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Abstract: In view of the continuous increment of industrial residues, the risk associated with chem-
ical toxicity in the environment has piqued the interest of researchers in pursuit of an alternative
methodology for mitigating the apparent toxicity of chemicals. Over the past decade, the applicability
of toxicity models and the evaluation of the apparent toxicity of chemicals have been examined for
achieving sustainability of the environment and improving water quality. The prediction of toxicant
effects with reasonable accuracy in organisms of water bodies and other environmental compart-
ments lies in the application of a chemical toxicity model with further risk assessment analysis. This
review summarizes well-known and recent advances of modeling techniques to evaluate and monitor
toxicity in the environment. Chemical toxicity models such as the individual-based concentration ad-
dition (CA), independent action (IA) and whole-mixture-based concentration addition-independent
action (CAIA) are considered, as well as their environmental applications, specific case studies, and
further research needs towards sustainability. The gap that needs to be overcome in toxicity studies
for the environmental sustainability is noted based on the aspects of environmental chemistry and
ecotoxicology, sufficient laboratory equipment, data availability and resources for relevant social
parameters needed for investigation.

Keywords: environmental sustainability; sustainable water quality; ecotoxicity; toxicity modeling;
risk assessment

1. Introduction

Comprehending the toxicity of chemicals to organisms is fundamental for a correct en-
vironmental risk assessment. Over the past decade, researchers have sought to ensure that
hazardous chemicals can be replaced with safer alternatives by evaluating the toxicity of
chemicals during the environmental safety assessments and sustainability [1]. Since there is
a vast variety of chemicals contaminating the environment, their varied mechanisms of toxi-
city, relationship and exposure levels in different species are complex to identify [2,3]. Given
that the anthropogenic pollution has increased significantly after the industrial revolution
by producing chemical accumulation in the form of whole mixtures in the environment [4]
such as chemicals and organic chemicals severely affecting all environmental compartments
(air, soil, and water) with different apparent toxicity effects [5,6], changes in water species
are constantly increasing due to the availability of pollutants and biomarkers responses [7].
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Living organisms are constantly exposed to whole mixtures of contaminants, occasionally
causing apparent toxicity at a No Observable Effect Concentration (NOEC) [8–11].

In this context, ecotoxicity models complement risk assessments for developing more
precise analyses of chemical toxicity to organisms and the environment. The toxicological
effects of individual chemicals differ by their physical and chemical characteristics and
by their transformation in the environment, where fresh water, soil, and air systems face
the problem of increased contamination [3]. Unfortunately, ecotoxicity models for risk
assessment are not fully considered for standard toxicity protocols and regulatory risk
assessment [2]. Half of the anthropogenic chemicals produced annually have harmful
effects given their long-term chemical transformations [3,12]. Varied types of chemicals
found in the environment are hazardous, such as the organic chemicals (polycyclic aro-
matic hydrocarbons, pesticides, biocides, surfactants) [13] and the halogenated chemicals
(perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane
sulfonic acid (PFHxS) and per-fluorononanoic acid (PFNA)) [14]. Some of them have also
been detected in fish and seafood in Europe and in Asian countries ([15]), as well as in
beef in Canadian and U.S. diets [14]. Furthermore, heavy metals, including cadmium (Cd),
zinc (Zn), copper (Cu), mercury (Hg), lead (Pb), and nickel (Ni) have high toxic impacts on
different species in the ecosystems [4,16]. Other organic chemicals such as polychlorinated
biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and various organochlorine
pesticides act as synthetic chemicals perturbing the endocrine function of different species.

However, for bulk materials, the particle size, surface activity, shape, and active
functional groups at nanoscale underlie a unique mechanism of interaction with biological
systems [17]. For nanoproducts, the toxicity presented is aggravated given the complexity
of biological entities and their response to chemical mixtures [18,19]. Primary assessments
have been performed through in vivo studies, presenting some limitations such as cost,
time consumption, and analysis constraints depending on size (nanoparticles and particles)
and shape of the materials considered [15].

Quantitative structure–property relationship (QSPR) models have been presented as
a cost-effective methodology for toxicity evaluation, which has evolved in recent years
with the application of artificial neural networks (ANNs) [5,20,21]. Consequently, the
quantitative structure–activity relationship (QSAR) model, which is one of the most used
QSPRs, has been used in several studies [5,22–25]. Ghanem et al. [22] developed a highly
predictive linear QSAR model based on the multiple linear regression (MLR) method
and a non-linear QSAR model based on the multilayer perceptron (MLP) method of
neural networks (NN) to predict the toxicity of a large database of assays with Vibrio
fischeri. Likewise, but more experimentally, Giesen and Van Gestel [23] carried out a study
developing QSARs for (chlorinated) anilines to test compound series for a lipophilicity
range. He et al. [24] studied the QSAR models for the prediction of estrogen receptor (ER)
binding affinity of chemicals in fish species, screening potential ER disruptors. Therefore,
the QSAR models have evolved from mathematical correlation of the chemical properties
from their structures and their behavior effects [23,24,26–28]. In this way, QSARs help to
ensure that the atom counts are in the range of quantum chemicals [29,30].

Recent research focuses on the implementation of the concentration addition (CA) and
independent action (IA) models [21,31–39]. These methodologies evaluate the chemical
mixture in terms of the mode of action (MoA) of the individual chemicals. The CA model
assumes a similar MoA for chemicals, whereas the IA model works for chemicals with
different MoA to calculate the combined effect of chemical mixtures [40]. Furthermore,
the combined effects of chemical mixtures have been tackled in previous research [41,42].
Qin et al. [42] developed an integrated model called concentration addition independent
action (CAIA) model, based on MLR, to predict the additive toxicity of noninteractive
mixtures regardless of their MoA. From this, there are generally two ways to approximate
the toxicity of a mixture: (a) based on whole mixture toxicity or (b) based on individual
chemical toxicity. Table 1 shows the literature review of toxicity models in different areas
of study such as human health and environmental risk assessment. The latest research
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refers to the subareas of wastewater treatment, soil, and acute toxicity in the environmental
compartments and health.

Despite the many advantages of toxicity modeling techniques for chemical mixtures,
their application in eco-toxicological studies is seriously lacking. To define in detail the
importance of research in toxicity modeling techniques, an analysis has been conducted
about scientific publications of three environmental compartments (water, soil, and air) that
are highly affected and that affect water quality and sustainability. These selected environ-
mental compartments are specifically related to chemical mixtures, nanomaterials, an acute
and chronic toxicity models (Figure 1a–c) which correspond to the studies published in
ScienceDirect during the last decade (2013–2022). These areas of study are pillars to several
environmental guided studies carried out in the last decade. The area of water toxicity
modeling contains approximately 9500 publications that were made until the year 2022
(Figure 1a), from which more than 500 publications were reviewed in the development of
this study. From these publications, years 2013 and 2014 presented the lowest number of
publications on nanomaterials in chemical mixtures in all the subareas that are shown in
Figure 1a. More specific sub-areas, such as acute and chronic water toxicity modeling for
nanomaterials in chemical mixtures, show that there has been an increased concern over
the last two years on this topic.

For soil toxicity modeling studies, an amount of approximately 5600 publications has
been reported in the subarea of toxicity modeling of chemical mixtures (Figure 1b). Research
on nanomaterials in chemical mixtures for soil studies has been little in recent years,
especially on specific analysis of acute and chronic toxicity effects of chemical mixtures.
In the area of air toxicity modeling of chemical mixtures, the number of publications
was approximately 15,900 in total, with a clear peak in 2019 surpassing 1500 publications
(Figure 1c). For this area, the scarcest research published has been seen in the studies of
acute and chronic effects of nanomaterials in chemical mixtures, where in the year of 2013
there were only 500 publications released. Figure 2 presents a flow chart of the whole
mixture and component-based model approaches, and the data required for the analysis
with some of the most widely used risk assessment methods for each approach. Depending
on data availability, the development of a whole-mixture model is facilitated, while the
individual chemical toxicity modeling may be alternatively derived from other topmost
toxic chemicals found in datasets.

This review discusses the scientific concepts behind the ecotoxicological modeling
methodologies, the evolution in different environmental areas of study (water, soil, and air)
of toxicity models in chemical mixtures that include and exclude nanomaterials, and case
studies on these environmental compartments. The latest approaches for the prediction of
mixture toxicity are addressed, evaluating the outputs of the models to obtain a current
understanding of the effects of chemical mixtures in the environment.
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Table 1. Summary of studies of chemical mixture toxicity modeling and evaluation.

Research Area Methodology Toxic Compounds Chemical Concentration Reference

Wastewater treatment

Adenosine triphosphate (ATP) analysis to study
the response of cells to their environment.

(a) Mercury chloride
(b) Arsenite
(c) Chromium

(a) 0, 2, 5, 7.5, 10, 12.5, 15 mg/L
(b) 134.3 mg/L
(c) 164.02 mg/L

[43]

Combined respirometric–titrimetric method for
characterization of activated sludge and
wastewater.

Creoline 25 mg/L [44]

QSARs models for estimated bio-toxicity
of chemicals.

(a) Benzene
(b) Toluene
(c) Ethylbenzene
(d) Xylene
(e) Styrene
(f) Chlorobenzene
(g) Nitrobenzene
(h) Phenol
(i) O-cresol
(j) M-cresol
(k) P-cresol
(l) P-aminophenol
(m) M-dihydroxybenzene
(n) 2,4-dichlorophenol
(o) Aniline
(p) O-toluidine
(q) M-toluidine
(r) P-toluidine
(s) O-nitroaniline
(t) M-nitroaniline P-nitroaniline
(u) O-phenylenediamine
(v) M-phenylenediame
(w) P-phenylenediame
(x) 2,4-diamninotoluene(2,4-DT)
(y) 2,4-dinitroaniline(2,4-DA)

Mid-term toxicity:
211–23,000 mg/L
Short-term toxicity:
2–4996 mg/L

[45]
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Table 1. Cont.

Research Area Methodology Toxic Compounds Chemical Concentration Reference

Simulation-aided TIE in a wastewater treatment
plant simulation model.

(a) Copper (II) chloride
(b) Zinc
(c) Aluminum chloride

(a) 0.13 mg/L
(b) 0.17 mg/L
(c) 0.52 mg/L

[46]

Numerical approach as a geochemical speciation,
metal–organic binding, and toxicological model.

(a) Sulfate
(b) Chloride

(a) 0.096–278.4 mg/L
(b) 0.32–279.72 mg/L

[47]

Chinese standard GB/T 23486 method carried out
on phytotoxicity tests conducted with plant species
Brassica rapa chinensis (Chinese cabbage) and
Lactuca sativa (Lettuce). Control standard of
pollutants in sludge for agricultural (GB 4284-2018,
China) from municipal wastewater treatment plant.

(a) As
(b) Cd
(c) Cr
(d) Cu
(e) Pb
(f) Zn

Liquid-phase contents of As, Cd, Pb
and Zn were 0.0514, 0.0088, 0.0053
and 0.2350 mg/L, respectively.

[48]

Electrochemical advanced oxidation process
(EAOP) focused on the wastewater treatment for
metal ions removal (EDTA-Ni complex) containing
ethylenediaminetetraacetic acid (EDTA). Nickel ion
concentration was measured by atomic absorption
spectroscopy (AAS, PinAAcle 900 T, Perkin Elmer),
standard method.

EDTA-Ni complex 10 mg/L [49]

Soil

Biotic ligand model for prediction of acute
copper toxicity.

Copper NR [50]

Free ion approach for derivation of critical limits
for copper and other metals.

Copper NR [51]

Toxicity tests in lead salt-spiked soils applied to
potentially different exposure routes of plants,
invertebrates, and microbial processes.

Lead NR [52]

Diffusive gradients in thin film (DGT) method for
correlation between the metal of the shoots and
metal concentrations.

(a) Lead
(b) Zinc
(c) Cadmium
(d) Copper
(e) Nickel

Varied in different soil types. [53]
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Table 1. Cont.

Research Area Methodology Toxic Compounds Chemical Concentration Reference

Acute toxicology

LC-MS technology in metabolomics and the
chromatographic method.

