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Abstract: Depth estimation is critical for autonomous vehicles (AVs) to perceive their surrounding
environment. However, the majority of current approaches rely on costly sensors, making wide-scale
deployment or integration with present-day transportation difficult. This issue highlights the camera
as the most affordable and readily available sensor for AVs. To overcome this limitation, this paper
uses monocular depth estimation as a low-cost, data-driven strategy for approximating depth from
an RGB image. To achieve low complexity, we approximate the distance of vehicles within the
frontal view in two stages: firstly, the YOLOv7 algorithm is utilized to detect vehicles and their front
and rear lights; secondly, a nonlinear model maps this detection to the corresponding radial depth
information. It is also demonstrated how the attention mechanism can be used to enhance detection
precision. Our simulation results show an excellent blend of accuracy and speed, with the mean
squared error converging to 0.1. The results of defined distance metrics on the KITTI dataset show
that our approach is highly competitive with existing models and outperforms current state-of-the-art
approaches that only use the detected vehicle’s height to determine depth.

Keywords: depth estimation; autonomous vehicle; YOLOv7; object detection; perception systems

1. Introduction

Autonomous vehicles have the potential to enhance road efficiency, minimize traffic
accidents, and reduce our environmental footprint. However, the successful practical
reality perspective of the fully autonomous vehicle is based on the reliability of their
perception pillar. Accurate distance estimation is critical in path planning and avoiding
collisions with vehicles, pedestrians, and objects in the surrounding environment in the
context of self-driving perception tasks. Rear-end collisions are a significant cause of traffic
accidents [1,2] and can often be prevented by maintaining an appropriate following dis-
tance to the vehicle in front. Distance estimation is thus an essential issue for ensuring
the safety of autonomous vehicles, but it is also a challenging problem to solve; the pro-
posed solutions must be efficient for real-time applications while being cost-effective for
widespread industry deployment. There are three primary categories for distance mea-
surement techniques: active sensor-based, passive vision-based, and fusion-based. Active
sensors, including ultrasonic and light detection and ranging (LiDAR), operate by emitting
a sound or laser pulse, calculating the time it takes for the pulse to be reflected back to
the sensor’s pulse detector, and then using this information to calculate the distance [3].
Ultrasonic sensors are inexpensive, inaccurate devices that are suitable for basic short-range
applications [4,5], whereas LiDAR systems are accurate but heavy and expensive [6–8],
making them unsuitable for industrial deployment [9].

The transmission of signals from sensors located in other vehicles can exert a significant
impact on the performance of active sensors [9,10]. Additionally, these systems may
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encounter challenges in accurately distinguishing between different objects located in the
frontal view. Fusion-based methods can provide more reliable measurement results because
they combine the advantages of both prior methods. However, they are more complex to
implement because they require the integration of multiple sensor types. Passive vision-
based methods are generally less expensive and easier to implement because they rely
only on the camera and do not require additional equipment [11]. Compared to sonar and
LiDAR, a camera is able to see further [12] and detect the edges and details of objects. This
ultimately provides an advantage in terms of situational awareness, allowing for a more
detailed view of the environment. They can also be easily integrated into existing systems,
allowing for rapid and cost-effective deployment in various scenarios.

Passive sensor-based techniques are highly favored in current studies, largely due to
extensive adoption of image sensors. The stereo vision technique, which is inspired by the
human visual perception mechanism, incorporates multi-view geometry and generates
depth information for every pixel via an error-prone matching process between stereo image
pairs [5,7,13]. Nevertheless, this approach can prove to be inefficient due to the complexity
of the calibration process and the high cost and weight associated with high-quality stereo
cameras [5,7,14,15].

Another ideal solution is to use a monocular camera to estimate the distance to
an object based on geometric attributes within two-dimensional (2D) images and camera
characteristics. Kim and Cho [16] estimated inter-vehicle distance using the relative position
of the camera from the front vehicle and the width of the front car. One of the main
drawbacks of the Kim and Cho [16] method is that it ignores the actual size of the vehicles.
Liu et al. [10] addressed this issue by converting an image into a bird’s eye view and
using inverse perspective mapping to estimate the distance between vehicles. Despite this
improvement, inaccuracies in determining camera parameters and image brightness could
potentially introduce errors into their measurements.

