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Abstract: An increasing number of U.S. cities require commercial/office properties to publicly disclose
their energy performance due to the adoption of energy benchmarking and disclosure policies. This
level of transparency provides an additional in-depth assessment of a building’s performance beyond
a sustainability certification (e.g., Energy Star, LEED) and may lead less energy-efficient buildings to
invest in energy retrofits, therefore improving their marketability. However, the research is scarce
on assessing the impact of such policies on office building marketability. This study tries to fill
this gap by investigating the impact of energy benchmarking policies on the performance of office
buildings in four major U.S. cities (New York; Washington, D.C.; San Francisco; and Chicago). We
use interrupted time series analysis (ITSA), while accounting for sustainability certification, public
policy adoption, and property real estate performance. The results revealed that in some cities,
energy-efficient buildings generally perform better than less energy-efficient buildings after the
policy implementation, especially if they are Class A. The real estate performances of energy-efficient
buildings also exhibited continuously increasing trends after the policy implementation. However,
due to potentially confounding factors, further analysis is required to conclude the policy impacts on
energy-efficient buildings are more positive than those on less energy-efficient buildings.

Keywords: building energy benchmarking and disclosure policies; building energy efficiency; office
buildings; time series modeling

1. Introduction

Commercial building stock has increased by 47.4%, to 5.6 million square feet in 2012
compared to 1979, with the increase expected to reach 124 billion by 2050 [1], although this
might be tempered due to the post-COVID-19 workplace flexibility. This concentration of
commercial buildings in city cores and the adoption of energy benchmarking and public
disclosure policies can contribute to a more sustainable built environment and an increased
awareness among owners/investors and tenants [2,3].

Previous studies have reported that sustainable, energy-efficient buildings, such as
Leadership in Energy and Environmental Design (LEED), Energy Star, provide higher rents
and sale prices while lowering vacancies than comparable non-energy-efficient buildings in
the market [4–12]. A recent study of electric vehicle (EV) charging stations has also found
evidence of a positive effect between these stations and sale prices for office properties [4].
Furthermore, higher adoption of EV chargers is linked to areas with higher socioeconomic

Sustainability 2023, 15, 8883. https://doi.org/10.3390/su15118883 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15118883
https://doi.org/10.3390/su15118883
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-7702-521X
https://orcid.org/0000-0002-8001-4124
https://doi.org/10.3390/su15118883
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15118883?type=check_update&version=1


Sustainability 2023, 15, 8883 2 of 23

attributes, including home values [13]. As more states begin to mandate the transition to
electric vehicles, more such stations will be required with additional energy consumption
not previously accounted for. Even though there is owner/investor sensitivity towards
sustainability certifications as federal agencies (e.g., U.S. General Services Administration)
require their facilities to be LEED Gold and private tenants with core sustainability values
prefer sustainably certified buildings, the open disclosure of energy performance provides
for the first time a transparent, level comparison field among all buildings. As such,
mandatory energy benchmarking and disclosure policies could potentially affect the leasing
and purchasing decisions of real estate customers as they become more aware of such data.
Consequently, such policies are expected to motivate the owners of less energy-efficient
buildings to invest in energy retrofits with the goal of improving the short- and long-term
performance and marketability of their buildings.

However, there is a lack of studies specifically focusing on exploring the impact of
such policies on office buildings. In view of the significance of the energy benchmarking
and disclosure policy as well as their potential impacts on real estate markets, the authors
preliminarily examined the effectiveness of the benchmarking policy on the real estate
performance of office buildings in downtown Chicago and argued that the energy disclosure
policies have a positive impact on improving the real estate performance of energy-efficient
buildings [14]. This study aims to expand the previous effort on assessing the effectiveness
of the energy benchmarking and disclosure policy on real estate performance by adding
more major cities across the U.S. into the analysis and conducting a more comprehensive
and robust analysis to explore the relationship between the energy policy and office building
marketability. Specifically, the research covers an assessment of the real estate performance
of sustainable buildings before and after policy implementation while taking market
cycles (e.g., seasonality) into consideration; further, it investigates if various building
characteristics (e.g., building class level) would affect the effect of energy policies on a
building’s marketability.

This paper first provides a review of the previous research regarding the exploration
of the relationship between energy policies and the corresponding impacts on the real
estate market. It is then followed by an overview of the research data and description of the
methodology used to examine the policy impact. Last, the results are discussed, followed
by some concluding remarks.

2. Building Energy Efficiency Policies

For several years there has been evidence of increasing adoption of sustainability
practices among buildings, including energy-efficient strategies that provide cost savings to
owners and tenants. Sustainability has become an important factor to evaluate the property
and impact the decision-making in the U.S. real estate market [15]. For office buildings,
compared to less energy-efficient buildings, the LEED and Energy Star labeled offices (i.e.,
those with a certificate of building energy efficiency) have significantly high occupancy
rates [16]. Those energy efficiency certificates also show a positive effect on increase in the
revenues of office rental [5,6,10,17]. For industrial facilities, ‘green’ certified properties have
higher values [18].

Energy efficiency policies such as building energy benchmarking and disclosure
mandatorily require property owners to share their building energy performance with
the public; these policies aim to raise the awareness of energy-efficient properties among
owners, investors, and tenants. Zalejska-Jonsson [19] proved that in an area with a high
availability of public energy information, energy efficiency is a key factor in impacting
a buyer’s decision on property purchase. However, in an area with less awareness of
energy information, energy efficiency has rather a minor impact on decision-making. The
adoption of energy policies is highly determined by economic, political, and climate fac-
tors [20]. Cities that are categorized as policy pioneers with a high education rate usually
have a higher adoption rate of those policies and tend to have lower carbon emissions per
capita [21]. The adoption of energy disclosure policies also increases the availability of
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building energy-performance data, which contributes to academic research on better un-
derstanding the relationship between building characteristics and energy performance. For
example, Kontokosta [22] proved building structural, mechanical, and locational attributes
can be used to predict energy consumption. To help the government better implement
energy policies, studies have also summarized best practices and recommendations on
adoption of such policies [23,24].