(a) Aristolochic acid
(b) Ricin
(c) Triptolide
(d) Aconitine, mesaconitine, and

hypaconitine
(e) Yuanhuapine

NR [54]

NR NR 2.5–50 mg/kg [55]

FED approach for non-toxicologist. NR NR [56]

Nemerow index andUSEPA model methodology. (a) Lead
(b) Arsenic
(c) Cadmium
(d) Mercury
(e) Chromium

NR [57]

NR (a) Monoethylene glycol
(b) Diethylene glycol
(c) Triethylene glycol
(d) Tetraethylene glycol
(e) Pentaethylene glycol
(f) Hexaethylene glycol

NR [58]

NR: No reference.
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Figure 1. Annual publishing activity of the last decade in which toxicity modeling methodologies
were addressed for chemical mixtures in (a) water toxicity modeling studies; (b) soil toxicity modeling
studies; and (c) air toxicity modeling studies. Data were extracted from ScienceDirect on 31 March 2023.
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Figure 2. Flow chart of toxicity data availability for chemical mixture assessment on toxicological
modeling studies. Adapted from [59].

2. Evaluation of Ecotoxicity Modeling Methodologies

For the assessment of the joint toxicity of a mixture, especially for the potential
synergistic effect of environmental mixtures, different model approaches are presented,
such as the CA, IA, and CAIA models [31,42,60,61].

2.1. Individual Chemical Modeling

Individual chemical modeling methods are widely utilized for the chemical mixture
toxicity evaluation. Table 2 presents the literature review of the component-based modeling
of chemical mixtures. In this summary, varied relevant studies based on the two approaches
of CA and IA models are described. These two approaches are the most used for toxicity
modeling; therefore, the studies evaluated were selected considering the areas of human
health and environmental risk assessment. The toxic chemicals studied, methodology, and
major results obtained for different conditions are presented.
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Table 2. Literature review of individual components toxicity models in different studies (CA and IA).

Toxicity Model Methodology Toxic Compounds Compound Concentration Reference

Concentration addition (CA)

Approach to incorporate interactions among
chemical constituents.

(a) Malathion
(b) Parathion
(c) Piperonyl butoxide

(a) 0.0107 µM
(b) 0.0113 µM
(c) 6.34 µM

[62]

Two-step prediction (TSP) method. (a) p-Octylphenol
(b) Butyl benzyl phthalate
(c) Di-iso-butyl phthalate
(d) Isofenphos
(e) Di-n-butyl phthalate
(f) Pendimethaline
(g) 2,4,6-Trichlorophenol
(h) 2-Chlorophenol
(i) Diazinon
(j) Fenobucarb

NR [63]

CA model based on an index from the
concentration–response curves (CRCs).

(a) Zinc
(b) Flusilazole
(c) Cadmium
(d) TCCA
(e) SDBS

NR [64]

Dose–response dynamic models. Nitrofurazone NR [65]

NR (a) Chlorpyrifos (CPF)
(b) Clothianidin (CLO)
(c) Acetochlor (ACE)
(d) Fenobucarb (FEN)

NR [66]

Generalized concentration addition (GCA) model. (a) Copper
(b) Zinc

NR [67]
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Table 2. Cont.

Toxicity Model Methodology Toxic Compounds Compound Concentration Reference

Independent action (IA)

NR (a) Carbamazepine
(b) Diclofenac
(c) Fluoxetine
(d) Gemfibrozil
(e) Naproxen
(f) Doxycycline
(g) Monensin
(h) Sulfamethizole
(i) Sulfamethoxazole
(j) Tetracycline

NR [68]

Biotic ligand-based TK-TD model for
aquatic systems.

(a) Copper
(b) Zinc

NR [61]

Microtox® test to investigate the toxicity effects of
chemical compounds and mixtures.

NR NR [69]

Bioavailability model (MMBM) to predict
chronic toxicity.

(a) Nickel
(b) Zinc
(c) Lead

NR [70]

NR: No reference.
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2.1.1. Similar Mode of Action Approach

The CA model or dose addition model was introduced by Loewe and Muischneck
in 1926 [71]. This model is based on the dilution principle of chemicals and it is designed
for substances with similar MoA, which has been evaluated in several studies [72–76].
Generally, non-interacting chemicals varying in potency could not be defined as a dilution of
another chemical. The dose/concentration addition takes place with chemicals in a mixture
acting with the same mechanism, but differing only in their potencies [75,77]. Table 2
shows the studies of CA application in the environmental area for a better description of
the conditions and chemicals studied individually.

The effect prediction of mixture concentrations by concentration addition was origi-
nally calculated according to the Loewe equation [78] as presented in Equation (1):

ECXMIX =

(
n

∑
i

pi
ECxi

)−1

, (1)

where ECxMIX is the effect concentration of the mixture provoking a certain (%) effect, ECxi
is the concentration of the chemical component i that causes a certain effect (x%) when
applied individually, and pi is the molar concentration of each chemical.

Dose additivity is assumed to predict the mixture toxicity over the entire dose range,
including the dose/concentration of the individual with No Observed Adverse Effect
Level/Concentration (NOAEL/C) of the mixture chemicals [34,79,80]. It was noted that
this approach relied on the identified grouping of “similar” chemicals. Although guidance
on chemical grouping has been issued by different organizations, such as the European
Chemicals Agency (ECHA), Organization for Economic Cooperation and Development
(OECD), and the European Food Safety Authority (EFSA), currently there is no agreement
on the scientifically best approach. Thus, the grouping of chemicals often relies on expert
judgment on a case-by-case basis [75].

As reviewed by Kortenkamp et al. [81], there is evidence that dose/concentration addition
could produce reliable estimation of the combined effects for the chemical components that
share either a strictly identical molecular MoA or baseline toxicants. Altenburger et al. [82]
studied 137 binary mixtures of different pesticides and surfactants for which the CA model
provided a better overall prediction in the observed toxicity data compared to the IA model.
A similar result was obtained by Faust et al. [78], who concluded that the toxicity of 66% of
the 38 binary pesticide mixtures was predictable by the CA. However, the test mixtures were
composed of herbicides and fungicides, which differs from the previous studies analyzed.

The CA model is appropriate for risk assessment of chemical mixtures with simple
similar action [83]. The addition of doses implies that the toxicity can be estimated if
the summed dose is higher than the threshold of the mixture toxicity, even when the
dose level of each individual chemical is below its own effect threshold. In a 4-week
toxicity study conducted by Jonker et al. [84], rats were exposed to a combination of
four different but similarly acting nephrotoxicants (tetrachloroethylene, trichloroethylene,
hexachloro-1:3-butadiene, and 1,1,2-trichloro-3,3,3-trifluoropropene). Kidney effects of the
mixture showed no renal toxicity for the individual chemicals. The study supported the
assumption of dose additivity for mixtures of systemic toxicants acting similarly under a
concurrent condition and repeated exposure at dose levels below the toxicity thresholds
of the individual constituents. In addition, the combined exposure at one quarter of no-
observed nephrotoxic-effect level did not show toxicity, which portrayed the absence of
synergistic interaction at this level. Furthermore, a dose-additive approach was adopted
by Wolansky et al. [85] suggesting that a sub-threshold dose of individual pyrethroids
produced measurable neurotoxicity in rats when combined in a mixture. Finally, for the 11
tested pyrethroids with a common target site, the deltamethrin and bioresmethrin chemicals
did not lead to effect additive outcomes.

Regarding human health, different studies on dose additivity present the effects of
carcinogenicity through exposure to chemical mixtures [86,87]. Walker et al. [88] conducted
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a study on organochlorine pollutants and polychlorinated dioxins in which the concept
of dose additivity applying toxic equivalency factors (TEFs) was used to adjust the dose,
specifying the tumor as the endpoint. For the case of the gingival Squamous Cell Car-
cinoma (SCC), the chemical mixture showed more than 45% of the predicted response
presenting an antagonistic effect. This signified that the response to exposure was less
than it would have been expected if the known effect chemicals were added together.
Moreover, exposure to estrogen-like activity in previous research has defined that they
have the same MoA, referring to the dose additivity of chemical mixtures [89,90]. The dose
additivity of individual chemicals was found to act through the same receptor (ERα or
ERβ) to produce inhibitory or stimulatory effects [89,90]. The studies finally supported the
theory of dose additivity for mixtures with chemicals presenting similar MoA given their
repeated exposure at dose levels.

Tichý et al. [91] observed deviations from concentration additivity for a mixture of
benzene and ethanol in a short-term assay with Tubifex. The observed EC50 only deviated
by a factor of 1.5 from the predicted EC50. Since the prediction was not calculated according
to the IA for the mixture, it remained unclear whether the combined effect was better as
described with this model. The effects of contaminants were typically studied in individual
exposures, which were rarely presented from a single contaminant, as described in in vivo
studies where individual contaminants are analyzed by their correlation alone and in
combination with biological responses [92]. Thus, it is extremely important to define the
interaction or non-interaction of chemicals to determine their apparent toxicity effects.

2.1.2. Dissimilar Mode of Action Approach

The IA model, also called the response addition or effects addition model, can be
applied if chemicals act independently of each other, usually through different modes of
action that do not influence each other. This type of action is also referred to as simple
dissimilar action [77,93]. In this model, the term response addition presented the sum of
probabilistic risks, and the effect of addition showed the sum of biological responses [93,94].
The toxicity of a mixture in terms of the probability of an affected individual can be
expressed as Equation (2) [42].

pM = 1 − (1 − p1)(1 − p2)(1 − p3) . . . (1 − pn), (2)

where pM is the response to the mixture and p1, p2, . . . , pn are the responses due to exposure
to the individual chemicals C1, C2, . . . Cn when present in a specified concentration.

Equation (2) is usually also expressed in the form of Equation (3) [42,93,94],

E(CMIX) = 1 −
n

∏
i=1

(1 − E(ci)), (3)

where E(CMIX) is the combined effect of the mixture concentration (CMIX) and E(ci) is the
effect of the individual mixture chemical component (i) applied at the concentration (ci).
Effects are expressed as fractions of a maximum possible effect (0% ≤ E ≤ 100%).

According to Equation (3), any chemical for which E(ci) equals zero does not con-
tribute to the joint effect of the mixture. Consequently, mixtures of independently acting
chemicals pose no health concern if the doses/concentrations of each individual chemical
remain below their individual zero-effect level [93]. It is important to note that NOAELs
and No Observed Adverse Effect Concentrations (NOAECs) derived from experimental
studies do not always represent a zero-effect level. The NOAEL/Cs and NOECs estimated
in toxicity and ecotoxicity studies, respectively, are often associated with an effect level
in the range of 5 to 20% and therefore have no zero-effect level [81,95]. Thus, it cannot
be assumed that in all cases E(ci) is equal to zero for exposures at NOAEL/C or NOEC,
as the NOAEL/C or NOEC do not necessarily represent a value for which E(ci) is zero.
Exposures equal to these levels may contribute to the mixture effect for dissimilarly acting
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chemicals. Therefore, the exposures at the NOAEL/C level may contribute to mixture
effects of dissimilarly acting chemicals [81].

2.1.3. Selection between the CA and IA Modeling Approaches

For evaluation of a mixture, the question of how to select the appropriate model often
arises. The applied model must be chosen on the basis of formulating a quantitative idea
about mixture toxicity according to expected additive effects (additivity expectation) [81].
A larger number of substances in a mixture shows a stronger combined effect leading to
additive effects of the individual components in the substances [32], which is important as
diverse concepts often suggest different mixture toxicities. In an attempt to deal with this
decision problem, assumptions that underpin dose addition and independent action have
been allied to the broad mechanism of combined toxicity.

Dose addition is applicable to mixtures composed of chemicals that act through a
similar or common MoA [33]. Although the original study by Loewe and Muischnek [71]
contained little information that rooted dose addition in mechanistic considerations, the
idea of a similar action was derived from the dilution principle concept that formed the
basis of the principle. Conversely, the IA is widely held to be appropriate for mixtures of
agents with diverse or “dissimilar” modes of action. Although rarely explicitly stated, this
presumably stems from the principles of this concept. By activating differing effector chains,
each chemical in a mixture provokes effects independent of other agents. This feature would
also appear to lend itself to the statistical concept of independent events [72,93]. Early work
on these three main models of mixture effects was developed after [71], in the 1930s.

The CA and IA may be regarded as special cases that provide a reference framework,
defining the severity range of possible additivity expectations [72,81]. Mixtures of hetero-
geneous pollutants that include not only strictly dissimilarly acting chemicals, but also
multi-site inhibitors and non-specifically acting chemicals may be expected to exert inter-
mediate toxicity within the window of mixture toxicity whose severity range is defined by
CA and IA [72].