Recently, deep learning-based monocular distance estimation has received more at-
tention [17–20]. By employing a monocular camera, Hu et al. [18] conducted a study on
object tracking and detection, where they focused on obtaining valuable data about the
distances between objects to enhance the performance of the tracker. Their research aimed
to improve the efficiency of a faster R-CNN model by incorporating estimations of both
the angle and distance of objects. Another study [21] employed a lightweight MTCNN for
license plate detection and utilized an MLP to model the perspective relationship between
license plate dimensions and depth. Although this approach primarily depends on license
plate information, it can be useful as an auxiliary method for depth estimation. Ref. [22]
employed the popular object-detection framework, YOLOv3, to detect bounding boxes
and their coordinates. The distances between objects were then calculated analytically.
However, this method did not consider the relationship between the object’s size and its
distance, which can lead to inaccurate distance estimations. To overcome this limitation,
DisNet [23] combined YOLOv3 with a fully connected neural network that was separately
trained on the basis of the predictions acquired from YOLO. The network generated more
accurate distances by considering the object’s size and distance relationship. However, this
approach requires additional training and computational resources. Chen et al. [24] devel-
oped Monodepth [25], combined with YOLOv3, to estimate the distances between objects.
Monodepth generated a disparity map using visual data from two cameras, which was then
used to estimate the distance of the object from a single camera. The estimated distance was
then injected into the predicted bounding boxes of YOLO, resulting in accurate distance
estimations. However, this method requires additional cameras and complex training.
Strbac et al. [26] employed two YOLOv3 detectors and two cameras to estimate distances
using the stereoscopic principle. This approach provided accurate distance estimations,
but the use of two detectors increased computation time, and distance measurements may
not be possible when an object is detected by only one detector.

There has been an increasing amount of research on estimating distance using a monoc-
ular image in recent years, especially in the areas of inter-vehicle distance estimation [27]
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and advanced driver assistance systems (ADASs) [5]. Some studies have concentrated on
using the bounding box’s height to form the object’s feature vector, but Tousi et al. [28]
argued that relying solely on the height of a car in an image may lead to more errors. To
reduce sensitivity to errors caused by the placement of bounding boxes, they proposed an
alternative approach that is less susceptible to such errors.

This paper presents an efficient method for estimating depth from a monocular image
using vehicle lights, while also offering a practical way to achieve a tradeoff between
speed and accuracy for real-time distance estimation in an autonomous vehicle. To this
end, various alternative methods for detecting objects in images have been investigated,
and among these, “You Only Look Once” (YOLO) [29], has demonstrated the highest
effectiveness. YOLOv7 significantly improves real-time object detection performance while
lowering overhead [30]. In our approach, the YOLOv7 network was employed to train a
model for detecting vehicle’s lights. For our data-driven method, we created a dataset of
car lights with object detection frames, comprising 4700 cars and their corresponding labels.
Furthermore, this study utilizes an enhanced attention mechanism, the YOLOv7-CBAM
algorithm, which integrates three CBAM modules into the YOLOv7 backbone network.
This modification enhances the precision of our network’s detection capabilities. In order
to obtain the required data, multiple driving scenes were simulated on CARLA. After the
detection step, by mapping the output of the detection and recognition network to the
estimated depth value through MLP, a more accurate estimation of depth can be achieved.

Section 2 provides the fundamental background required to understand the distance
estimation problem and how to approach it, and outlines our specific approach. Section 3
explains the details of the training process and the results that were obtained, and sum-
marizes the key findings from the experiments. Section 4 concludes with a summary of
the results.

2. Materials and Methods
2.1. Deep-Learning-Based Object Detection Approaches

Object detection is a difficult and essential task in computer vision which entails accu-
rately identifying objects in images or videos by predicting their classification probability
and localizing them using bounding boxes. Recent advancements in deep learning have
enabled significant progress in identifying objects in autonomous driving scenes, such as
detecting traffic lights [31–33], road signs [34,35], pedestrians [36,37], and vehicles [38–40].

There are two main approaches to achieve deep learning object detection: two-stage
and one-stage methods, which are commonly used in cutting-edge object detection net-
works. In two-stage methods such as OverFeat [41] and R-CNN [42], a selective search
or a similar algorithm generates region proposals, then classifies and refines them by a
separate detection network. Recent methods such as SPPnet [43] and Fast-RCNN [44]
have improved the speed and efficiency of the two-stage detectors by using global feature
maps generated by a larger CNN applied to the entire input image with the aim of directly
obtaining regional features. It should be noted that these methods frequently use popular
CNN architectures as base models, such as VGG [45], ResNet [46], and GoogLeNet [47].

Faster R-CNN [48] is a two-stage approach that significantly improves the accuracy of
object detection by incorporating the Region Proposal Network (RPN) as a network compo-
nent. The RPN is a fully connected network that generates region proposals by sliding over
high-level CNN feature maps, which are then passed to the network’s subsequent stages
for classification and bounding box regression. By integrating the RPN into the network,
Faster R-CNN can generate region proposals more accurately and efficiently than previous
methods. However, the computational complexity of Faster R-CNN makes it unsuitable for
real-time applications, where detection speed is critical. Thus, attention has been directed
to You Only Look Once (YOLO) [29].