Studies indicate that there is a huge need for increasing the transparency of building
energy performance and that the standardization of energy reporting is desired [25]. The
U.S. Department of Energy [26] states that measuring and disclosing building energy use
would drive building owners in making improvements to lower energy costs for their
property, which can also be passed through to their tenants. It also has been demonstrated
that disclosure of energy performance will positively impact on energy savings [2,27–29].
The policies would improve the market penetration of energy-efficiency buildings in various
real estate markets (e.g., office and residential) [30]; be positive in promoting green office
building designations [31]; and increase the purchase of energy-efficient equipment [2].
Furthermore, Barrett et al. [32] investigated the energy ordinances requiring energy retrofits
for rental properties in Boulder, Colorado, and found that early engagement of people
committed to energy efficiency is conducive to the adoption of such requirements in an
economically driven environment.

To the best of the authors’ knowledge, there is a scarcity of research on the relationship
between energy disclosure policies and office building marketability. Based on a prelimi-
nary study [14], the authors found that the energy-efficient buildings show a decreasing
trend in vacancy rates after such disclosure policies were implemented, which implied
that such policies would positively impact on improving the marketability. Therefore, a
study of this nature can be viewed as a significant leap forward in facilitating informed
decision-making of building owners in future energy-efficiency improvement projects.

3. Study Data
3.1. Data Source

This research focuses on four major cities across the U.S. (New York City; Washington,
D.C.; San Francisco; and Chicago). The key consideration of the city selection is its disclo-
sure policy history—the aforementioned cities have relatively longer histories in adopting
energy disclosure policies (e.g., Washington, D.C.—since 2008, New York—since 2009, San
Francisco—since 2011, and Chicago—since 2013). In addition to data availability, the cur-
rent research also targets the cities with a higher level of sustainability interest/awareness;
this research begins by analyzing the effect of the disclosure policy in a city with a popula-
tion that is known to be generally more sensitive to sustainable practices in comparison to
other cities.

The data were collected from three different databases. The type of data collected were
as follows:

a. Real estate data: Building characteristics (e.g., building class, size, etc.) and real
estate performance data (e.g., occupancy rate, rents, etc.) were collected from the
CoStar Group database for office buildings of more than 10,000 square feet.

b. Sustainability labeling data: Sustainability data such as rating, certification level, and
points are publicly available and were collected from the U.S. Green Building Council
(USGBC)’s website. The Energy Star label data were obtained from the Energy Star
building database.

c. Energy consumption data: The energy benchmarking and disclosure policy requires
building owners to publicly disclose their building’s energy performance. Such data
were available at city web portals.

3.2. Data Processing

Data processing consisted of two main tasks—data cleaning and database merging.
For data cleaning, the incomplete, incorrect, inaccurate, and unreasonable data points were
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detected and carefully addressed (e.g., replacing, modifying, or deleting). For example,
Figure 1 exhibits that some outliers (highlighted in red) exist in San Francisco’s energy
consumption database, and due to their irrationality, we decided to remove the data points
that have a site EUI (i.e., the amount of heat and electricity consumed by a building) larger
than the average plus three standard deviations. We also compared the trend of mean
site EUIs before and after the dropouts. As shown in Figure 2, the trend of site EUI after
dropping out the outliers is consistent with that of the original data, which implies the
dropouts would not significantly impact our analysis of policy effects on trends.
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To examine the impact of energy policies on the real estate performance of office
buildings, this study further merged the three separate data dimensions into an integrated
database. Building address was used as the primary key to join different datasets. Due
to the inconsistency of recording address and typos in different datasets, a fuzzy merge
method [33] was used to calculate the matching degree of the addresses, and the two ad-
dresses with the highest matching degree were identified as the same building and merged.
Specifically, we designated Energy Star (ES) certification for the buildings featured in the
sustainability labeling dataset, while considering the remaining ones as non-ES certified
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buildings. Figure 3 illustrates the merging process and the data size of each dataset before
and after the merge.
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Figure 3. The data merging.

The basic structure of the integrated database of each city has been summarized in
Table 1. A variety of variables can be used to assess the marketability of office buildings.
In this study, the annual occupancy rate was chosen as the metric to evaluate real estate
performance because it has relatively high data quality (e.g., no missing values) and reflects
tenant demand for all buildings regardless of sustainability certification/label. The second
column in Table 1 presents the available years of real estate data (i.e., occupancy) of each
city. The third column shows the year the energy benchmarking policy was implemented
in each city. In this project, the Energy Star label is the main feature we used to group
the buildings as energy-efficient (sustainable) buildings vs. non-energy-efficient buildings.
Thus, Table 1 also summarizes the number of Energy Star (ES) label buildings and those
without the Energy Star label. Note that in this research, a building is considered as Energy
Star if it obtained the label at least once.

Table 1. Summary of the integrated database.

City Time Frame of
Real Estate Data

Year of Policy
Implementation

Number of ES
Buildings *

Number of Non-ES
Buildings **

Total Number of
Buildings

NYC 1994–2017 2009 160 396 556

D.C. 1993–2017 2008 254 188 442

SF 1997–2017 2011 144 306 450

Chicago 1996–2017 2013 145 147 292

* Energy Star (ES) buildings. ** Non-Energy Star (non-ES) buildings.