2.2. Whole-Mixture Based Modeling

Whole-mixture models, or so-called top-down models, utilize toxicity data in the
form of biological responses to the entire mixture or a fraction of the mixture in hydrocar-
bon mixtures [61,96–100]. This modeling technique consists of testing the whole-mixture
in bioassays (in the laboratory and in situ) applying a similar principle to that used in
a single chemical toxicity test [61,98,101]. However, the limitation of this model relies
on the little information about the nature of chemicals grouped in the mixture. On the
contrary, the main experimentally based technique for calculating chemical toxicity is
the Toxicity Identification Evaluation (TIE) approach. This approach includes chemical
fractionation of a sample providing further insight into the chemicals that are responsible
for a large part of the toxicity of the mixture. The advantage of this type of toxicological
technique used for risk assessment is that by considering the whole mixture, any interac-
tions between the chemicals that may have been missed in a component-based approach
are considered [81,102–104]. A disadvantage of TIE is the specific assessment information
resulting from each mixture, which cannot be extrapolated to other mixtures or situations.
TIE is only applicable to mixtures that are very stable in the environment, as it does not
account for any change in composition that is typical of whole mixtures [59].

Figure 3a shows a framework of the whole-mixture approach to assess the risk from
toxicity of a chemical mixture, starting with the required data to develop the model to the
final estimation of hazard and risk analysis by chemical mixtures. For toxicity modeling
of chemical mixtures, a specific dataset must be defined for each whole-mixture- and
individual-based toxicity model (Figure 3b). For each dataset of chemical mixtures in a
study, the requirements should represent the environmental transformation, potency of
toxicity, reference dose/concentration, dose addition or response addition which depend on
the similarity of the mixtures. These parameters and methods are analyzed for an exposure
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assessment of the mixture based on measurements of the hazard of toxicity of chemical
mixtures. Table 3 presents a summary of the most cited studies on the latest whole-mixture-
based models (also called integrated models). In these studies, the chemical mixtures are
treated as a single entity, not individually, and an efficiency compared to regular models
(CA and IA) is estimated. These studies highlight a concern for the improvement of the
methodology to provide more accurate results about the toxicity effects of mixtures, which
will lead to a correct risk assessment of the environment.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 28 
 

Figure 3a shows a framework of the whole-mixture approach to assess the risk from 

toxicity of a chemical mixture, starting with the required data to develop the model to the 

final estimation of hazard and risk analysis by chemical mixtures. For toxicity modeling 

of chemical mixtures, a specific dataset must be defined for each whole-mixture- and in-

dividual-based toxicity model (Figure 3b). For each dataset of chemical mixtures in a 

study, the requirements should represent the environmental transformation, potency of 

toxicity, reference dose/concentration, dose addition or response addition which depend 

on the similarity of the mixtures. These parameters and methods are analyzed for an ex-

posure assessment of the mixture based on measurements of the hazard of toxicity of 

chemical mixtures. Table 3 presents a summary of the most cited studies on the latest 

whole-mixture-based models (also called integrated models). In these studies, the chemi-

cal mixtures are treated as a single entity, not individually, and an efficiency compared to 

regular models (CA and IA) is estimated. These studies highlight a concern for the im-

provement of the methodology to provide more accurate results about the toxicity effects 

of mixtures, which will lead to a correct risk assessment of the environment. 

 
(a) 

 
(b) 

Figure 3. Individual- and whole-mixture -based toxicity models for exposure assessment. (a) Whole-

mixture model approach for the estimation of toxicity risk in mixture toxicity. Adapted from [105]. 

(b) Quality of chemical mixture data for toxicity exposure assessment. Adapted from [105]. 

Whole-mixture 

based toxicity 

model

Hazard 

quotient

Risk 

estimation

Specific 

whole-

mixture data

Similar 

mixtures 

data

Toxicological 

evaluation

Epidemiological 

evaluation

Reference dose/

concentration of 

chemicals in the 

mixture

Whole-mixture 

exposure 

assessment

Similar mixture 

exposure 

assessment

based 

on

Adequate data for chemical 

mixture risk assessment

Similar toxicology Independent toxicology

Dose addition Response addition

Hazard 

index (HI)

Relative 

potency

Physiologicall

y Based 

Toxicokinetic 

(PBTK) model

Integrated 

additivity

Exposure assessment

Hazard 

index

Binary 

weight of 

evidence

Route-specific 

index

Hazard 

quotient

Whole-mixture
Individual 

components

Mixture of 

concern
Similar mixtures

Mixture reference 

dose/

concentration

Environmental 

transformation

Comparative 

potency

Identify preferred risk assessment 

Figure 3. Individual- and whole-mixture -based toxicity models for exposure assessment. (a) Whole-
mixture model approach for the estimation of toxicity risk in mixture toxicity. Adapted from [105].
(b) Quality of chemical mixture data for toxicity exposure assessment. Adapted from [105].



Sustainability 2023, 15, 8881 15 of 28

Table 3. Literature review of whole-mixture-based toxicity models.

Topic Methodology Major Highlights Reference

The interaction model for
assessing the toxicity of

chemical mixtures

Integrated model (IAI). Toxicokinetic interactions could be incorporated into
mixture assessments by qualitative weight of

evidence or a quantitative approach.

[62]

Toxicity by chemical
mixtures from

WWTP effluents

Two-step prediction (TSP)
method.

The combined toxicity could be predicted
appropriately by the TSP model for chemicals with
similar modes of action by the CA model in the first

stage and for chemicals with dissimilar modes of
action by the IA model in the second stage.

[63]

Mixture effects using
different additivity models

Integrated fuzzy
concentration

addition-independent action
(IFCA-IA) model.

TEF overestimated the mixture response but had the
advantage of easy interpretability and use.

[106]

Estrogenic potentials of
mixtures and environmental

samples containing
partial agonists

Generalized concentration
addition (GCA) model.

The heuristic assumption of the GCA approach that
the cumulative effect of all components in a

particular mixture is subject to a particular toxic
interaction rule (TIR) regardless of the number of

components.

[68]

NR: No reference.

Bhattacharya et al. [15] presented a review by the U.S. National Research Council
(NRC) which introduced an approach using in vitro assays. Recently, many methods for
toxicity assessment and tests were developed for animal testing in the USA and EU [23,107].
Alves et al. [1] proposed a new approach for the chemical safety assessment of new chem-
icals by integrating structural alerts and QSAR models which utilized structural alerts
alone to predict the biological activity of the whole mixture. QSAR models were imple-
mented into the integrated approach to balance the transparency and interpretability of the
structural alerts [23].

Integrated Model Approach

The CAIA model integrates both concepts of the CA and IA models into one algorithm.
This methodology was proposed by Qin et al. [42], who utilized the MLR technique to
combine results from the CA and IA models which were considered as the predictor vari-
ables (independent variables) for the model. Furthermore, the experimental concentrations
obtained from the characterization of the concentration–response curves were considered as
the response variable (dependent variable) to determine the predicted toxicity. The results
of the CA model, IA model, and experimental concentration values were transformed into
log values and consecutively linked using the MRL technique. Equation (4) showed the
CAIA model adopted from Qin et al. [42]:

log10(ECmix,exp) = b0 + b1 log10(ECxmix,CA) + b2 log10(ECxmix,IA), (4)

where b0 is the intercept, b1 and b2 are the regression coefficients that result from the MRL
technique, ECmix,exp are the experimental concentrations of the mixture provoking a certain
(%) of effect, ECxmix,CA are the values that result from the CA model, and ECxmix,IA are
the concentrations of the chemicals that result from the IA model.

The predicted power of the CAIA model according to Qin et al. [42] was validated
using two datasets including thirteen mixtures of nine chemicals and six mixtures of six
chemicals, respectively. For dataset one, 10 Uniformed Designs with Fixed Concentration
Ration Ray (UDCR) mixtures were used as a training set. The model was later used to
predict the toxicity of the test set consisting of three Equivalent-Effect Concentration Ratio
(EECR) mixtures. For dataset two, the CAIA model based on four UDCR mixtures was
used to predict the remaining two EECR mixtures. The CAIA model showed a strong
predictive power for mixture toxicity in the two datasets, and its prediction was better than
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that of CA and IA, where the two models deviated from the concentration–response data
of the mixtures.

Through these models, the overall toxicity of a mixture of a known composition can
be determined prospectively. For the environmental mixtures, the ecotoxicity is usually
investigated by one of the two following approaches: whole-mixture approach (using a
simple in vivo or in vitro study) or by the eco-toxicological data on individual chemicals
combined with the chemical–analytical concentration data [72,81].

The chemical–analytical concentration data can then feed into a mathematical model
to predict the final ecotoxicity of the mixture and the exposure to living organisms, as
presented by Giubilato et al. [108] for an integrated exposure assessment of the toxicity
models. Whole-mixture testing was frequently applied for environmental mixtures, as it
allowed for the assessment of ecotoxicity of mixtures of unknown compositions; however,
the chemicals responsible for the response frequently remained unidentified [72]. Moreover,
although the component-based approach was generally utilized, it required more infor-
mation regarding identity, concentration, and toxicity, including MoA of the individual
chemicals [34]. Figure 3b presents a framework of the component-based model approach
for the prediction of chemical exposure assessment, which indicated that for chemical com-
ponent and whole-mixture data availability, there are three types of toxicology: multiple,
partial, and full.

3. Case Studies of Toxicity Modeling Applications

Toxicity studies could be screened into three specific areas of research (acute, soil,
and water) that are constantly interacting with each other. The acute effects on living
organisms (animals, plants, and humans) are investigated in all these areas, noting their
relationship to the effects on soil toxicity presented through the high utilization of chemical
pesticides around the world, and later polluting water through soil and various other
sources such as the industry toxicity. This chain of pollution is perpetually hindering the
environmental sustainability worldwide. Acute toxicity is the harmfulness that appears
after the administration of a toxic chemical, and unless death occurs, there is a recovery
process in the organism analysis [109]. It is highly important for risk assessment studies
to recognize the acute effects since they reveal the adverse effects resulting from the
exposure of living organisms to a chemical or a mixture of chemicals in the surrounding
environment [110–113].

Sweeney et al. [114] analyzed the acute toxicity considering the variation in concentra-
tion over time by using carbon monoxide (CO) as the chemical, rats as the species to test,
and a periodic exposure time (10 min, 20 min, 40 min, and 60 min). The results showed
that in periods of 10–20 min, the pulses of a level of toxicity were identical to continuous
exposures, while in a 60 min period, average concentrations and toxic loads were found. A
pulse concentration with a ratio of 3:1 portrayed a higher influence on the upper profile of
the lethality concentration as ten profiles of concentration variation in time were presented.
Thus, the fluctuations in exposure over a short period portrayed a fundamental impact on
the outcomes. Profiles 5 and 6 best fitted the range of the data. The dose–response model
for a 60 min pulse showed better prediction for Profiles 5, 6, and 10.

Dose–response models were widely used to predict toxicity but were limited by the
temporal dimension. In this way, the Toxicokinetic–Toxicodynamic (TK-TD) model was
developed to include both the chemical concentration and temporal dimension [115], which
provides information on the chemical toxicity and the capacity to simulate the temporal
sides of toxicity, acting as an extrapolation tool for risk assessment of fluctuating or pulsed
exposures to pollutants [115,116]. The TK-TD models can then be used for ecological risk
assessment with Individual-Based Models (IBMs). Moreover, the Quantitative Structure
Toxicity Relationship (QSTR) model is used for the assessment of the acute and chronic
mixture toxicity of chemicals, among which sulfonamides and tetracyclines are present.
Here, chronic mixture toxicity is predicted by additional docking-based descriptors, where
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there is a complex relationship between the acute and chronic toxicity of the effects of
pollutants [37,117,118].