YOLO utilizes a one-stage detection approach that combines the entire object detection
process in a single architecture. Unlike Faster R-CNN, YOLO does not rely on an RPN
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(Region Proposal Network). Instead, it utilizes a single convolutional neural network to
simultaneously predict object classes and bounding boxes for all objects in the image.

The architecture of YOLO comprises two parts, namely, the extractor and the detector.
The extractor, represented by the Darknet-53 backbone or other backbones, aims to extract
features from the input image [29]. The detector takes the features from the extractor and
decodes them on multiple scales to predict object classes and bounding boxes for each cell
in the output grids. This allows YOLO to perform object detection in real time with high
accuracy [29].

The one-stage detection approach of YOLO is a more straightforward and efficient
architecture compared to the two-stage object detection approaches. This makes it more
suitable for real-world applications, including autonomous vehicles.

2.2. YOLOv7

YOLOv7 [30] model is a highly effective real-time object detection solution that en-
hances accuracy without increasing inference overhead. In benchmarks, YOLOv7 has
demonstrated the ability to reduce 40% of parameters and 50% of computation in compari-
son to the most advanced real-time object detectors. In the study [30], the performance of
YOLOv7 was evaluated against prior YOLO versions (YOLOv4 [49], YOLOv5 [50]) and
YOLO-R [51], using the same training parameters as baselines. Based on the findings of the
study [30], YOLOv7 has demonstrated superior performance in terms of average precision
(AP) compared to all previous object detectors while maintaining impressive frame rates
ranging from 5 to 160 frames per second. Therefore, YOLOv7 emerges as the leading choice
for efficient and precise object detection tasks, offering the best balance between speed
and accuracy. In this study, we trained the YOLOv7 model using our prepared dataset,
excluding any additional image datasets or pre-trained weights for the model. YOLOv7
backbones, such as Scaled YOLOv4 [49], do not utilize Image Net pre-trained backbones
(such as YOLOv3).

Compared to YOLOv4, YOLOv7 decreases the number of parameters by 75%, requires
36% less computation, and achieves an AP (average precision) score that is 1.5% higher.
On the COCO dataset, the YOLOv7 real-time model obtains a 13.7% higher AP (43.1% AP)
than the earlier most-accurate YOLOv6 model (56.8% AP) [30].

2.2.1. The YOLOv7 Architecture

The YOLOv7 architecture is an extension of previous designs such as YOLOv4 and
YOLO-R. At its core, the YOLOv7 backbone utilizes the E-ELAN (Extended Efficient Layer
Aggregation Network) computing block. This architecture improves the model’s learning
capabilities through the “expand, shuffle, merge cardinality” method, which increases
network learning accuracy without losing the original gradient track. The YOLOv7 network
architecture diagram comprises four general modules, namely, the input terminal, backbone,
head, and prediction. In addition, it has five basic components: CBS, MP, ELAN, ELAN-H,
and SPPCSPC. Figure 1 provides an illustration of the YOLOv7 architecture, which can be
divided into three main parts: input, backbone, and head.

During feature extraction, the backbone layer uses a combination of BConv layers,
E-ELAN layers, and MPConv layers in an alternating pattern to progressively decrease
the aspect ratio, double the channels, and extract relevant features. The head layer is
responsible for prediction and comprises various layers, such as SPPCSPC layers, multiple
BConv layers, MPConv layers, several Concat layers, and a RepVGG block layer, which
generates three heads.

Once the head layer produces three feature maps, three unprocessed predictions of
varying sizes are generated using the three REP and Conv layers.
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2.2.2. Scaling of the YOLOv7 Compound Model

YOLOv7 introduces a novel compound model scaling technique that allows for the
preservation of the model’s original characteristics while achieving the best arrangement.
As an example, scaling a computational block’s depth factor alters its output channel, while
the transition layers are scaled using the same width factor.

2.2.3. Re-Parametrized Convolution

The design of YOLOv7 re-parameterized convolution without identity connection
employs RepConv (RepConvN). While RepConv has shown excellent performance in VGG
architectures, its use in ResNet or DenseNet results in considerable accuracy loss.

2.2.4. Auxiliary Coarse, Lead Loss Fine

The YOLOv7 architecture is composed of three main components: the backbone,
neck, and head. The head is responsible for the model predictions, and YOLOv7 allows
for multiple heads due to its inspiration from deep supervision training. The lead head
produces the final output, while the auxiliary head helps train intermediary layers.

Furthermore, a label assigner mechanism was added in order to enhance the deep
network training. This mechanism considers the ground truth and the prediction results
of the network prior to assigning soft labels. Contrary to the traditional assignment of
labels, which is only dependent on the ground truth so as to generate hard labels on the
basis of the prescribed rules, optimization and computation methods are employed by the
dependable soft labels that consider the distribution and reliability of prediction outputs
besides the ground truth.