3.3. Data Description

In addition to grouping buildings based on their sustainability status (i.e., Energy
Star vs. non-Energy Star), the study also classified the buildings based on the building
class, which aims to test if different characteristics of a building will affect the impact of
the policy on its real estate performance. From CoStar (our real estate data source), office
buildings are generally classified into three classes: A, B, and C—Class A representing the
highest quality buildings in each city. Buildings are rated based on such parameters as
age, building systems (e.g., HVAC), location, how well the building is maintained, and
amenities. Figure 4 exhibits the number of buildings in each class. As shown in Figure 4,
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except for D.C., the other three cities have a similar distribution among the number of
buildings for each class. The reason Washington, D.C., is different from the other three
cities for Class C buildings is mainly due to data loss caused by data merging.
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This study further compared the number of Energy Star buildings with the number of
non-Energy Star buildings in each class level, and the comparison is summarized in Figure 5.
Generally, in Class A, the proportion of Energy Star buildings is relatively higher, while the
proportion of non-Energy Star buildings is higher for Class B buildings. Additionally, there
are only a few Energy Star Class C buildings, which follows the expectation as buildings
with better energy efficiency are more likely to achieve a better classification level. The
subsequent analysis focuses on A and B classes since the number of ES buildings in Class C
is too small for meaningful statistical analysis.
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Figure 5. The number of ES buildings vs. the number of non-ES buildings in each class level.

A variety of variables can be used to measure the real estate performance of office
buildings. The occupancy rate was chosen because of the relatively high data quality (e.g.,
absence of missing variables) and its better reflection of tenant demand for properties
that have or have not embraced sustainability. Figures 6–9 show the annual trends of
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average occupancy for each class in each city for Energy Star buildings and non-Energy
Star buildings.
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Figure 7. The trend in the average occupancy of ES buildings vs. non-ES buildings in Washington, D.C.
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4. Methodology

This interdisciplinary research is at the interface of building energy efficiency, policy
planning, and real estate economics, making contributions to each field. In order to achieve
the research objective of assessing the impact of energy benchmarking policy on the real
estate performance of office buildings, this study applied two interrupted time series
analyses based on the occupancy rates of office buildings in the four cities. The general
research process is summarized in Figure 10.
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4.1. Interrupted Time Series Analysis (ITSA)

Once the real estate performance variable (occupancy rate) was selected, the next step
was to set up hypotheses regarding how the policy would impact the variable. The policy
impacts have three main scenarios, including if the trend of the performance variable had
a change in level (i.e., an immediate change) after the policy, a change in gradient (i.e., a
continuous change), or both. It is difficult to draw conclusions as to whether such impacts
exist or not by simply observing the trends shown in Figures 6–9 in the previous section.
Therefore, this study applies an interrupted time series analysis (ITSA) to obtain statistically
significant evidence.

ITSA is a quasi-experimental method that was developed to assess if a time series of a
specified outcome (e.g., occupancy rate) was affected by intervention(s) at a known point
or points in time [34–36]. It has become increasingly popular in political science, in which
it is usually used to study the impact of changes in laws or regulations on the behavior
of people or the market [37–39]. ITSA is based on the key assumption that data trends
remain unchanged without interventions. In other words, if there were no interventions,
an expected trend can be predicted based on the pre-existing trend. A comparison between
the expected trend and the actual trend observed in the post-intervention period reveals
the difference, which provides evidence for the impact of the intervention. However,
the assumption of the unchanged data trends has the risk of yielding biased results if
the time series data is seasonal. For example, ITSA may detect changes after the policy
implementation, but it is difficult to determine if that change is caused by the policy or
seasonality. Therefore, it is necessary to first adjust for the seasonality in the time series
data before conducting ITSA.

4.2. Seasonality Adjustment

The process of adjusting for seasonality can be divided into two main steps. In the
first step, Fourier transformation was used to detect seasonality [40]. The main purpose
of this step is to detect the seasonal cycle of the time series data (i.e., occupancy rate). For
instance, Table 2 shows the detection results based on the non-Energy Star data in Chicago.
It shows that the data have two seasonal cycles, and the main cycle comprises 8 years.

Table 2. Seasonality of the occupancy rate of non-ES buildings in Chicago.

Order Spec Freq Seasonality (1/Freq)

1st 0.600 0.125 8 years
2nd 0.325 0.042 24 years

The next step is to extract seasonality from the time series data through decomposition.
Seasonality may exist in time series data through two forms—an additive way or a multi-
plicative way. According to the occupancy rate trends shown in Figures 6–9, the time series
data in this research show an additive pattern. Based on the seasonal cycle determined
from the previous step, the original time series data can be decomposed into three parts
(i.e., seasonal, trend, and random), and the seasonal part can be removed from the original
data. Figures 11–14 show the annual trends of the average occupancy for each city after
the seasonality adjustment, which can be compared with the original trends shown in
Figures 6–9.
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Figure 11. The seasonality adjusted trend in the average occupancy of ES buildings vs. non-ES
buildings in NYC.
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Figure 12. The seasonality adjusted trend in the average occupancy of ES buildings vs. non-ES
buildings in Washington, D.C.
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Figure 13. The seasonality adjusted trend in the average occupancy of ES buildings vs. non-ES
buildings in SF.
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Figure 14. The seasonality adjusted trend in the average occupancy of ES buildings vs. non-ES
buildings in Chicago.

