results reported in the literature. The elapsed
time through the estimation process was recorded as 0.29 s, which confirmed the speed of
the proposed technique. The characteristic curves for the SR-12PEM 500 W are depicted in
Figure 10, expressing a perfect match with the experimental data.
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Taking a closer look at the BCS 500 W portion of Table 7, it is clear that the CBO
surpassed the closest competitor, the VSDE, and achieved a fitness value of 0.01161, in
addition to consuming a very short time of 0.54 s during the estimation process. The
developed characteristic curves are displayed in Figure 11, which confirmed the quality
and reliability of the proposed approach.
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6. Conclusions

A novel adaptive quasi-empirical modeling technique for PEMFCs was proposed in
this work based on the nature-inspired CBO algorithm and accumulated data. Eight recent
algorithms were implemented to measure their suitability for this task. The impact of the
solution accuracy (fitness) and computational burden was a crucial factor in nominating
the best algorithm. In the first stage of study, the CBO approach surpassed the closest com-
petitor (the IGWO algorithm) by a difference of 16.01% and 62.53% in terms of the accuracy
and computational speed, respectively. The second stage was set as a verification test for
the CBO-based technique for modeling five commercial PEMFC devices, namely: Ballard
Mark-V, Nedstack-PS6 6 kW, Temasek 1 kW, SR-12-PEM 500 W, and BCS 500 W. The results
confirmed the validity of the CBO-based technique for the goal of high-accuracy PEMFC
modeling with minimal computational burden. The proposed technique is an effective
tool for real-time PEMFC applications, and it can reflect the cell’s dynamic changes in the
polarization curve and performance aberrations caused by aging throughout its lifetime.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su15119017/s1, Figure S1. PEMFC layout; Figure S2. PEMFC
Polarization (or characteristic) curve.
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Nomenclature
VFC : PEMFC output voltage
Ncells : Total number of cells in the PEMFC stack
ENernst : Nernst or reversible voltage
VAct : PEMFC activation voltage
VOhmic : PEMFC ohmic losses
VConc : PEMFC concentration losses
pH2 : Partial pressure of hydrogen
pO2 : Partial pressure of oxygen
pH2O : Membrane water saturation pressure
T : Operating temperature
RHa : Relative humidity of vapor at anode
RHc : Relative humidity of vapor at cathode
IFC : PEMFC operating current
pa : PEMFC anode inlet pressure
pc : PEMFC cathode inlet pressure
A : PEMFC membrane active area
ξi : Parametric coefficients of the activation voltage of the PEMFC (i ε {1:4})
CO2 : Concentration of oxygen
Rc : Constant part of PEMFC membrane resistance
Rm : Variable part membrane resistance
Ψ : PEMFC membrane saturation index
l : Thickness of PEMFC membrane
ρm : Specific membrane resistance
iL : Maximum current density
B : Parametric coefficient
id : Current density driven from the cell
NPop : CBO total flock population
Nleader : CBO total number of flock leaders
Ncoot : CBO total number of flock subordinate coots
randcoot : Initial random positions of coots
randleader : Initial random positions of leaders
Poscoot : Flock leaders’ positions
Posleader : Flock subordinate positions
Ub : Problem upper boundary
Lb : Problem lower boundary
Fitcoot : Fitness of each subordinate coot
Fitleader : Fitness of each leader coot
Fobj : CBO fitness function of each coot
Optimscore : Optimal score
Optimpos : Optimal position
It(L) : Current iteration index
Itmax : Maximum number of iterations
Obj Optimization process objective function
Vactual,j : Actual measured voltage of PEMFC stack
Vmdl,j : Model-estimated voltage
j : The number of data points of PEMFC characteristics
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40. Ćalasan, M.; Abdel Aleem, S.; Hasanien, H.M.; Alaas, Z.M.; Ali, Z.M. An innovative approach for mathematical modeling and
parameter estimation of PEM fuel cells based on iterative Lambert W function. Energy 2023, 264, 126165. [CrossRef]

41. Wilberforce, T.; Rezk, H.; Olabi, A.G.; Epelle, E.I.; Abdelkareem, M.A. Comparative analysis on parametric estimation of a PEM
fuel cell using metaheuristics algorithms. Energy 2023, 262 Pt B, 125530. [CrossRef]

42. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
43. Naruei, I.; Keynia, F. A new optimization method based on COOT bird natural life model. Expert Syst. Appl. 2021, 183, 115352.