2.3. Integrating Attention Mechanism for Enhanced YOLOv7 Object Detection

The attention mechanism is a widely used technique in machine learning tasks that en-
ables models to focus on the most relevant elements of input data while ignoring irrelevant
parts [52]. This is achieved by assigning different weights to different parts of the input.
In computer vision, the attention mechanism has been successfully applied to highlight
critical features of the input, such as pixel attention, channel attention, and multi-order
attention. These features help the model to identify important patterns and make more
accurate predictions [43].

One of the most effective attention mechanism modules in computer vision is the
Channel and Spatial Attention Module (CBAM) [53]. As shown Figure 2, CBAM is a
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lightweight attention module that includes a spatial attention module (SAM) and a channel
attention module (CAM). CAM helps the network to identify the most important channels
to become more focused on the meaningful area of the image, while SAM enables the
network to focus on positions with contextual information about the entire image [54,55].
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Figure 3 shows the integration of the CBAM module into the YOLOv7 architecture; the
purpose of this module is to enhance the feature extraction capability of the network [30,53].
However, a previous study [56] indicated that adding the attention mechanism into the
backbone network of YOLOv7 can lead to prediction inaccuracy due to the destruction of
some of the backbone network’s original weights. Therefore, it is preferable to integrate the
attention mechanism into the feature network extraction improvement section to prevent
such errors. As a result, our approach effectively improves the network’s feature extraction
abilities without compromising its primary features. This method holds promise for
advancing the accuracy and reliability of object detection systems.
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2.4. CARLA

In our research, we used Car Learning to Act (CARLA) [57], which is an open-source
simulator developed for research on self-driving cars. CARLA operates as a server–client
system, in which the client application programming interface (API) is developed using
Python, and the server simulates and renders scenes. This simulator has a high degree of
realism and accuracy, with accurate 3D models and detailed textures that can be used to
simulate real-world scenarios. It also has a number of sensors, such as cameras and LiDAR.
The environment simulation provided by CARLA [57] is incredibly detailed, allowing
users to control the weather conditions, illumination, and the number and type of vehicles
and pedestrians; it also provides RGB cameras which can be positioned and adjusted
according to the user’s needs. The environment also includes a complex urban layout with
intersections, roundabouts, and traffic lights that simulate a realistic driving experience for
autonomous vehicles.

2.5. Preparation of Dataset

The first stage of this study involves identifying and detecting vehicles and their
lights. To ensure proper training of the neural network and to achieve acceptable speed
and accuracy in object detection, it is essential to have sufficient diversity in the dataset.
To this end, Microsoft developed the COCO dataset [58], which contains 328,000 images
labeled with objects from 91 different classes. However, there is no vehicle light class in the
original COCO dataset [58]. To address this issue, we followed a two-step procedure. First,
we selected the desired images from the original dataset, which included car, truck, and
bus classes. Second, we labeled all lights on cars to create two new classes: front light and
rear light. The resulting dataset consisted of 4700 images for training and 2100 images for
validation, including road vehicles, front lights, and rear lights.

To enhance our model’s ability to accurately identify images from diverse environ-
ments, we employed data augmentation techniques to make modifications at the pixel level,
including both photometric and geometric distortions. In order to address photometric
distortions, we made adjustments to different aspects of the image, including Hue (−25◦ to
+25◦), Saturation (−23% to +23%), Brightness (−41% to +41%), Exposure (−27% to +27%),
Blur (up to 2 pixels), and Noise (up to 5% of pixels). Additionally, we applied Horizontal
and Vertical flipping and Rotation (−15◦ to +15◦) to address geometric distortions. The pri-
mary aim of these modifications was to improve the diversity of the training data, thereby
allowing the model to learn from a broader range of image conditions and to become
more robust.

In preparing our car lights dataset, we focused on refining the model’s performance
by adjusting the strength of photometric distortions, particularly in regard to the hue and
saturation of the image. This approach enabled our model to better generalize to new
and previously unseen data, which is crucial in achieving high performance in real-world
scenarios. Furthermore, this method resulted in improved model performance without any
additional computational cost during model inference.