4.3. The Multiple-Group ITSA on Aggregated Vacancy of Two Building Groups

When studying the impact of a large-scale intervention (e.g., a policy affecting all
buildings in a city), researchers often have an effective sample size of N = 1 (treatment
group) or N = 2 (treatment group with a control group) [41], and it is common to use an
aggregated value (e.g., median or mean) to represent the sample in the ITSA. In the present
study, the treatment group consists of all the Energy Star buildings of each class for each
city, and the mean occupancy rate is used as the aggregated outcome variable for the ITSA.

In addition to the energy policy, many unobserved factors could potentially affect
occupancy rates. Including a control group in the ITSA can help account for the other
confounding factors when an exogenous intervention affects all the groups, which is called
multiple-group ITSA [41]. The multiple-group ITSA hypothesizes that the level or trend
of the outcome variables remains unchanged for all groups if no intervention occurs. It
assumes the unobserved factors affect both groups to the same extent.

This study conducted multiple-group ITSAs for each city based on two comparable
groups—one control group consisting of the non-Energy Star buildings and one treatment
group consisting of the Energy Star buildings. By accounting for confounding factors, this
grouping enables us to focus the study on investigating how the benchmarking policy
affected occupancy rates differently between the energy-efficient buildings and their non-
energy-efficient counterparts. The multiple-group ITSA with two groups is based on the
following regression model [42,43]:

Yt = β0 + β1Tt + β2Xt + β3TtXt + β4Z + β5ZTt + β6ZXt + β7ZTtXt + εt, (1)

where Yt is the aggregated outcome variable (average occupancy rate) at each equally
spaced (annual) time point t, and Z is the dummy variable to indicate the group (0 = control
and 1 = treatment); Tt is the time since the starting year of the database; and Xt = the
dummy variable to indicate the pre- or post-intervention period (0 = pre-intervention
period and 1 = post-intervention period). In Equation (1), the first four coefficients, β0
through β3, refer to the control group, while the last four coefficients, β4 through β7,
refer to the treatment group. Specifically, β0 = the intercept of the outcome variable;
β1 = the coefficient to represent the initial trend before the intervention; β2 = the level
change that occurs immediately after the intervention; and β3 = the continuous change of
the trend after the intervention. Furthermore, β4 is the difference in the intercept of the
outcome variable between treatment and control groups before the intervention. β5 is the
difference in the trend between the two groups before the intervention. β6 is the difference
between the two groups in the level change immediately after the intervention. Lastly, β7
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is the difference between the two groups in the continuous change of the trend after the
intervention. εt is a random error term.

To ensure the comparability between the groups, the control and treatment groups
should not be significantly different in either the initial intercept or the trend of the outcome
variable before the intervention. Thus, the appropriate control group should have the
p-values for both β4 and β5 greater than the required threshold (i.e., 0.05). The p-values
of β2 and β3 show whether there are significant changes (immediate and continual) in
the control group (non-Energy Star group) after the intervention. The p-values for β6 and
β7 then provide statistical evidence on whether the policy affects the treatment group
differently from the control group.

4.4. Single-Group ITSA on Individual Building

There is a potential issue of information loss by using the aggregated data (i.e., average
occupancy rate). This is because the average vacancy was used to represent the whole
population (i.e., ES group or non-ES group), which limited the analysis in evaluating
the policy impacts on each building. To deal with this challenge, the study expands the
aforementioned analysis by conducting ITSA on an individual building. In this case, a
single-group ITSA is used.

The single-group ITSA is a simple version of the multiple-group ITSA that only
examines the changes for the treatment group (i.e., occupancy rate of each building). It is
based on the following model [42,44]:

Yt = β0 + β1Tt + β2Xt + β3TtXt + εt, (2)

where Yt is the occupancy rate of each building at year t; Tt is the time since the starting
year of the database; and Xt = the dummy variable to indicate the pre- or post-intervention
period (0 = pre-intervention period and 1 = post-intervention period). It is noted that if
we set Z in Equation (1) to 0, the two functions become the same. The meanings of the
coefficients (i.e., β0 to β3) in Equation (2) are the same as those in Equation (1).

5. Results
5.1. The Result of the Multiple-Group ITSA on Two Building Groups

The multiple-group ITSA was conducted based on the annual average occupancy
rates of the office buildings for each class and each city in order to examine the change(s)
after the policy implementation and then to infer the impact of the benchmarking policy on
real estate performance. This multi-group analysis specified Energy Star buildings as the
treatment group and non-Energy Star buildings as the control group.

5.1.1. New York City

For Class A buildings, as shown in Table 3, the starting level of difference between
the treatment group and the control group (β4: z) was not significant (p = 0.80), and the
initial trend difference (β5: z_t) was not significant, either (p = 0.87). As mentioned earlier,
the groups with p-values greater than a specified threshold (i.e., 0.05) for both β4 and β5 in
Equation (1) are preferred, to ensure the comparability. Thus, for NYC Class A buildings,
the Energy Star group (i.e., treatment group) and non-Energy Star group (i.e., control group)
behave similarly before the policy intervention. After the intervention, the occupancy rate
of the non-Energy Star group increases by 2.28% immediately (β2; p = 0.001), while that
of the Energy Star group drops immediately by 2.50% (β2 + β6; p = 0.01). The policy
was implemented following the beginning of the financial crisis with Class A buildings
commissioning the highest rents, and the crisis could lead to tenant flight to Class B. For
the continuous trends (β3 and β7), there is a slightly increasing trend for the Energy Star
group’s occupancy rate and a decreasing trend of the non-Energy Star group’s occupancy
rate, but neither is statistically significant. Note that β6 and β7 represent the differences
between the Energy Star group and non-Energy Star group rather than the changes of the
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Energy Star group before and after the policy implementation. The results were verified
upon the visual display of Figure 15a.