[CrossRef]
44. Lyon, B.E.; Shizuka, D. Extreme offspring ornamentation in American coots is favored by selection within families, not benefits to

conspecific brood parasites. Proc. Natl. Acad. Sci. USA 2020, 117, 2056–2064. [CrossRef] [PubMed]
45. Salaia, K.E.; Mansouri, I.; Squalli, W.; El Hassani, A.; Dakki, M.; Zine, N.E. Nesting features and breeding chronology of the

crested coot (Fulica cristata) in two North African high altitude wetlands. J. Anim. Behav. Biometeorol. 2021, 9, e2129. [CrossRef]
46. Gouda, E.A.; Kotb, M.F.; Ghoneim, S.S.M.; Al-Harthi, M.M.; El-Fergany, A.A. Performance assessment of solar generating units

based on coot bird metaheuristic optimizer. IEEE Access 2021, 9, 111616–111632. [CrossRef]
47. Mohammad, H.; Nadimi-Shahraki Taghian, S.; Mirjalili, S.; Faris, H. MTDE: An effective multi-trial vector-based differential

evolution algorithm and its applications for engineering design problems. Appl. Soft Comput. 2020, 97 Pt A, 106761. [CrossRef]
48. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
49. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2015, 27, 1053–1073. [CrossRef]
50. Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation

problem. Knowl.-Based Syst. 2019, 163, 283–304. [CrossRef]
51. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]
52. Mohammad, H.; Nadimi-Shahraki Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems.

Expert Syst. Appl. 2021, 166, 113917. [CrossRef]
53. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.

Expert Syst. Appl. 2020, 152, 113377. [CrossRef]
54. Matlab (R2020a) Is a Product of the MathWorks. Available online: http://www.mathworks.com (accessed on 5 January 2023).
55. IBM SPSS (Version 22) Is a Product of the IBM Corporation. Available online: http://www.ibm.com/analytics/us/en/

technology/spss/ (accessed on 9 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jpowsour.2016.09.131
https://doi.org/10.1016/j.renene.2017.12.051
https://doi.org/10.1016/j.enconman.2018.12.057
https://doi.org/10.1016/j.ijhydene.2021.04.130
https://doi.org/10.1016/j.energy.2021.120592
https://doi.org/10.1016/j.egyai.2022.100183
https://doi.org/10.1016/j.egyr.2020.05.006
https://doi.org/10.1016/j.asej.2021.04.014
https://doi.org/10.1016/j.energy.2022.126165
https://doi.org/10.1016/j.energy.2022.125530
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.eswa.2021.115352
https://doi.org/10.1073/pnas.1913615117
https://www.ncbi.nlm.nih.gov/pubmed/31888995
https://doi.org/10.31893/jabb.21029
https://doi.org/10.1109/ACCESS.2021.3103146
https://doi.org/10.1016/j.asoc.2020.106761
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.knosys.2018.08.030
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1016/j.eswa.2020.113917
https://doi.org/10.1016/j.eswa.2020.113377
http://www.mathworks.com
http://www.ibm.com/analytics/us/en/technology/spss/
http://www.ibm.com/analytics/us/en/technology/spss/

	Introduction 
	Description of PEMFC Model 
	PEMFC Notion 
	PEMFC Quasi-Empirical Model 

	CBO Algorithm 
	CBO Inspiration 
	CBO Code 
	Objective Function Formulation 

	Cases Studies 
	Methodology and Result Discussions 
	Conclusions 
	References