3.1. Nanoparticles Toxicity Studies

Engineered nanoparticles present potential adverse effects as they are applied in
the electronics, pharmaceutical, energy, and agriculture sectors, by which lead to serious
concerns about human health as well as the environment [5,119–132]. It has become a
contemporary issue of great magnitude due to the toxicity resulting from their production,
utilization, and their unique properties. Large-scale synthesis and utilization can have a
significant impact on multiple parts of the human body, such as the lungs, liver, kidneys,
brain, and the immune system [133]. These impacts depend on several factors and are
based on the physicochemical features of the particles, such as their size, shape, and surface
properties [134]. Nanoparticles can induce oxidative stress in the body, leading to neurobe-
havioral alterations and changes in vital organs, including the central nervous system [135].
Essentially, the toxic effect of nanoparticles on a single cell line could be approximated
via in vitro or in vivo models, where much effort has been made for understanding the
colloidal forces governing the nanomaterial chemical sedimentation, aggregation, and
agglomeration over time (corona evolution) [130].

To date, the understanding of nanotoxicology has been mostly developed on the labo-
ratory scale. However, recent studies have focused on the estimation through modeling
techniques of the most probable apparent toxicity of the nanoparticles to the environment.
Thus, in QSPR modeling, Kovalishyn et al. [5] developed enhanced models by Associative
Neural Network (ASNN), the k-Nearest Neighbor method (kNN), and the random forest
(WEKA-RF) of metal oxide nanoparticles, focusing on the intrinsic properties of the nano-
materials and their eco-toxic and human health effects obtained from the Online Chemical
Modeling Environment (OCHEM) database. The “exposure concentration” and “material”
of the nanoparticles were shown as the most influent descriptors for the fourth dataset
of the study. It was proven that documentation of the physicochemical characteristics of
specific nanoparticles is crucial to correlate the observed biological effects. In addition, the
OCHEM was shown to develop well for the combination of one model of experimentally
measured properties and theoretical descriptors.

On the other hand, Brown et al. [136] studied aquatic organism toxicity (R. subcapitata,
D. magna, and L. variegatus) in freshwater conditions. The selected nanomaterials were
silver (Ag), iron oxide (Fe2O3), titanium dioxide (TiO2), aluminum oxide (Al2O3), zinc oxide
(ZnO), cobalt aluminum oxide (CoAl2O4), and cadmium selenide/zinc sulfide (CdSe/ZnS)
quantum dots (QDs). A cross-species comparison analysis of the toxicity of these nano-
materials was developed to evaluate the environmental models to nanoparticle sensitivity.
Although the study was presented on a laboratory scale, the results obtained provided
insights on the similarity of the patterns of toxicity of some nanoparticles, particularly for
ZnO, Ag, and QDs, which were recognized as the most toxic materials. It was suggested
that the nanoparticles stimulate inflammatory responses in cells, which eventually leads to
genotoxicity and cytotoxicity.

In addition, ZnO nanoparticle effects on Artemia franciscana larvae in saltwater were
investigated [137]. The toxicity of varying ZnO concentrations was analyzed for 48 h and
96 h of exposure. The immobilization rate of larvae was found to be between 0% and
3.33% at different concentrations of ZnO, while the exposure time over 96 h showed an
immobilization between 6.66% and 100% at different concentrations [137]. Similarly, the
toxicity of Ag nanoparticles (AgNPs) to D. magna was evaluated under the conditions of
six different boreal lakes. The environmental variables studied in water from a lake (Lake
(L) 979 at the IISD-Experimental Lakes Area (IISD-ELA) in northern Ontario, Canada) were
conductivity, dissolved nutrients, bacterial abundance, and algal biomass. The toxicity was
determined to be highly variant among the lakes (p < 0.001) [138].

A study conducted in China analyzed the synergistic effects of heavy metals and
engineered nanoparticles on the physiology of Brassica napus and their accumulation
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in plant tissues [139]. An ANN approach was applied to identify physiological factors
affecting the plant uptake of co-existing Cd and CeO2NPs. Three levels of Cd (0, 0.25,
and 1 mg/kg of dry soil) and two concentrations of CeO2NPs (0 and 500 mg/kg of dry
soil) were used. The results highlighted key physiological factors that lead to the uptake
of co-occurring Cd and CeO2NPs. The findings also showed that root fresh weight and
net photosynthesis rate govern Ce uptake, while root fresh weight and Fv/Fm ratio affect
the Cd uptake [139]. Overall, the potential impacts of nanoparticles suggest a need for
continued research into their safety and toxicity, mainly as their use continues to increase in
diverse industries. Therefore, this study highlights the importance of developing strategies
to minimize their negative impacts on ecosystems and human health.

3.2. Water Toxicity Modeling Studies

Water is the most basic and crucial supply for all living organisms, requiring extensive
control and treatment for utilization in different areas. For better evaluation of the chemical
status in bodies of water, quantification of the influence of toxicant bioavailability in the
environment is needed, as well as the key toxicants disrupting biological communities [140].
In the Catalan River Basin District in Spain, biological communities were monitored using
biological indices. The river receives several loads of pesticides from the areas of irrigation,
agriculture, fruit and vegetable crops, and rice fields in the lower delta. The available
fraction of metals in the water phase was calculated, as well as the fraction of organic
contaminants [140]. Soil contamination through the utilization of pesticides containing
high metal concentration adds up to the contamination of water. In [140], a mixture toxicity
model was developed to analyze the effect of the whole mixture of contaminants. ANN
methodology was applied to maximize the Potentially Affected Fraction (PAF) values of
biota for each chemical. A poor quality of the chemical status was shown in the urban and
industrial areas of Barcelona. A contaminated hot spot showed a maximum PAF of 0.350 for
nonylphenol and 0.134 for chlorpyrifos. Additionally, cases of high pesticide contamination
were identified in the Northeastern part of the region.

The ecological impact of pesticides was studied in Lake Vistonis (Greece) from three
sampling locations. In total, 68 pesticides and transformation products were detected:
27 herbicides, 27 insecticides, 11 fungicides, and 3 pesticide/transformation products.
The results for the risk quotients (RQmax) were high for the toxicity to fish and aquatic
invertebrates. Herbicides were the most detected pesticides, and insecticides were defined
as responsible for eco-toxicological risk for an RQ higher than 1. The chemical alphamethrin
was involved in most of the environmental quality standard exceedances in this study [141].
Likewise, reflecting the acute effects of toxicity in bodies of water, the study developed by
Movahedian et al. [142] on the organism Daphnia magna determined the acute fish toxicity
from the effluents of different units in the Isfahan Wastewater Treatment Plant (IWTP) in
Iran. Acute fish toxicity was required for environmental risk assessment on the exposure
of aquatic species to chemicals (pesticides, biocides, and pharmaceuticals). Results of the
Acute Toxicity Unit (ATU) in raw wastewater were 3.1 for the preliminary effluent, 1.9 for
the primary effluent, and 1.8 for the secondary effluent.

In the same way, the characterization of binary mixtures on non-target crustaceans
was presented by Rose et al. [143]. For pesticides, it was observed that the effects of
binary mixtures exceeded those of each chemical in isolation. For the mixture ratios
presented, a similar prediction between the IA and CA models was seen, but with a higher
predicted response. The highest toxicity was shown by the chemical azamethiphos, which
was reflected by 96 h LC50 values of approximately 0.5 µg/L in larval European lobster
(Homarus gammarus), mysid shrimp (Mysidopsis bahia), and D. magna with a 24 h EC50
value of 0.167 µg/L. Thus, the combination of deltamethrin and malathion showed a small
additive toxicity with D. magna. Further results of acute toxicity for bodies of water were
shown for the Belgian marine environment, where bezafibrate showed no effect up to
its limit of solubility while Phaeodactylum tricornutum seemed to be more sensitive to the
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chemicals than other species. Furthermore, P. tricornutum was much less sensitive to the
other tested b-blocker, atenolol [144].

On the other hand, water toxicity studies integrate research on the influence of heavy
metals in water, and lately the introduction to Machine Learning techniques is being inte-
grated to identify and evaluate toxicity for water and wastewater treatment. For instance,
Wang et al. [145] investigated the methodologies of removal of toxicity in wastewater. The
authors worked on batch experiments to evaluate the removal of the Cu ions from aqueous
solutions. Their study implemented adsorption kinetics pseudo-first- and -second-order
models based on Chitosan (CS) experiments. They reported that the Cu distribution was
decreased from outside to inside the CS microspheres, with almost no response of Cu in the
interior of the CS microspheres. After the desorption process, the CS microspheres turned
back into reddish brown, indicating that the loaded Cu ions were desorbed significantly.
The CS proved to be an excellent material capable of being reutilized, and quite good for
the removal of heavy metals such as Cu ions from industrial wastewater.

The application of sustainable chemistry in wastewater treatment has been described
as a promising methodology for the removal of heavy metals [146,147] that are discharged
to bodies of water. Yang et al. [146] explored a more efficient and stable photocatalysts
method to degrade antibiotic and remove heavy metal ions from wastewater. The authors
implemented an organic–inorganic hybrid PW12/CN@Bi2WO6 composite photocatalyst
that was synthesized via PW12/CN and Bi2WO6 by the hydrothermal method. The photo-
catalytic activity was assessed with the degradation of tetracycline hydrochloride (TC) and
reducing hexavalent chromium (Cr (VI)). A pseudo-first-order model was developed to
simulate the degradation kinetics of the catalysts for Cr6+ and TC. As a result, the composite
PW12/CN@Bi2WO6 system portrayed high photocatalytic performance, obtaining a Cr
(VI) photocatalytic removal rate of 98.7% and an oxidation removal of 97.5% for TC. In
Yang et al. [147], the authors used a similar methodology with BiVO4/FeVO4@rGO hetero-
junction photocatalyst with a 3D/2D/2D structure. TC and Cr solutions were prepared
using tap water, river water, and simulated dyeing wastewater. The authors evaluated the
photocatalytic performance by photo-oxidative degradation of TC and photo-reduction of
Cr, showing degradation rates above 85% of both TC and Cr (VI). The studies showed ex-
cellent photocatalytic performance for wastewater treatment and removal of heavy metals.

In real-world pollutant mixtures, the authors of [148] summarized a guide of different
methodologies that they have worked on for five years of research dealing with mixtures
of pollutants for water resource management. The authors cite a mobile dynamic passive
sampling approach used in the case study of the Joint Danube Survey JDS3. This approach
characterized chemical pollution along a large river providing chemical patterns. In an-
other case study, mutagenic wastewaters from mixed industrial and municipal sources
showed varying levels of mutagenicity in a periodicity of six weeks, with thousands of
chemical signals of varying intensity. The authors also highlight that in an effect-directed
analysis (EDA), an unbiased investigation is possible to study unidentified chemicals with
unexplained biological effects. The EDA methodology is suitable when it is needed to
work without any previous information of the types and sources of pollution. Finally, more
balanced effect data aid in improving evidence for water quality assessments.

Furthermore, Machine Learning (ML) and ANN model advancements are addressed
for water treatment studies by Yaseen [149]. The authors cite a work where an ANN model
is developed to predict heavy metal (Cr, Cu, Pb, Ni, Zn) concentrations in the Karachi
harbor area in Pakistan. They report the utilization of the Levenberg–Marquardt (LM)
functions and the scale conjugate Gradient (SCG). The prediction accuracy was shown
better with SCG. Similarly, hybrid artificial intelligence (AI) models are cited for the long-
term prediction of As, Pb and Zn, revealing good performance for long-term predictions.
Moreover, in another reported case, heavy metal concentrations were measured at Taihu
lake in China. The researchers simulated the total, dissolved and particulate concentration
of Ti, Cr, Mn, Ni, As, Cd, Sb, Pb, reporting good prediction results and reliable methodology
for the limitations with datasets that can commonly occur.
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3.3. Soil Toxicity Modeling Evaluation for Water Quality

Soil is a critical component in the life cycle that directly affects agriculture and food
crops where toxic constituents define the soil quality based on the potential impact on
human health [150,151]. The incidence of soil contamination of water quality is increasingly
being investigated. The pesticides lost from the agricultural fields end up being trans-
ported to surface and ground waters because of several factors such as soil characteristics,
weather, agriculture management and fundamentally the physicochemical properties of the
pesticides [141]. Non-ferrous metals are determined as one of the most important toxicity
sources in various soil types. For a study conducted on the Khuzestan plain (Iran), a
systematic gridding procedure was applied to collect 54 samples using the kriging method.
The stations were categorized using a pollution load index ranging from one to four. The
results suggested that a control and monitoring plan is needed to protect human health
across this vast region [152].