2.6. Intended Model

The height of the bounding box provides a good indication of the actual size of the
object in the image, which in turn gives an estimate of the depth of the object in the scene.
This is due to the fact that the objects situated further away seem smaller in the image
compared to the ones situated closer. From another perspective, car width has much fewer
variations, and therefore, it can serve as an appropriate parameter in the process of the
prediction of depth. The object height in the image is highly dependent on the camera’s
distance to it; however, the object width is less dependent. Nonetheless, such a technique is
problematic because in cases that a car is at an angle instead of being directly in front of the
camera, this technique does not function accurately, i.e., the detection bounding box has
a greater width compared to the width of the car in the image. This is attributable to the
limited field of view (FOV) of the camera, and, as a result, the objects situated farther away
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can hardly be observed in the image; therefore, the bounding box width cannot represent
the car width accurately. According to [59], the orientation of the object components in an
image conveys useful information about the depth of the objects. The distance between
rear lights is approximately the same as the car width in the image. The car orientation
in the image can be inferred through the measurement of the relative distances between
the center of the rear lights and the center of the car bounding box. This provides extra
information about its depth. Even though another car may occlude the light of the desired
car in a number of cases, it is noteworthy that the distance to the nearest vehicle assumes
greater importance as compared to the partially occluded ones.

In addition, when one rear light is occluded, the other one can still convey adequate
data in order to determine the distance between the two lights accurately and, thereby,
the width of the car plays a significant role in determining the orientation of vehicles.
Additionally, occlusion effects can be reduced by tracking car lights. This is, in particular,
advantageous in circumstances in which a number of cars are close together or when the
car is occluded partially [60]. In such cases, it may present invaluable visual cues and
reliable measurements.

The model proposed in this study, as shown in Figure 4, includes two separate parts
for the depth estimation:

• Stage1: Detecting and recognizing the vehicle and its lights in the image.
• Stage2: The second part of the proposed approach to estimating vehicle depth, as

shown in Figure 4, used MLP to map the information from the detection and recogni-
tion network to the estimated depth value.
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According to the proposed diagram represented in Figure 4, since the first stage of
this study requires recognizing and detecting vehicles and their lights, the network used
for object detection must have satisfactory speed and accuracy. In most cases, focusing on
increased accuracy minimizes the speed of object detection and thus weakens the network’s
real-time performance. On the other hand, focusing too much on the recognition speed
reduces the network’s accuracy. In the case of autonomous vehicles, failure to identify
objects such as pedestrians or other vehicles can cause irreversible damage. Another
notable issue is that a network may perform very successfully in object classification but
not perform well in highly dynamic scenes. At the same time, a high processing speed is
required for fast and proper vehicle reaction.

The detection network used in this study is the seventh version of the YOLO (YOLOv7)
network. YOLOv7 [30] makes a good tradeoff between detection speed and accuracy. A
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study on depth detection networks revealed that the YOLO network optimally solves the
problem of autonomous vehicles and their dynamic scenes [30].

A camera’s single frame image is initially provided to the detection network; after
processing by YOLOv7, the target objects in the image are positioned and the vehicle to
which each light belongs is determined.

In stage two of our approach, we aim to determine the distance to the nearest car
by utilizing an MLP model. The MLP comprises one input layer, two hidden layers with
five neurons each, and an output neuron that calculates the distance value. Since MLP
training is based on the supervised learning, the radial distance to each vehicle must be
available to train MLP through this approach. Distance sensors (optical radar) are radial
distance estimation tools. The cost of these sensors can be expensive and, as a result, the
cost of the entire system can be significantly increased. The proposed model uses the
CARLA simulator environment to gather the data needed for training the multi-layer
neural network:

To extract data from the CARLA simulator [57], we followed this procedure:

• We captured and stored simulator scenes’ images. For each scene, we also extracted a
text file that contains the car name, longitudinal and lateral distance to the car, and the
longitudinal and lateral speed of the car relative to the camera.

• To generate a video of a car’s motion and the corresponding target data for the distance
to the preceding car in each scene, the simulator scenes were first connected, and then
the text files were merged.

Next, inputs for the MLP were determined while following distances were all com-
puted in the pixel domain:

• To measure the width of a car, the distance between the centers of its lights is used. As
the distance increases, the width of the car appears smaller.

• The car’s angle relative to the center line of the image is indicated by the distance
between the line connecting the lights and the center of the detection bounding box.
This parameter was previously discussed in [28] as a crucial factor in determining the
car’s distance from the center of the image in both width and length dimensions.

• The height of the car’s detection bonding box is a parameter that indicates the car’s
height. It is important to note that the height, like the width, appears greater at closer
distances and smaller at greater distances.

Finally, the MLP training data were prepared with 820 samples and 200 numbers were
reserved for testing. By receiving these inputs, the multi-layer neural network (MLNN)
should forecast the optimal output, which is the radial distance to the target vehicle. In
consideration that the depth of an object can vary based on its size and angle relative to the
camera, we use a nonlinear function for mapping the distance between two points to the
radial depth; this allows for a more accurate representation of the object’s depth.

In contrast to the typical approach, the Levenberg–Marquardt algorithm was utilized
as the optimizer in this study.