Table 3. (a) Multiple-group ITSA regression model for Class Level A buildings in New York City.
(b) Multiple-group ITSA regression model for Class Level B buildings in New York City.

(a)

Regression with Newey–West Standard Errors
Maximum Lag: 1

Number of Obs = 48
F (7, 40) = 5.70

Prob > F = 0.001

Ave_Occupancy Coef. Newey–West
Std. Err. t p > |t| [95% Conf. Interval]

β1: t −0.026 0.087 −0.30 0.769 −0.20 0.15
β4: z 0.368 1.446 0.25 0.800 −2.55 3.29

β5: z_t −0.026 0.159 −0.17 0.870 −0.35 0.29
β2: x_interrupted_year 2.283 0.662 3.45 0.001 0.95 3.62

β3: x_t_ interrupted_year −0.214 0.189 −1.13 0.265 −0.60 0.17
β6: z_x_ interrupted_year −4.782 1.912 −2.50 0.017 −8.65 −0.92

β7: z_x_t_ interrupted_year 0.393 0.415 0.95 0.349 −0.45 1.23
β0 (cons) 91.269 0.892 102.29 0.000 89.47 93.07

(b)

Regression with Newey–West Standard Errors
Maximum Lag: 1

Number of Obs = 48
F (7, 40) = 10.90
Prob > F = 0.001

Ave_Occupancy Coef. Newey–West
Std. Err. t p > |t| [95% Conf. Interval]

β1: t 0.164 0.080 2.06 0.046 0.00 0.33
β4: z −0.350 1.726 −0.20 0.840 −3.84 3.14

β5: z_t −0.075 0.165 −0.46 0.651 −0.41 0.26
β2: x_interrupted_year 2.619 0.722 3.63 0.001 1.16 4.08

β3: x_t_ interrupted_year −0.666 0.201 −3.31 0.002 −1.07 −0.26
β6: z_x_ interrupted_year −0.010 1.360 −0.07 0.942 −2.85 2.65

β7: z_x_t_ interrupted_year 0.077 0.286 0.27 0.788 −0.50 0.66
β0 (cons) 90.411 0.835 108.23 0.000 88.72 92.10
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Figure 15. (a) ITSA for Class A and (b) ITSA for Class B in New York City.

For Class B buildings, in Table 3, the occupancy rate of the non-Energy Star group
increases by 2.28% immediately after the policy implementation with a continuously
decreasing trend (−0.21% per year). The p-values of β6 and β7 show that there is no



Sustainability 2023, 15, 8883 14 of 23

significant difference of the trend between the Energy Star and non-Energy Star groups
after the intervention. This indicates that the occupancy rate of the Energy Star group
also had an immediate increase with a continuous decreasing trend. The results are also
exhibited in Figure 15b.

5.1.2. Washington, D.C.

As shown in Table 4, for Class A buildings, there is a significant drop of occupancy
rate for the non-Energy Star group (−6.89%) after the policy implementation. Although
the immediate change of the Energy Star group is slightly different (1.10%) from that of
the non-Energy Star group, it is not statistically significant. Thus, the occupancy rate
of the Energy Star group also had an immediate drop after the policy. Similar to New
York City, these drops might also be due to the financial crisis. However, after the policy
implementation (year 2008), the occupancy of the Energy Star group shows an increasing
trend, while the non-Energy Star group has a decreasing trend (statistically significant, i.e.,
p value 0.000). The results are visualized in Figure 16a.

For Class B buildings, in Table 4, the occupancy rates have significant decreasing
trends after the policy implementation for both groups. However, there is no significant
difference between the two groups, which implies that the policy affected both Energy
Star and non-Energy Star buildings to a comparable extent. Visualization is shown in
Figure 16b.

Table 4. (a) Multiple-group ITSA regression model for Class Level A buildings in Washington, D.C.
(b) Multiple-group ITSA regression model for Class Level B buildings in Washington, D.C.

(a)

Regression with Newey–West Standard Errors
Maximum Lag: 1

Number of Obs = 50
F (7, 42) = 12.26

Prob > F = 0.0000

Ave_Occupancy Coef. Newey–West
Std. Err. t p > |t| [95% Conf. Interval]

β1: t 0.332 0.147 2.27 0.029 0.04 0.63
β4: z −1.944 1.451 −1.34 0.188 −4.87 0.99

β5: z_t −0.145 0.199 −0.73 0.469 −0.55 0.26
β2: x_interrupted_year −6.895 1.509 −4.57 0.000 −9.94 −3.85

β3: x_t_ interrupted_year −0.492 0.161 −3.05 0.004 −0.82 −0,17
β6: z_x_ interrupted_year 1.107 2.304 0.48 0.633 −3.54 5.76

β7: z_x_t_ interrupted_year 0.510 0.325 1.57 0.124 −0.15 1.17
β0 (cons) 90.683 1.072 84.61 0.000 88.52 92.85

(b)

Regression with Newey–West Standard Errors
Maximum Lag: 1

Number of Obs = 50
F (7, 42) = 17.65

Prob > F = 0.0000

Ave_Vacant Coef. Newey–West
Std. Err. t p > |t| [95% Conf. Interval]

β1: t 0.389 0.086 4.52 0.000 0.22 0.56
β4: z −2.545 1.244 −2.05 0.047 −5.06 −0.04