The concentration, distribution, and specification of lead (Pb), zinc (Zn), cadmium
(Cd), chromium (Cr), nickel (Ni), and copper (Cu) were studied in Iran using single factor
pollution and comprehensive pollution indices. By determining the physicochemical prop-
erties of the samples, statistical models were developed to identify the relationship between
the source point and the contamination distribution. The results showed that the amounts
of metal in non-residual fractions were higher at the locations closer to the pollution source.
Unlike Cu, Cr, and Ni, the geogenic-originated metals exhibited generally followed the
background values of topsoil. Metal-contaminated soils may represent significant risks to
groundwater because the high metal concentration in soils can be transferred under certain
conditions [153].

Likewise, the hazardous waste from the glass production industry, for instance, due to
metals such as Cr, cobalt (Co), iron (Fe), manganese (Mn), Pb and uranium (U), becomes
harmful with toxic effects to the biota. Metal-contaminated soils in southern Sweden were
studied to determine the biological effect of such metals through the methods of the C.
elegans nematode model (gene expression), fatty acid staining and lifespan assays. Total
element concentrations for As, Cd, and Pb were concluded to be higher than the standards
of the Swedish Environment Protection Agency in some samples. Subsequently, there is a
strong influence on the biological availability of the metals, and those that are extracted by
18.2 MΩ water and ion displacement (neutral and acidic pH) in aerobic and sedimental soil.
Although no significant mortality was reported in C. elegans upon exposure, the reduction
in lifespan was evident as an effect of metals on the environment (long-term exposure).
Furthermore, less than 10% of the total metal concentration in the soil was encountered in
the water-soluble leachates [154].

On the other hand, a full cubic model with 90 predictors was conducted to obtain an
Optimal and Reduced Cubic Model (ORCM) with 12 targeted toxic metals. The backward
elimination procedure accompanied by an MLR model was used to determine significant
relationships in 15 steps. All predictors contributed to ORCM showing a p-value of 0.07
at a degree of freedom of 36. An interaction occurred when a pair of elements produced
no similar trend in the response at different levels of another element. By investigation, a
dis-ordinal interaction effect occurs on deposits for Au-As-Mn, Au-Ag-As, and Au-Hg-Mn
when the third element varies across the background. In contrast, ordinal effects were
observed for Au-Ag-Hg and Au-As-Hg [155].

4. Limitations and Future Research Studies

The literature on online databases was searched to carry out a scoping literature review
considering mostly research papers and only those published in the English language.
Other sources such as newspaper articles, magazine articles, reports and dissertations were
not considered. Although huge efforts have been made by the authors to search all the crux
studies on this topic, it is possible that some studies may have been missed.

Overall, although toxicity analysis on mixtures as an entity (whole-mixture) seems
to be complete, a reliable combined model is still far from being achieved. First, there is
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inconsistency in model terminology in the literature [42]. Standardizing the terminology is
urgently needed to avoid confusion. Second, an accurate connection between the CA and
IA models for an integrated methodology is lacking. The different approaches referenced
poorly portray a common base for application in the same chemical mixture. A better
methodological approach should be developed to reflect the combined action of chemicals
in one media, which further affects water quality. Furthermore, it is difficult to determine
the accurate concentration level of mixture toxicants and their exact area of affectation given
the lack of environmental measurements and monitoring [27,29]. Therefore, an extended
database of toxic chemicals should be created to define better toxicity mechanisms of
mixtures. This would help to build a bridge to better understand and evaluate toxicity to
achieve environmental sustainability.

In short, the difficulties observed in an integrated model remain for the correct im-
plementation for some environmental compartments. The following work should be
considered in the future:

• Conservative risk of chemical mixtures and greater accuracy could be achieved with
the implementation of up-to-date monitoring techniques such as sensor integration in
endangered regions worldwide.

• To assist with predictive approach implementation, mechanistic data must be included
in the assessment given that the modeling design needs to be based on real data to be
validated. In addition, given the lack of understanding of the nanomaterial in chemical
mixtures, the effects of the corona and colloid characteristics of chemicals need to be
deeply accounted for future studies.

• The interactions between multiple stressors, their alternative usage, and the stress they
present to the ecosystem-expanding populations should be equally integrated into the
combined model analysis to cover global problems such as the increasing number of
industries and climate change.

• Ecotoxicity of chemical mixtures in environmental compartments could be better
applied to endangered species with appropriate biomonitoring of living organisms,
which would additionally benefit national economies.

5. Conclusions

The different characteristics of the application of the toxicological models are important
to consider for specific conditions and areas of study. Throughout the years, ecotoxicology
studies have been developed to evaluate responses to a single or occasional binary stressor
under laboratory conditions. However, they are limited by the basic understanding of the
stressors in laboratory tests. Laboratory assays cannot accurately represent the interaction
of multiple contaminants in exposure in space and time, and only provide an overview
of the contaminant’s influence on biotic interactions. Hence, the greatest challenge is
to understand how organisms commute to adequately respond to a complex array of
natural and anthropogenic stressors. Through the application of biodiversity profiles, an
unattainable view of its components can be obtained, which would be helpful for the
examination of anthropogenic activities affecting the different environmental systems and
their deeper interactions influencing water quality.

Author Contributions: Conceptualization, P.V., G.J. and W.M.; methodology, P.V. and G.J.; formal
analysis, P.V., G.J. and P.I.; investigation, P.V. and G.J.; writing—original draft preparation, P.V. and
G.J.; writing—review and editing, P.V., G.J., S.H., P.I. and C.Y.; visualization, P.V. and G.J.; supervision,
C.Y.; project administration, C.Y.; funding acquisition, C.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by National Research Foundation of Korea (NRF) grant funded
by the Korean government (MSIT) (No. 2021R1A2C2007838), and project for Collabo R&D between
Industry, Academy, Research Institute funded by Korea Ministry of SMEs and Startups in 2022 (Project
No. S3301144), and grant funded by the Subway Fine Dust Reduction Technology Development
Project of the Ministry of Land Infrastructure and Transport (21QPPW-B152306-03).



Sustainability 2023, 15, 8881 22 of 28

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Alves, V.; Muratov, E.; Capuzzi, S.; Politi, R.; Low, Y.; Braga, R.; Zakharov, A.V.; Sedykh, A.; Mokshyna, E.; Andrade, C.; et al.

Alarms about Structural Alerts. Green Chem. 2017, 18, 4348–4360. [CrossRef]
2. Tennekes, H.A.; Sánchez-Bayo, F. The Molecular Basis of Simple Relationships between Exposure Concentration and Toxic Effects

with Time. Toxicology 2013, 309, 39–51. [CrossRef] [PubMed]
3. Shao, Y.; Chen, Z.; Hollert, H.; Zhou, S.; Deutschmann, B.; Seiler, T.B. Toxicity of 10 Organic Micropollutants and Their Mixture:

Implications for Aquatic Risk Assessment. Sci. Total Environ. 2019, 666, 1273–1282. [CrossRef]
4. Rhind, S.M. Anthropogenic Pollutants: A Threat to Ecosystem Sustainability? Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3391–3401.

[CrossRef] [PubMed]
5. Kovalishyn, V.; Abramenko, N.; Kopernyk, I.; Charochkina, L.; Metelytsia, L.; Tetko, I.V.; Peijnenburg, W.; Kustov, L. Modelling

the Toxicity of a Large Set of Metal and Metal Oxide Nanoparticles Using the OCHEM Platform. Food Chem. Toxicol. 2018, 112,
507–517. [CrossRef] [PubMed]

6. Önlü, S.; Saçan, M.T. Toxicity of Contaminants of Emerging Concern to Dugesia Japonica: QSTR Modeling and Toxicity
Relationship with Daphnia Magna. J. Hazard. Mater. 2018, 351, 20–28. [CrossRef]

7. Tlili, S.; Mouneyrac, C. New Challenges of Marine Ecotoxicology in a Global Change Context. Mar. Pollut. Bull. 2021, 166, 112242.
[CrossRef] [PubMed]

8. Beyer, J.; Petersen, K.; Song, Y.; Ruus, A.; Grung, M.; Bakke, T.; Tollefsen, K.E. Environmental Risk Assessment of Combined
Effects in Aquatic Ecotoxicology: A Discussion Paper. Mar. Environ. Res. 2014, 96, 81–91. [CrossRef] [PubMed]

9. Jin, H.; Wang, C.; Shi, J.; Chen, L. Evaluation on Joint Toxicity of Chlorinated Anilines and Cadmium to Photobacterium
Phosphoreum and QSAR Analysis. J. Hazard. Mater. 2014, 279, 156–162. [CrossRef]

10. Son, J.; Lee, Y.-S.; Kim, Y.; Shin, K.-I.; Hyun, S.; Cho, K. Joint Toxic Action of Binary Metal Mixtures of Copper, Manganese and
Nickel to Paronychiurus Kimi (Collembola). Ecotoxicol. Environ. Saf. 2016, 132, 164–169. [CrossRef]

11. Walter, H.; Consolaro, F.; Gramatica, P.; Scholze, M.; Altenburger, R. Mixture Toxicity of Priority Pollutants at No Observed Effect
Concentrations (NOECs). Ecotoxicology 2002, 11, 299–310. [CrossRef] [PubMed]

12. Speight, J.G. Chemical Transformations in the Environment. In Environmental Organic Chemistry for Engineers; Butterworth-
Heinemann: Oxford, UK, 2016; pp. 305–353. ISBN 9780128044926.

13. Moore, M.N.; Wedderburn, R.J.; Clarke, K.R.; McFadzen, I.R.B.; Lowe, D.M.; Readman, J.W. Emergent Synergistic Lysosomal
Toxicity of Chemical Mixtures in Molluscan Blood Cells (Hemocytes). Environ. Pollut. 2018, 235, 1006–1014. [CrossRef] [PubMed]

14. Kar, S.; Ghosh, S.; Leszczynski, J. Single or Mixture Halogenated Chemicals? Risk Assessment and Developmental Toxicity
Prediction on Zebrafish Embryos Based on Weighted Descriptors Approach. Chemosphere 2018, 210, 588–596. [CrossRef] [PubMed]

15. Bhattacharya, S.; Zhang, Q.; Carmichael, P.L.; Boekelheide, K.; Andersen, M.E. Toxicity Testing in the 21st Century: Defining New
Risk Assessment Approaches Based on Perturbation of Intracellular Toxicity Pathways. PLoS ONE 2011, 6, e20887. [CrossRef]

16. Uwizeyimana, H.; Wang, M.; Chen, W.; Khan, K. The Eco-Toxic Effects of Pesticide and Heavy Metal Mixtures towards
Earthworms in Soil. Environ. Toxicol. Pharmacol. 2017, 55, 20–29. [CrossRef]

17. Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of Nanoparticle Toxicity on Their
Physical and Chemical Properties. Nanoscale Res. Lett. 2018, 13, 44. [CrossRef]

18. Boraschi, D.; Swartzwelter, B.J.; Italiani, P. Interaction of Engineered Nanomaterials with the Immune System: Health-Related
Safety and Possible Benefits. Curr. Opin. Toxicol. 2018, 10, 74–83. [CrossRef]

19. Jain, A.; Ranjan, S.; Dasgupta, N.; Ramalingam, C. Nanomaterials in Food and Agriculture: An Overview on Their Safety
Concerns and Regulatory Issues. Crit. Rev. Food Sci. Nutr. 2018, 58, 297–317. [CrossRef]

20. Li, X.; Peng, L.; Yao, X.; Cui, S.; Hu, Y.; You, C.; Chi, T. Long Short-Term Memory Neural Network for Air Pollutant Concentration
Predictions: Method Development and Evaluation. Environ. Pollut. 2017, 231, 997–1004. [CrossRef]

21. Zhu, X.W.; Ge, H.L.; Cao, Y. Bin Mixture Cytotoxicity Assessment of Ionic Liquids and Heavy Metals in MCF-7 Cells Using
Mixtox. Chemosphere 2016, 163, 544–551. [CrossRef]

22. Ben Ghanem, O.; Mutalib, M.I.A.; Lévêque, J.M.; El-Harbawi, M. Development of QSAR Model to Predict the Ecotoxicity of
Vibrio Fischeri Using COSMO-RS Descriptors. Chemosphere 2017, 170, 242–250. [CrossRef] [PubMed]

23. Giesen, D.; Van Gestel, C.A.M. QSAR Development and Bioavailability Determination: The Toxicity of Chloroanilines to the Soil
Dwelling Springtail Folsomia Candida. Chemosphere 2013, 90, 2667–2673. [CrossRef] [PubMed]