The Levenberg–Marquardt algorithm is a powerful optimization method that can be
used to obtain the optimal parameters of complex networks such as a multi-layer neural
network. Algorithm 1 works by using a combination of the steepest descent and the Gauss–
Newton method to iteratively find the local minimum of a given function. It uses the
gradient of the function to move along the direction of steepest descent, and then uses the
Gauss–Newton method to refine the search along the direction of the calculated gradient.
In this way, the Levenberg–Marquardt algorithm is able to more efficiently and accurately
find the optimal parameters of a complex network such as a multi-layer neural network.
The following pseudocode displays the model’s parameters:
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Algorithm 1: Define Pre-Requirements

MLP(x . data) = MLP function that use data and coefficients as inputs
f(x)← y−MLP(x) : Residual function
F(x)← 1

2 f(x)Tf(x) : Cost function (Least square)
Use levenberg to minimize Gradient of cos t function

g(x) = F(x)′ ← J(x)Tf(x) : Gradient function
x∗ : minimizer of gradient function
µ0 : initialize parameters
h : iteration step
Initializer:

A0 ← J0
TJ0 . µ0 ← τ (maxa0

ii)
Training
while (||g|| < ξ 1 or step lenght < ξ2 (||x||+ ξ2))

find hk from→ (JT
kJk + µkI)hk = −gk

$← Fk− Fk+1
1
2 hT

k (µkhk− gk)

if ( $ > 0)

µk+1 ← µkmax
{

1
3 .1− (2$− 1)3

}
Update parameters → xk+1

else
go to next step

next step→ k ++

3. Results and Discussion

To complete the first stage of our proposed model, we employed the YOLOv7 algo-
rithm for object detection, and conducted training using our prepared dataset. In order to
ensure a fair comparison between YOLOv7 and Enhanced YOLOv7 + CBAM, we employed
the same settings of the optimizer, learning rate, and input resolution for both algorithms
to achieve optimum accuracy while reducing the required testing and training time.

As mentioned previously, data augmentation techniques including flipping, scaling,
and adjustments to contrast, color, and brightness were utilized. The images were scaled to
640 × 640 pixels for testing and training in YOLOv7. The Adam optimizer, which has been
shown to be effective for training deep learning models with high precision, was employed
with a learning rate of 10−3 to prevent overfitting. A batch size of 16 and 4 workers were
used to train the model and achieve the desired results. The training was carried out for
300 epochs and approximately 70,000 iterations; after every epoch, the validation dataset
was used to evaluate the performance, and then the best model was saved. The validation
dataset made up 20% of the entire samples. Finally, the test dataset was used to evaluate
the performance of the best model.

To enhance the precision of the YOLO network, irrelevant classes that did not cor-
respond to the objects present in the surroundings of autonomous vehicles (AVs) were
removed. Our approach focuses on detecting three classes: cars, rear lights, and front lights.
The training results of the YOLOv7 network were evaluated using our dataset, both with
and without adding the attention module. The results are illustrated in Figures 5 and 6.

As shown in these plots, in Figure 5, the average loss of the YOLOv7 network decreased
to about 0.75 after about 70,000 iterations in the training process, and in Figure 6, decreased
even further to about 0.69 after applying the attention mechanism. The achieved average
loss takes into account the high variance in the size of detected classes (large vehicles
compared to small car lights) and the high dynamics of the scenes.

We also evaluated the average loss in comparison to YOLOv3, a similar model used
in [28]. YOLOv3 achieved an average training loss of 1.22, while our approach achieved
higher accuracy in detecting objects of interest in AVs. This is demonstrated in Figure 7,
which shows the implementation of the YOLOv7 algorithm in real-world images, indicating
the effectiveness of our provided dataset in achieving the required results.
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Evaluation Criteria

For the purpose of evaluating the YOLOv7 algorithm’s performance, the following
evaluation indices were used: precision (P), mean average precision (mAP), recall (R),
frames per second (FPS), and F1 score.

Precision is a valuable metric to consider when evaluating the accuracy of a model
in predicting positive samples. It measures the proportion of true positive predictions
made by the model out of all the samples predicted as positive. True positives represent
correctly predicted positive samples. Higher precision scores indicate stronger positive
sample prediction. The formula is as follows:

Precision =
TP

TP + FP
(1)

Recall is a performance metric that measures the proportion of true positives identified
by a model to the total of true positives and false negatives. It is useful for measuring
the accuracy of a classification model when the dataset is unbalanced. Here is the calcula-
tion formula:

Recall =
TP

TP + FN
(2)

To evaluate classification models, the F1 score is frequently used as a metric of accu-
racy. By combining precision and recall scores into a singular measurement, it offers an
inclusive evaluation of the model’s performance. The calculation for F1 score involves
determining the harmonic mean of precision and recall, which can be expressed using the
formula provided:

F1 =

(
2

Recall−1 + Precision−1

)
= 2

Precision.Recall
Precision + Recall

(3)

The mAP index is a measure of how accurately a model can detect objects in an image.
It uses the COCO (Common Objects in Context) [58], standard to evaluate the performance
of the model in terms of precision and recall. The mAP index is an effective metric for
assessing the accuracy of object detection models; a higher mAP indicates more reliable
detection and localization of objects.