β5: z_t 0.077 0.135 0.57 0.573 −0.20 0.35
β2: x_interrupted_year −1.395 0.934 −1.49 0.143 −3.28 0.49

β3: x_t_ interrupted_year −0.774 0.178 −4.36 0.000 −1.13 −0.42
β6: z_x_ interrupted_year 0.150 1.355 0.11 0.913 −2.58 2.88

β7: z_x_t_ interrupted_year −0.197 0.228 −0.87 0.392 −0.66 0.26
β0 (cons) 89.902 0.797 112.74 0.000 88.29 91.51
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5.1.3. San Francisco

As shown in Table 5 and Figure 17a, for Class A buildings, both groups have an
increasing trend of occupancy rate (but not statistically significant) after the policy imple-
mentation. The results show that there is no significant difference in the trend between these
two groups. For Class B buildings, after the policy implementation, the occupancy rates
of both groups have statistically significant increasing trends, and there is no significant
difference between the two groups, as shown in Table 5 and Figure 17b.

Table 5. (a) Multiple-group ITSA regression model for Class Level A buildings in San Francisco.
(b) Multiple-group ITSA regression model for Class Level B buildings in SF.

(a)

Regression with Newey–West Standard Errors
Maximum Lag: 1

Number of Obs = 42
F (7, 34) = 2.98

Prob > F = 0.0152

Ave_Vacant Coef. Newey–West
Std. Err. t p > |t| [95% Conf. Interval]

β1: t −0.149 0.388 0.38 0.704 −0.94 0.64
β4: z 2.863 3.986 0.72 0.478 −5.24 10.96

β5: z_t −0.229 0.452 −0.51 0.616 −1.15 0.69
β2: x_interrupted_year 2.776 3.393 0.82 0.419 −4.11 9.67

β3: x_t_ interrupted_year 1.300 0.820 1.59 0.122 −0.37 2.97
β6: z_x_ interrupted_year −0.785 4.018 −0.20 0.846 −8.95 7.38

β7: z_x_t_ interrupted_year −0.226 0.977 −0.26 0.795 −2.24 1.73
β0 (cons) 87.969 3.471 25.34 0.000 80.91 95.02

(b)

Regression with Newey–West Standard Errors
Maximum Lag: 1

Number of Obs = 42
F (7, 34) = 4.12

Prob > F = 0.0023

Ave_Vacant Coef. Newey–West
Std. Err. t p > |t| [95% Conf. Interval]

β1: t −0.238 0.215 −1.11 0.276 −0.675 0.199
β4: z −1.524 4.023 −0.38 0.707 −9.70 6.65

β5: z_t −0.397 0.496 −0.80 0.429 −1.41 0.61
β2: x_interrupted_year 0.919 1.945 0.47 0.640 −3.03 4.87

β3: x_t_ interrupted_year 1.162 0.470 2.48 0.018 0.21 2.17
β6: z_x_ interrupted_year 2.626 4.051 0.65 0.521 −5.61 10.86

β7: z_x_t_ interrupted_year 1.168 0.834 1.40 0.171 −0.53 2.86
β0 (cons) 90.853 1.751 51.90 0.000 87.29 94.41
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Figure 17. (a) ITSA for Class A and (b) ITSA for Class B in San Francisco.

5.1.4. Chicago

As shown in Table 6 for Class A buildings, both groups have an increasing trend of
occupancy after the policy implementation. However, there is a significant difference in the
immediate change between the two groups. The non-Energy Star group has an immediate
jump after the implementation. Furthermore, Figure 18a visualizes the results. For Class B
buildings, the non-Energy Star group has a significant jump in occupancy after the policy
implementation, which is different from the Energy Star group. However, the continual
trend of the non-Energy Star group is decreasing after the policy implementation, while the
Energy Star group has an increasing trend, as shown in Table 6 and Figure 18b.

Table 6. (a) Multiple-group ITSA regression model for Class Level A buildings in Chicago. (b) Multiple-
group ITSA regression model for Class Level B buildings in Chicago.

(a)

Regression with Newey–West Standard Errors
Maximum Lag: 1

Number of Obs = 44
F (7, 36) = 11.32
Prob > F = 0.000

Ave_Vacant Coef. Newey–West
Std. Err. t p > |t| [95% Conf. Interval]

β1: t −0.312 0.245 −1.27 0.212 −0.81 0.19
β4: z 1.076 2.463 0.44 0.665 −3.82 6.07

β5: z_t −0.048 0.277 −0.17 0.862 −0.61 0.51
β2: x_interrupted_year 7.378 2.991 2.47 0.019 1.31 13.44

β3: x_t_ interrupted_year 0.388 0.347 1.12 0.270 −0.31 1.09
β6: z_x_ interrupted_year −5.412 3.293 −1.64 0.109 −12.09 1.27

β7: z_x_t_ interrupted_year 0.551 0.648 0.85 0.401 −0.76 1.86
β0 (cons) 87.757 2.037 43.09 0.000 83.63 91.89

(b)

Regression with Newey–West Standard Errors
Maximum Lag: 1

Number of Obs = 44
F (7, 36) = 11.59
Prob > F = 0.000

Ave_Vacant Coef. Newey–West
Std. Err. t p > |t| [95% Conf. Interval]

β1: t −0.272 0.102 −2.66 0.012 −0.48 −0.06
β4: z −2.138 1.182 −1.81 0.079 −4.54 0.26

β5: z_t 0.084 0.131 0.64 0.523 −0.18 0.35
β2: x_interrupted_year 4.974 1.357 3.67 0.001 2.22 7.73
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Table 6. Cont.