24. He, J.; Peng, T.; Yang, X.; Liu, H. Development of QSAR Models for Predicting the Binding Affinity of Endocrine Disrupting
Chemicals to Eight Fish Estrogen Receptor. Ecotoxicol. Environ. Saf. 2018, 148, 211–219. [CrossRef] [PubMed]

https://doi.org/10.1039/C6GC01492E
https://doi.org/10.1016/j.tox.2013.04.007
https://www.ncbi.nlm.nih.gov/pubmed/23603429
https://doi.org/10.1016/j.scitotenv.2019.02.047
https://doi.org/10.1098/rstb.2009.0122
https://www.ncbi.nlm.nih.gov/pubmed/19833650
https://doi.org/10.1016/j.fct.2017.08.008
https://www.ncbi.nlm.nih.gov/pubmed/28802948
https://doi.org/10.1016/j.jhazmat.2018.02.046
https://doi.org/10.1016/j.marpolbul.2021.112242
https://www.ncbi.nlm.nih.gov/pubmed/33706213
https://doi.org/10.1016/j.marenvres.2013.10.008
https://www.ncbi.nlm.nih.gov/pubmed/24246633
https://doi.org/10.1016/j.jhazmat.2014.06.068
https://doi.org/10.1016/j.ecoenv.2016.05.034
https://doi.org/10.1023/A:1020592802989
https://www.ncbi.nlm.nih.gov/pubmed/12463676
https://doi.org/10.1016/j.envpol.2018.01.019
https://www.ncbi.nlm.nih.gov/pubmed/29751396
https://doi.org/10.1016/j.chemosphere.2018.07.051
https://www.ncbi.nlm.nih.gov/pubmed/30031342
https://doi.org/10.1371/journal.pone.0020887
https://doi.org/10.1016/j.etap.2017.08.001
https://doi.org/10.1186/s11671-018-2457-x
https://doi.org/10.1016/J.COTOX.2018.02.002
https://doi.org/10.1080/10408398.2016.1160363
https://doi.org/10.1016/j.envpol.2017.08.114
https://doi.org/10.1016/j.chemosphere.2016.08.064
https://doi.org/10.1016/j.chemosphere.2016.12.003
https://www.ncbi.nlm.nih.gov/pubmed/28006757
https://doi.org/10.1016/j.chemosphere.2012.11.045
https://www.ncbi.nlm.nih.gov/pubmed/23276458
https://doi.org/10.1016/j.ecoenv.2017.10.023
https://www.ncbi.nlm.nih.gov/pubmed/29055205


Sustainability 2023, 15, 8881 23 of 28

25. Wu, Y.; Wei, W.; Luo, J.; Pan, Y.; Yang, M.; Hua, M.; Chu, W.; Shuang, C.; Li, A. Comparative Toxicity Analyses from Different
Endpoints: Are New Cyclic Disinfection Byproducts (DBPs) More Toxic than Common Aliphatic DBPs? Environ. Sci. Technol.
2022, 56, 194–207. [CrossRef]

26. Roy, K.; Kar, S.; Das, R.N. Chapter 1—Background of {QSAR} and Historical Developments. In Understanding the Basics of {QSAR}
for Applications in Pharmaceutical Sciences and Risk Assessment; Roy, K., Kar, S., Das, R.N., Eds.; Academic Press: Boston, MA, USA,
2015; pp. 1–46. ISBN 978-0-12-801505-6.

27. Klüver, N.; Vogs, C.; Altenburger, R.; Escher, B.I.; Scholz, S. Development of a General Baseline Toxicity QSAR Model for the Fish
Embryo Acute Toxicity Test. Chemosphere 2016, 164, 164–173. [CrossRef]

28. Wang, D.; Shi, J.; Xiong, Y.; Hu, J.; Lin, Z.; Qiu, Y.; Cheng, J. A QSAR-Based Mechanistic Study on the Combined Toxicity of
Antibiotics and Quorum Sensing Inhibitors against Escherichia Coli. J. Hazard. Mater. 2018, 341, 438–447. [CrossRef]

29. Lee, Y.; von Gunten, U. Quantitative Structure-Activity Relationships (QSARs) for the Transformation of Organic Micropollutants
during Oxidative Water Treatment. Water Res. 2012, 46, 6177–6195. [CrossRef]

30. Sudhakaran, S.; Calvin, J.; Amy, G.L. QSAR Models for the Removal of Organic Micropollutants in Four Different River Water
Matrices. Chemosphere 2012, 87, 144–150. [CrossRef]

31. Bucur, A.I.; Bucur, R.A.; Szabadai, Z.; Mosoarca, C.; Linul, P.A. Influence of Small Concentration Addition of Tartaric Acid on the
220 ◦C Hydrothermal Synthesis of Hydroxyapatite. Mater. Charact. 2017, 132, 76–82. [CrossRef]

32. Chen, C.; Wang, Y.; Qian, Y.; Zhao, X.; Wang, Q. The Synergistic Toxicity of the Multiple Chemical Mixtures: Implications for Risk
Assessment in the Terrestrial Environment. Environ. Int. 2015, 77, 95–105. [CrossRef]

33. Feng, L.; Liu, S.S.; Li, K.; Tang, H.X.; Liu, H.L. The Time-Dependent Synergism of the Six-Component Mixtures of Substituted
Phenols, Pesticides and Ionic Liquids to Caenorhabditis Elegans. J. Hazard. Mater. 2017, 327, 11–17. [CrossRef] [PubMed]

34. Kienzler, A.; Bopp, S.K.; van der Linden, S.; Berggren, E.; Worth, A. Regulatory Assessment of Chemical Mixtures: Requirements,
Current Approaches and Future Perspectives. Regul. Toxicol. Pharmacol. 2016, 80, 321–334. [CrossRef]

35. Lopes, S.; Pinheiro, C.; Soares, A.M.V.M.; Loureiro, S. Joint Toxicity Prediction of Nanoparticles and Ionic Counterparts: Simulating
Toxicity under a Fate Scenario. J. Hazard. Mater. 2016, 320, 1–9. [CrossRef] [PubMed]

36. Li, T.; Liu, S.S.; Qu, R.; Liu, H.L. Global Concentration Additivity and Prediction of Mixture Toxicities, Taking Nitrobenzene
Derivatives as an Example. Ecotoxicol. Environ. Saf. 2017, 144, 475–481. [CrossRef]

37. Wang, D.; Gu, Y.; Zheng, M.; Zhang, W.; Lin, Z.; Liu, Y. A Mechanism-Based QSTR Model for Acute to Chronic Toxicity
Extrapolation: A Case Study of Antibiotics on Luminous Bacteria. Sci. Rep. 2017, 7, 6022. [CrossRef] [PubMed]

38. Yang, G.; Chen, C.; Wang, Y.; Peng, Q.; Zhao, H.; Guo, D.; Wang, Q.; Qian, Y. Mixture Toxicity of Four Commonly Used Pesticides
at Different Effect Levels to the Epigeic Earthworm, Eisenia Fetida. Ecotoxicol. Environ. Saf. 2017, 142, 29–39. [CrossRef]

39. Hsieh, N.H.; Chen, Z.; Rusyn, I.; Chiu, W.A. Risk Characterization and Probabilistic Concentration–Response Modeling of
Complex Environmental Mixtures Using New Approach Methodologies (NAMs) Data from Organotypic in Vitro Human Stem
Cell Assays. Environ. Health Perspect. 2021, 129, 1–13. [CrossRef]

40. Nweke, C.O.; Orji, J.C.; Ahumibe, N.C. Prediction of Phenolic Compounds and Formulated Glyphosate Toxicity in Binary
Mixtures Using Rhizobium Species Dehydrogenase Activity. Adv. Life Sci. 2015, 5, 27–38. [CrossRef]

41. Thienpont, B.; Barata, C.; Raldúa, D. Modeling Mixtures of Thyroid Gland Function Disruptors in a Vertebrate Alternative Model,
the Zebrafish Eleutheroembryo. Toxicol. Appl. Pharmacol. 2013, 269, 169–175. [CrossRef]

42. Qin, L.T.; Liu, S.S.; Zhang, J.; Xiao, Q.F. A Novel Model Integrated Concentration Addition with Independent Action for the
Prediction of Toxicity of Multi-Component Mixture. Toxicology 2011, 280, 164–172. [CrossRef]

43. Tyagi, D.; Couillard, D. Toxic Effects of Inhibitors in Biological Wastewater Treatment Processes. Can. J. Chem. Eng. 1998, 66,
97–106. [CrossRef]

44. Petersen, B.; Gernaey, K.; Ottoy, J.; Vanrolleghem, P. Application of Biosensors in Wastewater Treatment. In Proceedings of the 2e
Symposium sur les Eaux usées et 11e Atelier sur L’eau Potable, Montréal, Canada, 20–21 October 1999; pp. 204–210.

45. Cai, B.; Xie, L.; Yang, D.; Arcangeli, J.P. Application of QSARs Model in Toxicity Evaluation of Wastewater to Bio-Treatment
System in WWTP. In Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE
2008, Shanghai, China, 16–18 May 2008; pp. 3027–3030.

46. De Schepper, W.; Dries, J.; Geuens, L.; Blust, R. Wastewater Treatment Plant Modeling Supported Toxicity Identification and
Evaluation of a Tank Truck Cleaning Effluent. Ecotoxicol. Environ. Saf. 2010, 73, 702–709. [CrossRef] [PubMed]

47. Smith, K.S.; Balistrieri, L.S.; Todd, A.S. Using Biotic Ligand Models to Predict Metal Toxicity in Mineralized Systems. Appl.
Geochem. 2015, 57, 55–72. [CrossRef]

48. Liang, J.; Zhang, L.; Ye, M.; Guan, Z.; Huang, J.; Liu, J.; Li, L.; Huang, S.; Sun, S. Evaluation of the Dewaterability, Heavy Metal
Toxicity and Phytotoxicity of Sewage Sludge in Different Advanced Oxidation Processes. J. Clean. Prod. 2020, 265, 121839.
[CrossRef]

49. Zhang, J.; Zhou, W.; Yang, L.; Chen, Y.; Hu, Y. Co-N-Doped MoO2 Modified Carbon Felt Cathode for Removal of EDTA-Ni in
Electro-Fenton Process. Environ. Sci. Pollut. Res. 2018, 25, 22754–22765. [CrossRef] [PubMed]

50. Wang, X.; Hua, L.; Ma, Y. A Biotic Ligand Model Predicting Acute Copper Toxicity for Barley (Hordeum Vulgare): Influence of
Calcium, Magnesium, Sodium, Potassium and PH. Chemosphere 2012, 89, 89–95. [CrossRef]

https://doi.org/10.1021/acs.est.1c03292
https://doi.org/10.1016/j.chemosphere.2016.08.079
https://doi.org/10.1016/j.jhazmat.2017.07.059
https://doi.org/10.1016/j.watres.2012.06.006
https://doi.org/10.1016/j.chemosphere.2011.12.006
https://doi.org/10.1016/j.matchar.2017.07.047
https://doi.org/10.1016/j.envint.2015.01.014
https://doi.org/10.1016/j.jhazmat.2016.12.031
https://www.ncbi.nlm.nih.gov/pubmed/28033493
https://doi.org/10.1016/j.yrtph.2016.05.020
https://doi.org/10.1016/j.jhazmat.2016.07.068
https://www.ncbi.nlm.nih.gov/pubmed/27505288
https://doi.org/10.1016/j.ecoenv.2017.06.044
https://doi.org/10.1038/s41598-017-06384-9
https://www.ncbi.nlm.nih.gov/pubmed/28729627
https://doi.org/10.1016/j.ecoenv.2017.03.037
https://doi.org/10.1289/EHP7600
https://doi.org/10.5923/j.als.20150502.01
https://doi.org/10.1016/j.taap.2013.02.015
https://doi.org/10.1016/j.tox.2010.12.007
https://doi.org/10.1002/cjce.5450660114
https://doi.org/10.1016/j.ecoenv.2010.02.005
https://www.ncbi.nlm.nih.gov/pubmed/20378172
https://doi.org/10.1016/j.apgeochem.2014.07.005
https://doi.org/10.1016/j.jclepro.2020.121839
https://doi.org/10.1007/s11356-018-2373-8
https://www.ncbi.nlm.nih.gov/pubmed/29855876
https://doi.org/10.1016/j.chemosphere.2012.04.022