The experiments described in this paper were performed on a computer system
equipped with an NVIDIA Tesla T4 GPU (NVIDIA, Santa Clara, CA, USA) and 16 GB of
RAM. The operating system used was Windows 10 (Microsoft, Redmond, WA, USA) and
the deep learning framework used was PyTorch 1.7.0 (PyTorch, Warsaw, Poland).

After evaluating the two approaches under similar training settings, we achieved the
results presented in Table 1.

Table 1. Comparison of detection results between YOLOv7 and YOLOv7-CBAM.

Method Training Loss Precision (P) Recall (R) mAP@0.5:0.95 mAP@0.5 F1 FPS

YOLOv7 0.75 0.7674 0.667 0.375 0.681 0.71 65
YOLOv7-CBAM 0.69 0.8056 0.6704 0.3824 0.7096 0.73 61

The analysis of results shows that the values in both models become closer to each
other in the higher epochs, and that integrating the attention mechanism into the YOLOv7
architecture can result in improved accuracy in most of the metrics mentioned, while
exhibiting a slightly lower speed. However, even slight improvements in detection accuracy
in AVs are important.

In our study, we analyzed the computational efficiency of the two algorithms by
comparing their FLOPs (floating point operations per second) parameter. Our findings
suggest that the CBAM-YOLOv7 and original YOLOv7 algorithms have comparable levels
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of efficiency, with the CBAM-YOLOv7 model exhibiting a slightly higher FLOPS parameter
value, which is increased by 0.6 G.

In Figure 8, we present a demonstration of the successful implementation of the
YOLOv7-CBAM model in a Carla scene.
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Figure 9 shows the test and train error histograms for the analysis of the precision of
the multi-layer perceptron (MLP) network. According to these histograms, both test and
train errors feature a zero-mean normal distribution, which means that significant errors
had a negligible frequency. These results indicate that the MLP network has the ability to
generate accurate predictions with a small number of outliers. This suggests that the MLP
network has a good generalization ability and can be used for accurate prediction.
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It is essential to consider that all three defined inputs for the MLP network may not
be available simultaneously. For example, in real-world scenarios where a car’s lights are
covered by other vehicles or not recognized by the YOLOv7 detection network, the first
two inputs (x1 and x2) that rely on the car light information will be affected. However, the
third input, which represents the height of the car’s bounding box, is resistant to such cases
where a part of the car is unidentifiable [28].
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To increase the robustness of the distance estimation model against such cases, we
designed the MLP network to be resilient against missing inputs. Specifically, when
information from two out of the three inputs is unavailable, the network ignores the first
two inputs and processes only the third input. While this approach may result in lower
accuracy in distance estimation [28], it allows the model to continue making distance
estimates even when some inputs are unavailable, increasing the model’s robustness in
challenging real-world scenarios.

In Figure 10, we observe the mean squared error (MSE) after fifty epochs. According
to the plot, the train and test mean squared error converged to the value of 10−1. This
indicates the superb performance of the network in the estimation of the depth, both in
new frames and the frames it learned.
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Figure 10. Train and test MSE.

Figure 11 presents a radial distance plot of the test data, demonstrating the network’s
ability to accurately estimate the camera’s distance from the front vehicle. A total of
213 samples from a CARLA-captured frame constitute the test data. The blue line on the
plot indicates the actual distance while the orange line indicates the estimated distance. The
close proximity of the two lines demonstrates the network’s high accuracy in estimating
the distance. The radial distance plot shows that the network’s estimates of the distance
between the front vehicle and camera have a high correlation with the ground truth; the
maximum training error is approximately 1.23 m, while the maximum testing error is about
1.48 m within a mid-range of under 50 m. This indicates that the network is capable of
accurately estimating distances in the CARLA-captured frames.
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To improve the performance and generalization of our distance estimation model in
real-world scenarios, we trained and tested it using a comprehensive dataset of CARLA-
captured frames from various weather simulations, including sunny, cloudy, and low-light
nighttime conditions. This diverse dataset provided our model with the necessary reliability
to estimate distances in a wide range of lighting and visibility scenarios, improving its
ability to operate safely and effectively in the traffic scene. In Figure 12, we provide
examples of the proposed model’s successful implementation in CARLA scenes with
different light conditions. This figure displays bounding boxes and precision scores for car
and rear and front light classes, and the distance is measured in meters.
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The model’s ability to accurately detect objects and their spatial location in complex
environments is due to its robustness in handling variations in scale, angle, and illumination.
Furthermore, Figure 13 shows that the model was able to successfully detect objects in
real-world traffic environments. These results show that the model is not only accurate in
detection, but also resilient across a variety of conditions, making it a reliable and effective
solution for AV distance estimation application.