β3: x_t_ interrupted_year −0.353 0.190 −1.86 0.072 −0.74 0.03
β6: z_x_ interrupted_year −4.935 1.589 −3.11 0.004 −8.16 −1.71

β7: z_x_t_ interrupted_year 0.875 0.423 2.07 0.046 0.02 1.73
β0 (cons) 90.928 0.828 109.78 0.000 89.25 92.61
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Figure 18. (a) ITSA for Class A and (b) ITSA for Class B in Chicago.

5.2. The Result of ITSA on Individual Buildings

In order to maximize the use of the collected data and avoid loss of information caused
by the aggregated-data-based analysis, the study further adopted the single-group ITSA to
examine if the implementation of the policy resulted in a shift in the occupancy rate for
each building. Based on the analysis results, the study counted the number of buildings
with a statistically significant shift (i.e., p-value < 0.05) in the occupancy rate after the policy
implementation. Furthermore, among the buildings with statistically significant changes,
the number of them with positive changes (i.e., the occupancy rate increases after the policy
implementation) were further counted. Table 7 summarizes the numbers for each city.
Note that in Table 7, the columns labelled “Total” mean the total number of buildings in
each group (Energy Star vs. non-Energy Star); the columns labelled “Significant” mean
the number of buildings that have statistically significant changes (either immediately or
continuously) after the year the policy was implemented; and the columns labelled “Sign &
Pos” means the number of buildings with statistically significant and also positive changes
(increase in occupancy rate) after the year of policy implementation.

By comparing these totals (i.e., significant and sign & pos) with the total number of
buildings under the Energy Star group and the non-Energy Star group, respectively, two
ratios can be derived. The first ratio (significant/total) indicates the percentage of buildings
that have statistically significant changes in occupancy rate after the policy implementation,
and the second ratio (significant and positive/significant) indicates the percentage of the
buildings that are positively affected by the policy among the buildings that have significant
changes. The results can be used to infer if the policy has different impacts on the real
estate performance between the Energy Star and non-Energy Star groups. Figure 19 shows
the corresponding ratios.
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Table 7. The number of buildings that are affected (and positively affected) by the policy.

Total ES Significant Sign & Pos Total Non-ES Significant Sign & Pos

NYC_a 82 41 16 87 45 29

NYC_b 57 23 12 199 83 41

DC_a 169 75 22 74 27 5

DC_b 82 36 9 104 39 9

SF_a 73 29 22 17 6 3

SF_b 64 27 23 196 57 44

Chicago_a 82 49 33 20 15 11

Chicago_b 59 38 24 83 43 28Sustainability 2023, 15, x FOR PEER REVIEW 19 of 23 
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The first ratio (significant/total) can be used to check which type(s) of buildings are
more likely to have a change in real estate performance after the policy implementation.
As shown in Figure 19, in New York City, overall, the ratios of both groups (Energy Star
and non-Energy Star) are very close. For Class A buildings, the ratios are approximately
0.5, which implies the real estate performances of about half of Class A buildings have
significantly changed after the policy implementation. For Class B, these ratios are slightly
smaller, around 0.4. In Washington, D.C. and San Francisco, the significant/total ratio of
the Energy Star group is higher than that of the non-Energy Star group, while the difference
in this ratio between Class A and Class B is not obvious. This indicates that for Washington,
D.C., and San Francisco, the real estate performance of the Energy Star buildings may be
more sensitive to the energy policy (i.e., more prone to change) compared to the non-Energy
Star buildings. For Chicago, both the Energy Star and non-Energy Star Class A buildings
have a relatively high significant/total ratio (close to and over 0.7, respectively), which
means occupancy rates of a large proportion of Class A buildings significantly changed
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after the policy implementation. For Class B buildings, the ratio of the Energy Star group
is very close to that of the Energy Star group in Class A. This implies that for Energy Star
buildings, the class level may not affect the sensitivity of their real estate performance to
the policy. However, for non-Energy Star buildings, the ratio of Class A buildings and that
of Class B buildings are obviously different (0.75 vs. 0.53), which implies that the sensitivity
of non-Energy Star buildings’ real estate performance to the policy may depend on the
building class.

The second ratios (positive and significant/significant) can be used to check which
type(s) of buildings are more likely to be positively affected by the energy policy. From
Figure 19, in New York City, among the buildings that have statistically significant changes
in occupancy rate after the policy, Class A non-Energy Star buildings have a higher ratio
showing positive changes (0.64). However, only 39% of Class A Energy Star buildings
exhibit an increase in occupancy rate after the policy implementation, which means, after
the policy implementation, more Class A Energy Star buildings have a decreasing trend in
occupancy rate. For Class B buildings, the occupancy rates of 52% of Energy Star buildings
increased after the policy implementation, which is slightly higher than non-Energy Star
buildings (49%). In Washington, D.C., the ‘significant and positive/significant’ ratios of
both Energy Star and non-Energy Star groups are relatively low, which implies that more
buildings experienced declines in occupancy rate after 2008 (the year of the energy policy
implementation). This low ratio might have been caused by other confounding factors, such
as the financial crisis. However, it is noted that the ratio of the Energy Star group is higher
than that of the non-Energy Star group for Class A buildings, which implies that Energy
Star buildings are more likely to be positively affected by the policy. For Class A buildings
in San Francisco, the ‘significant and positive/significant’ ratio of the Energy Star group is
approximately 0.76, while that of the non-Energy Star group is only 0.5. This implies that
after the policy implementation, Energy Star buildings tend to have better improvement in
real estate performance. In Chicago, the ‘significant and positive/significant’ ratios of both
groups for Class A buildings are relatively high, which shows that the policy generally has a
positive influence on Class A buildings, with the influence not being substantially different
between the Energy Star and non-Energy Star groups. For Class B buildings, 53% of Energy
Star buildings exhibit an increase in occupancy rates after the policy implementation, which
is lower than the ratio of non-Energy Star buildings (68%).