Sustainability 2023, 15, 8881 24 of 28

51. Lofts, S.; Criel, P.; Janssen, C.R.; Lock, K.; McGrath, S.P.; Oorts, K.; Rooney, C.P.; Smolders, E.; Spurgeon, D.J.; Svendsen, C.; et al.
Modelling the Effects of Copper on Soil Organisms and Processes Using the Free Ion Approach: Towards a Multi-Species Toxicity
Model. Environ. Pollut. 2013, 178, 244–253. [CrossRef]

52. Smolders, E.; Oorts, K.; Peeters, S.; Lanno, R.; Cheyns, K. Toxicity in Lead Salt Spiked Soils to Plants, Invertebrates and Microbial
Processes: Unraveling Effects of Acidification, Salt Stress and Ageing Reactions. Sci. Total Environ. 2015, 536, 223–231. [CrossRef]

53. Zhang, S.; Song, J.; Gao, H.; Zhang, Q.; Lv, M.-C.; Wang, S.; Liu, G.; Pan, Y.-Y.; Christie, P.; Sun, W. Improving Prediction of Metal
Uptake by Chinese Cabbage (Brassica pekinensis L.) Based on a Soil-Plant Stepwise Analysis. Sci. Total Environ. 2016, 569–570,
1595–1605. [CrossRef]

54. Chen, D.-Q.; Chen, H.; Chen, L.; Tang, D.-D.; Miao, H.; Zhao, Y.-Y. Metabolomic Application in Toxicity Evaluation and
Toxicological Biomarker Identification of Natural Product. Chem. Biol. Interact. 2016, 252, 114–130. [CrossRef]

55. Zaitsu, K.; Hayashi, Y.; Kusano, M.; Tsuchihashi, H.; Ishii, A. Application of Metabolomics to Toxicology of Drugs of Abuse: A
Mini Review of Metabolomics Approach to Acute and Chronic Toxicity Studies. Drug Metab. Pharmacokinet. 2016, 31, 21–26.
[CrossRef]

56. Pauluhn, J. Risk Assessment in Combustion Toxicology: Should Carbon Dioxide Be Recognized as a Modifier of Toxicity or
Separate Toxicological Entity? Toxicol. Lett. 2016, 262, 142–152. [CrossRef] [PubMed]

57. Zhang, Y.; Chu, C.; Li, T.; Xu, S.; Liu, L.; Ju, M. A Water Quality Management Strategy for Regionally Protected Water through
Health Risk Assessment and Spatial Distribution of Heavy Metal Pollution in 3 Marine Reserves. Sci. Total Environ. 2017, 599–600,
721–731. [CrossRef] [PubMed]

58. Fowles, J.; Banton, M.; Klapacz, J.; Shen, H. A Toxicological Review of the Ethylene Glycol Series: Commonalities and Differences
in Toxicity and Modes of Action. Toxicol. Lett. 2017, 278, 66–83. [CrossRef] [PubMed]

59. Heys, K.A.; Shore, R.F.; Pereira, M.G.; Jones, K.C.; Martin, F.L. Risk Assessment of Environmental Mixture Effects. RSC Adv. 2016,
6, 47844–47857. [CrossRef]

60. Farley, K.J.; Meyer, J.S.; Balistrieri, L.S.; De Schamphelaere, K.A.C.; Iwasaki, Y.; Janssen, C.R.; Kamo, M.; Lofts, S.; Mebane, C.A.;
Naito, W.; et al. Metal Mixture Modeling Evaluation Project: 2. Comparison of Four Modeling Approaches. Environ. Toxicol.
Chem. 2015, 34, 741–753. [CrossRef] [PubMed]

61. Gao, Y.; Feng, J.; Wang, C.; Zhu, L. Modeling Interactions and Toxicity of Cu-Zn Mixtures to Zebrafish Larvae. Ecotoxicol. Environ.
Saf. 2017, 138, 146–153. [CrossRef]

62. Rider, C.V.; LeBlanc, G.A. An Integrated Addition and Interaction Model for Assessing Toxicity of Chemical Mixtures. Toxicol. Sci.
2005, 87, 520–528. [CrossRef]

63. Ra, J.S.; Lee, B.C.; Chang, N.I.; Kim, S.D. Estimating the Combined Toxicity by Two-Step Prediction Model on the Complicated
Chemical Mixtures from Wastewater Treatment Plant Effluents. Environ. Toxicol. Chem. 2006, 25, 2107–2113. [CrossRef]

64. Watt, J.; Webster, T.F.; Schlezinger, J.J. Generalized Concentration Addition Modeling Predicts Mixture Effects of Environmental
PPARγ Agonists. Toxicol. Sci. 2016, 153, 18–27. [CrossRef]

65. Wang, N.; Wang, X.C.; Ma, X. Characteristics of Concentration-Inhibition Curves of Individual Chemicals and Applicability of the
Concentration Addition Model for Mixture Toxicity Prediction. Ecotoxicol. Environ. Saf. 2015, 113, 176–182. [CrossRef]

66. Hong, Y.; Tan, Y.; Meng, Y.; Yang, H.; Zhang, Y.; Warren, A.; Li, J.; Lin, X. Evaluation of Biomarkers for Ecotoxicity Assessment by
Dose-Response Dynamic Models: Effects of Nitrofurazone on Antioxidant Enzymes in the Model Ciliated Protozoan Euplotes
Vannus. Ecotoxicol. Environ. Saf. 2017, 144, 552–559. [CrossRef]

67. Yang, A.; Liu, S.; Cheng, Z.; Pu, H.; Cheng, N.; Ding, J.; Li, J.; Li, H.; Hu, X.; Ren, X.; et al. Dose-Response Analysis of
Environmental Exposure to Multiple Metals and Their Joint Effects with Fasting Plasma Glucose among Occupational Workers.
Chemosphere 2017, 186, 314–321. [CrossRef] [PubMed]

68. Tanaka, Y.; Tada, M. Generalized Concentration Addition Approach for Predicting Mixture Toxicity. Environ. Toxicol. Chem. 2017,
36, 265–275. [CrossRef] [PubMed]

69. Neale, P.A.; Leusch, F.D.L.; Escher, B.I. Applying Mixture Toxicity Modelling to Predict Bacterial Bioluminescence Inhibition
by Non-Specifically Acting Pharmaceuticals and Specifically Acting Antibiotics. Chemosphere 2017, 173, 387–394. [CrossRef]
[PubMed]

70. Di Nica, V.; Gallet, J.; Villa, S.; Mezzanotte, V. Toxicity of Quaternary Ammonium Compounds (QACs) as Single Compounds and
Mixtures to Aquatic Non-Target Microorganisms: Experimental Data and Predictive Models. Ecotoxicol. Environ. Saf. 2017, 142,
567–577. [CrossRef]

71. Loewe, S.; Muischnek, H. Effect of Combinations: Mathematical Basis of Problem. N-S. Arch. Ex. Path. Ph. 1926, 114, 313–326.
[CrossRef]

72. van Gestel, C.; Jonker, M.; Kammenga, J.; Laskowski, R.; Svendsen, C. Mixture Toxicity: Linking Approaches from Ecological and
Human Toxicology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010.

73. Hadrup, N.; Taxvig, C.; Pedersen, M.; Nellemann, C.; Hass, U.; Vinggaard, A.M. Concentration Addition, Independent Action
and Generalized Concentration Addition Models for Mixture Effect Prediction of Sex Hormone Synthesis In Vitro. PLoS ONE
2013, 8, e70490. [CrossRef]

74. Wang, Z.; Wang, S.; Peijnenburg, W.J.G.M. Prediction of Joint Algal Toxicity of Nano-CeO2/Nano-TiO2and Florfenicol: Indepen-
dent Action Surpasses Concentration Addition. Chemosphere 2016, 156, 8–13. [CrossRef]

https://doi.org/10.1016/j.envpol.2013.03.015
https://doi.org/10.1016/j.scitotenv.2015.07.067
https://doi.org/10.1016/j.scitotenv.2016.07.007
https://doi.org/10.1016/j.cbi.2016.03.028
https://doi.org/10.1016/j.dmpk.2015.10.002
https://doi.org/10.1016/j.toxlet.2016.09.012
https://www.ncbi.nlm.nih.gov/pubmed/27664840
https://doi.org/10.1016/j.scitotenv.2017.04.232
https://www.ncbi.nlm.nih.gov/pubmed/28499221
https://doi.org/10.1016/j.toxlet.2017.06.009
https://www.ncbi.nlm.nih.gov/pubmed/28689762
https://doi.org/10.1039/C6RA05406D
https://doi.org/10.1002/etc.2820
https://www.ncbi.nlm.nih.gov/pubmed/25418584
https://doi.org/10.1016/j.ecoenv.2016.12.028
https://doi.org/10.1093/toxsci/kfi247
https://doi.org/10.1897/05-484R.1
https://doi.org/10.1093/toxsci/kfw100
https://doi.org/10.1016/j.ecoenv.2014.12.008
https://doi.org/10.1016/j.ecoenv.2017.06.069
https://doi.org/10.1016/j.chemosphere.2017.08.002
https://www.ncbi.nlm.nih.gov/pubmed/28787687
https://doi.org/10.1002/etc.3503
https://www.ncbi.nlm.nih.gov/pubmed/27216969
https://doi.org/10.1016/j.chemosphere.2017.01.018
https://www.ncbi.nlm.nih.gov/pubmed/28129616
https://doi.org/10.1016/j.ecoenv.2017.04.028
https://doi.org/10.1007/BF01952257
https://doi.org/10.1371/journal.pone.0070490
https://doi.org/10.1016/j.chemosphere.2016.04.072


Sustainability 2023, 15, 8881 25 of 28

75. Brinkmann, M.; Hecker, M.; Giesy, J.P.; Jones, P.D.; Ratte, H.T.; Hollert, H.; Preuss, T.G. Generalized Concentration Addition
Accurately Predicts Estrogenic Potentials of Mixtures and Environmental Samples Containing Partial Agonists. Toxicol. In Virto
2018, 46, 294–303. [CrossRef]

76. Gosset, A.; Wiest, L.; Fildier, A.; Libert, C.; Giroud, B.; Hammada, M.; Hervé, M.; Sibeud, E.; Vulliet, E.; Polomé, P.; et al. Ecotoxi-
cological Risk Assessment of Contaminants of Emerging Concern Identified by “Suspect Screening” from Urban Wastewater
Treatment Plant Effluents at a Territorial Scale. Sci. Total Environ. 2021, 778. [CrossRef]

77. Cedergreen, N.; Christensen, A.M.; Kamper, A.; Kudsk, P.; Mathiassen, S.K.; Streibig, J.C.; Sørensen, H. A Review of Independent
Action Compared to Concentration Addition as Reference Models for Mixtures of Compounds with Different Molecular Target
Sites. Environ. Toxicol. Chem. 2008, 27, 1621–1632. [CrossRef]

78. Faust, M.; Altenburger, R.; Backhaus, T.; Blanck, H.; Boedeker, W.; Gramatica, P.; Hamer, V.; Scholze, M.; Vighi, M.; Grimme, L.H.
Joint Algal Toxicity of 16 Dissimilarly Acting Chemicals Is Predictable by the Concept of Independent Action. Aquat. Toxicol.
2003, 63, 43–63. [CrossRef]

79. Hertzberg, R.C.; Pan, Y.; Li, R.; Haber, L.T.; Lyles, R.H.; Herr, D.W.; Moser, V.C.; Simmons, J.E. A Four-Step Approach to Evaluate
Mixtures for Consistency with Dose Addition. Toxicology 2013, 314, 134–144. [CrossRef] [PubMed]

80. Kamo, M.; Yokomizo, H. Explanation of Non-Additive Effects in Mixtures of Similar Mode of Action Chemicals. Toxicology 2015,
335, 20–26. [CrossRef]

81. Kortenkamp, A.; Backhaus, T.; Faust, M. State of the Art Report on Mixture Toxicity. 2009. Available online: https:
//www.pan-europe.info/old/Campaigns/pesticides/documents/cum_syn_effects/Kortenkamp%20state%20of%20the%20
art%20mixture%20toxicity.pdf (accessed on 23 May 2023).