We have shown that YOLOv7 has a better performance in comparison with the stan-
dard YOLOv3 with regard to detection accuracy. Due to the lack of a standard, direct
comparisons are not straightforward in terms of the evaluation of distance estimation
models. In order to compare the performance of our proposed model and evaluate it
against other models, we consider similar distance estimation evaluation metrics to those
defined in [61]. We utilized mean absolute error (MAE) as the error measurement in this
study. With regard to the distance assessment quality, εR and εA metrics were defined
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in [61], which express the relative distance estimation and mean absolute errors. We can
define the mean absolute distance error (MAE) as follows:

εA =
1
n

n

∑
i=1
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The mean relative distance error is definable as:

εR =
1
n

n

∑
i=1

∣∣∣∣di −
_
d i

∣∣∣∣
max(di, 1)

, (5)

where n stands for the number of bounding boxes found. In addition, d′ and d stand for the
paired vectors of the predictions and ground truth, respectively.

Initially, we extracted car images from the dataset and then proceeded to employ the
YOLOv7 algorithm to accurately detect the position of the cars and their respective lights.
Then, we implemented the MLP network to estimate depth and determine the distance to
the vehicle. Finally, we compared this predicted value to the labeled value in the KITTI
dataset to evaluate the accuracy of our approach [62]. Figure 14 displays the histogram of
the difference between the obtained distance and the distance specified in the dataset.
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Then, we tested the capability of our approach in the accurate estimation of the
distance to front vehicles, which was estimated by employing the defined εR and εA metrics.
The metrics could only be estimated for detected boxes, and it was useless to assess the
distance of undetected objects. In Table 2, the results include the mean distance error, as
well as the maximum and minimum distance errors, expressed in meters, in the columns
labeled Mean, Max, and Min, respectively, for comprehensiveness. Additionally, the value
in column εR represents the relative distance error, where εR = 1 is equivalent to 100%.

Table 2. Comparison results of defined distance estimation.

Method Min Mean Max εA εR

Dist-YOLO [61] −24.87 −0.81 14.47 2.49 0.11
Our method −8.5 0.22 7.3 1.7 0.17

As shown in Table 2, we achieved an MAE of 1.7 within mid-distances (<50 m).
Another parameter used for comparison is the relative distance error, which reached 0.17.
Given that authors report their results by employing a variety of settings, the numbers that
follow are predominantly illustrative. On their KITTI validation dataset, Zhu et al. [63]
obtained an εR value of 0.25. By only testing non-overlapping cars, Ali et al. [5] obtained an
εR value of 0.29. In addition, by applying the same settings, they reported that DORN [64]
yielded an εR value of 0.11. Mauri et al. [65] evaluated the performance of KITTI on three
object classes, i.e., person, cyclist, and car. The results of their evaluation showed that
the εR values achieved for these three classes in the test scenario were 0.42, 1.04, and 0.16,
respectively. To compare the efficacy of our proposed method with existing approaches,
we conducted experiments on the KITTI dataset. The results of our experiments show that
that our proposed approach is a reasonable solution. Based on the fact that we are not sure
about the uniformity of some of the parameters and settings they used, we may not be able
to make a close comparison with the models mentioned in these articles.

The performance of our proposed model on real-world scenes from the KITTI dataset
is displayed in Figure 15. The figure includes information about detected classes, predicted
label values, and actual distance in meters.
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4. Conclusions

Our proposed approach leverages the power of the YOLOv7 algorithm and a nonlinear
model to enable accurate and fast detection and localization of cars and their lights in
monocular images, even in challenging environments such as occluded traffic areas. The
attention mechanism is utilized to highlight the most important features in the image for
more accurate object detection, while the YOLOv7 network is enhanced with three CBAM
modules to capture the spatial and channel-wise features of an image. Our comparative
analysis revealed a remarkable improvement in precision, recall, F1, and mAP scores,
indicating the better performance of our YOLOv7-CBAM method over the baseline YOLOv7
model. To provide a more direct comparison with existing studies, we evaluated our
approach on the KITTI dataset, where we obtained a mean absolute distance error of 1.7 m
and a mean relative distance error of 17%. These results clearly demonstrate the efficacy of
our proposed method, which outperforms other approaches that rely solely on car height
in the image. Moreover, our approach requires minimal computational overhead, making
it suitable for a broad range of autonomous vehicle scenarios.
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