6. Discussion

According to the multiple-group ITSA on the average occupancy rate, the results are
mixed with New York City and Washington, D.C., showing that the occupancy rate of
Class A Energy Star buildings fell immediately after the policy implementation and then
recovered with a gradual upward trend. In contrast, the Class A non-Energy Star buildings
exhibited a gradually decreasing trend after the policy implementation. According to the
ITSA, however, there was no statistical evidence of a continuous occupancy rate trend
difference between the two groups after the policy implementation. These effects may
have their roots in the financial crisis, as the implementation happened in 2008 and 2009,
respectively, and rents are much higher in these properties. On the other hand, the Class A
buildings (both Energy Star and non-Energy Star) in San Francisco and Chicago show an
increase in occupancy after the policy implementation. For Class B buildings, the multiple-
group ITSA shows that New York City and Washington, D.C. experienced a decreasing
trend in occupancy rate after the policy implementation, while San Francisco experienced
an increase. There is also no evidence to indicate that occupancy rates performed differently
between Energy Star and non-Energy Star groups for the aforementioned cities. Chicago is
the only city with statistically significant differences between the two groups (Figure 18b
and Table 6).

The results from the single-group ITSA complemented the previous analysis. For
Class A buildings, the grouping of Washington, D.C. with New York City as well as San
Francisco with Chicago is maintained with the former group showing a slower occupancy
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increase than the latter. For Class B buildings, in contrast to all other cities, Washington,
D.C., maintains a smaller ratio of the buildings that have increasing occupancy. Again, the
financial crisis may be a confounding factor for the result.

This preliminary study has certain limitations. Due to the limited timeframe since
the policy implementation in certain cities, the established model may not fully capture
the trend of occupancy rate before the policy implementation and therefore will limit the
forecast of the trend after the policy implementation. With more available data points in
the future, a more sophisticated ARIMA (autoregressive integrated moving average) model
could improve the forecast accuracy. Additionally, an external confounding factor such as
the financial crisis may have affected our analysis results.

7. Conclusions and Policy Implications

The implementation of energy benchmarking and disclosure policies aims to raise
awareness of energy-efficient properties among owners, investors, and tenants. Conse-
quently, they are expected to motivate owners of less energy-efficient buildings to invest in
energy retrofits to improve the energy and sustainability performance of their buildings.
This study focuses on assessing the impact of such policies in relation to the real estate
performance of office buildings.

To contribute to the body of knowledge in sustainability, public policy, and real
estate, this research investigated the impacts of the benchmarking policy on real estate
performances by applying two types of ITSAs to office buildings in four cities across the
U.S., namely, New York City; Washington, D.C.; San Francisco; and Chicago. Initially, we
assessed the impact of the policy on real estate performances between energy-efficient and
non-energy-efficient buildings based on the aggregated data (i.e., the mean of occupancy
rates) by using the multiple-group ITSA. To avoid the potential issue of information loss
due to the use of aggregated data, the second analysis focused on the impact of the policy
on real estate performance of each building using the single-group ITSA and counted how
many buildings under each group showed statistically significant and positive results.

Generally, the results revealed that for some cities, the Energy Star buildings have
better real estate performances for both analyses, but it is hard to conclude that the policy
impacts on Energy Star buildings are more positive than non-Energy Star buildings. Specif-
ically, the results obtained from the first analysis revealed that the energy policies might not
immediately affect the real estate performance of office buildings. However, after the policy
implementation, the real estate performances of energy-efficient Class A buildings exhibit
gradual increasing trends after the policies have been implemented for a while, which is
evidenced by the ITSA of all four cities. For Class B buildings, the results are mixed for
New York City, while Washington, D.C., exhibited a decline in the real estate performance
after the policy implementation. This effect may also have its roots in the financial crisis
as the policies implemented in 2008 and 2009, respectively, for these two cities with rents
being much higher in these properties.

The result from the single-group ITSA is consistent with the result of the first analysis.
For the cities of San Francisco and Chicago, the energy-efficient buildings have higher
ratios of the ‘positive and significant/significant’, which implies that the energy-efficient
buildings are more likely to be positively affected by the policy. However, such ratios are
relatively low for New York City and Washington, D.C., which may be caused by other
confounding factors, such as the financial crisis. To reach more robust conclusions, more
sophisticated analyses with additional data are needed in future works to account for the
confounding effects, such as including control-group cities without disclosure policies in
the analyses.

These findings have implications for other cities or countries considering energy poli-
cies and their impact on real estate performance. Immediate impacts of energy policies
on real estate performance were limited, but gradual improvements were observed over
time for energy-efficient Class A buildings. Different building classes yielded mixed results
across cities, emphasizing the importance of tailored policies for each class within a coun-
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try’s real estate market. Future research should employ sophisticated analyses, considering
control-group cities without disclosure policies to isolate the true effects. It is crucial to
account for confounding factors such as economic crises and regional variations. In sum-
mary, other cities or countries should adopt a comprehensive and tailored approach when
implementing energy policies, considering building classes and potential confounding
factors. This will help maximize the positive impacts of policies on real estate performance
and energy efficiency.
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