82. Altenburger, R.; Boedeker, W.; Faust, M.; Grimme, L.H. Regulations for Combined Effects of Pollutants: Consequences from Risk
Assessment in Aquatic Toxicology. Food Chem. Toxicol. 1996, 34, 1155–1157. [CrossRef]

83. Feron, V.J.; Groten, J.P. Toxicological Evaluation of Chemical Mixtures. Food Chem. Toxicol. 2002, 40, 825–839. [CrossRef] [PubMed]
84. Jonker, D.; Woutersen, R.A.; Feron, V.J. Toxicity of Mixtures of Nephrotoxicants with Similar or Dissimilar Mode of Action. Food

Chem. Toxicol. 1996, 34, 1075–1082. [CrossRef] [PubMed]
85. Wolansky, M.J.; Gennings, C.; DeVito, M.J.; Crofton, K.M. Evidence for Dose-Additive Effects of Pyrethroids on Motor Activity in

Rats. Environ. Health Perspect. 2009, 117, 1563–1570. [CrossRef]
86. Rizzati, V.; Briand, O.; Guillou, H.; Gamet-Payrastre, L. Effects of Pesticide Mixtures in Human and Animal Models: An Update

of the Recent Literature. Chem. Biol. Interact. 2016, 254, 231–246. [CrossRef]
87. Howdeshell, K.L.; Hotchkiss, A.K.; Gray, L.E. Cumulative Effects of Antiandrogenic Chemical Mixtures and Their Relevance to

Human Health Risk Assessment. Int. J. Hyg. Environ. Health 2017, 220, 179–188. [CrossRef]
88. Walker, N.J.; Crockett, P.W.; Nyska, A.; Brix, A.E.; Jokinen, M.P.; Sells, D.M.; Hailey, J.R.; Easterling, M.; Haseman, J.K.; Yin, M.;

et al. Dose-Additive Carcinogenicity of a Defined Mixture of “Dioxin-like Compounds”. Environ. Health Perspect. 2005, 113, 43–48.
[CrossRef]

89. Charles, G.D.; Gennings, C.; Zacharewski, T.R.; Gollapudi, B.B.; Carney, E.W. An Approach for Assessing Estrogen Receptor-
Mediated Interactions in Mixtures of Three Chemicals: A Pilot Study. Toxicol. Sci. 2002, 68, 349–360. [CrossRef]

90. Payne, J.; Scholze, M.; Kortenkamp, A. Mixtures of Four Organochlorines Enhance Human Breast Cancer Cell Proliferation.
Environ. Health Perspect. 2001, 109, 391–397. [CrossRef]

91. Tichý, M.; Borek-Dohalský, V.; Rucki, M.; Reitmajer, J.; Feltl, L. Risk Assessment of Mixtures: Possibility of Prediction of Interaction
between Chemicals. Int. Arch. Occup. Environ. Health 2002, 75, 133–136. [CrossRef]

92. Jobling, S.; Burn, R.W.; Thorpe, K.; Williams, R.; Tyler, C. Statistical Modeling Suggests That Antiandrogens in Effluents from
Wastewater Treatment Works Contribute to Widespread Sexual Disruption in Fish Living in English Rivers. Environ. Health
Perspect. 2009, 117, 797–802. [CrossRef]

93. Wang, Z.; Chen, J.; Huang, L.; Wang, Y.; Cai, X.; Qiao, X.; Dong, Y. Integrated Fuzzy Concentration Addition–Independent
Action (IFCA–IA) Model Outperforms Two-Stage Prediction (TSP) for Predicting Mixture Toxicity. Chemosphere 2009, 74, 735–740.
[CrossRef]

94. Lambert, J.C.; Lipscomb, J.C. Mode of Action as a Determining Factor in Additivity Models for Chemical Mixture Risk Assessment.
Regul. Toxicol. Pharmacol. 2007, 49, 183–194. [CrossRef]

95. Gruiz, K.; Fekete-Kertész, I.; Kunglné-Nagy, Z.; Hajdu, C.; Feigl, V.; Vaszita, E.; Molnár, M. Direct Toxicity Assessment — Methods,
Evaluation, Interpretation. Sci. Total Environ. 2016, 563–564, 803–812. [CrossRef]

96. Landrum, P.F.; Chapman, P.M.; Neff, J.; Page, D.S. Evaluating the Aquatic Toxicity of Complex Organic Chemical Mixtures:
Lessons Learned from Polycyclic Aromatic Hydrocarbon and Petroleum Hydrocarbon Case Studies. Integr. Environ. Assess.
Manag. 2012, 8, 217–230. [CrossRef]

97. Lebrun, J.D.; Uher, E.; Fechner, L.C. Behavioural and Biochemical Responses to Metals Tested Alone or in Mixture (Cd-Cu-Ni-Pb-
Zn) in Gammarus Fossarum: From a Multi-Biomarker Approach to Modelling Metal Mixture Toxicity. Aquat. Toxicol. 2017, 193,
160–167. [CrossRef]

98. Menz, J.; Baginska, E.; Arrhenius, Å.; Haiß, A.; Backhaus, T.; Kümmerer, K. Antimicrobial Activity of Pharmaceutical Cocktails in
Sewage Treatment Plant Effluent—An Experimental and Predictive Approach to Mixture Risk Assessment. Environ. Pollut. 2017,
231, 1507–1517. [CrossRef]

https://doi.org/10.1016/j.tiv.2017.10.022
https://doi.org/10.1016/j.scitotenv.2021.146275
https://doi.org/10.1897/07-474.1
https://doi.org/10.1016/S0166-445X(02)00133-9
https://doi.org/10.1016/j.tox.2012.10.016
https://www.ncbi.nlm.nih.gov/pubmed/23146763
https://doi.org/10.1016/j.tox.2015.06.008
https://www.pan-europe.info/old/Campaigns/pesticides/documents/cum_syn_effects/Kortenkamp%20state%20of%20the%20art%20mixture%20toxicity.pdf
https://www.pan-europe.info/old/Campaigns/pesticides/documents/cum_syn_effects/Kortenkamp%20state%20of%20the%20art%20mixture%20toxicity.pdf
https://www.pan-europe.info/old/Campaigns/pesticides/documents/cum_syn_effects/Kortenkamp%20state%20of%20the%20art%20mixture%20toxicity.pdf
https://doi.org/10.1016/S0278-6915(97)00088-4
https://doi.org/10.1016/S0278-6915(02)00021-2
https://www.ncbi.nlm.nih.gov/pubmed/11983277
https://doi.org/10.1016/S0278-6915(97)00077-X
https://www.ncbi.nlm.nih.gov/pubmed/9119318
https://doi.org/10.1289/ehp.0900667
https://doi.org/10.1016/j.cbi.2016.06.003
https://doi.org/10.1016/j.ijheh.2016.11.007
https://doi.org/10.1289/ehp.7351
https://doi.org/10.1093/toxsci/68.2.349
https://doi.org/10.1289/ehp.01109391
https://doi.org/10.1007/s00420-002-0354-0
https://doi.org/10.1289/ehp.0800197
https://doi.org/10.1016/j.chemosphere.2008.08.023
https://doi.org/10.1016/j.yrtph.2007.07.002
https://doi.org/10.1016/j.scitotenv.2016.01.007
https://doi.org/10.1002/ieam.277
https://doi.org/10.1016/j.aquatox.2017.10.018
https://doi.org/10.1016/j.envpol.2017.09.009


Sustainability 2023, 15, 8881 26 of 28

99. Petit, P.; Maître, A.; Persoons, R.; Bicout, D.J. Modeling the Exposure Functions of Atmospheric Polycyclic Aromatic Hydrocarbon
Mixtures in Occupational Environments. Sci. Total Environ. 2017, 584–585, 1185–1197. [CrossRef]

100. Thrupp, T.J.; Runnalls, T.J.; Scholze, M.; Kugathas, S.; Kortenkamp, A.; Sumpter, J.P. The Consequences of Exposure to Mixtures
of Chemicals: Something from ‘Nothing’ and ‘a Lot from a Little’ When Fish Are Exposed to Steroid Hormones. Sci. Total Environ.
2018, 619–620, 1482–1492. [CrossRef]

101. Baas, J.; Jager, T.; Kooijman, S.A.L.M. A Model to Analyze Effects of Complex Mixtures on Survival. Ecotoxicol. Environ. Saf. 2009,
72, 669–676. [CrossRef]

102. Roth, N.; Ciffroy, P. A Critical Review of Frameworks Used for Evaluating Reliability and Relevance of (Eco)Toxicity Data:
Perspectives for an Integrated Eco-Human Decision-Making Framework. Environ. Int. 2016, 95, 16–29. [CrossRef]

103. Duan, W.; Meng, F.; Wang, F.; Liu, Q. Environmental Behavior and Eco-Toxicity of Xylene in Aquatic Environments: A Review.
Ecotoxicol. Environ. Saf. 2017, 145, 324–332. [CrossRef]

104. Zhou, C.; Ge, S.; Yu, H.; Zhang, T.; Cheng, H.; Sun, Q.; Xiao, R. Environmental Risk Assessment of Pyrometallurgical Residues
Derived from Electroplating and Pickling Sludges. J. Clean. Prod. 2018, 177, 699–707. [CrossRef]

105. Choudhury, H.; Hertzberg, R.; Rice, G.; Cogliano, J.; Mukerjee, D.; Teuschler, L.; Doyle, E.; Woo, Y.; Schoeny, R. Supplementary
Guidance for Conducting Health Risk Assessment of Chemical Mixtures. 2000. Available online: https://cfpub.epa.gov/ncea/
risk/recordisplay.cfm?deid=20533 (accessed on 23 May 2023).

106. Nys, C.; Janssen, C.R.; De Schamphelaere, K.A.C. Development and Validation of a Metal Mixture Bioavailability Model (MMBM)
to Predict Chronic Toxicity of Ni-Zn-Pb Mixtures to Ceriodaphnia Dubia. Environ. Pollut. 2017, 220, 1271–1281. [CrossRef]

107. Hassan, S.H.A.; Van Ginkel, S.W.; Hussein, M.A.M.; Abskharon, R.; Oh, S.E. Toxicity Assessment Using Different Bioassays and
Microbial Biosensors. Environ. Int. 2016, 92–93, 106–118. [CrossRef]

108. Giubilato, E.; Radomyski, A.; Critto, A.; Ciffroy, P.; Brochot, C.; Pizzol, L.; Marcomini, A. Modelling Ecological and Human
Exposure to POPs in Venice Lagoon. Part I — Application of MERLIN-Expo Tool for Integrated Exposure Assessment. Sci. Total
Environ. 2016, 565, 961–976. [CrossRef] [PubMed]

109. Gadaga, L.L.; Tagwireyi, D. Critical Review of the Guidelines and Methods in Toxicological Research in Africa; Elsevier Inc.: Amsterdam,
The Netherlands, 2014; ISBN 9780128004753.

110. Autrup, H.; Calow, P.; Dekant, W.; Greim, H.; Hanke, W.; Janssen, C.; Jansson, B.; Komulainen, H.; Ladefoged, O.; Linders, J.; et al.
Opinion on Risk Assessment on Indoor Air Quality. 2007. Available online: https://ec.europa.eu/health/ph_risk/committees/
04_scher/docs/scher_o_055.pdf (accessed on 23 May 2023).

111. Moya, W.; Jácome, G.; Yoo, C.K. Past, Current, and Future Trends of Red Spiny Lobster Based on PCA with MaxEnt Model in
Galapagos Islands, Ecuador. Ecol. Evol. 2017, 7, 4881–4890. [CrossRef] [PubMed]

112. Jácome, G.; Vilela, P.; Yoo, C.K. Present and Future Incidence of Dengue Fever in Ecuador Nationwide and Coast Region Scale
Using Species Distribution Modeling for Climate Variability’s Effect. Ecol. Model. 2019, 400, 60–72. [CrossRef]

113. Vilela, P.; Jácome, G.; Kim, S.Y.; Nam, K.; Yoo, C. Population Response Modeling and Habitat Suitability of Cobitis Choii Fish
Species in South Korea for Climate Change Adaptation. Ecotoxicol. Environ. Saf. 2020, 189. [CrossRef] [PubMed]

114. Sweeney, L.M.; Sommerville, D.R.; Goodwin, M.R.; James, R.A.; Channel, S.R. Acute Toxicity When Concentration Varies with
Time: A Case Study with Carbon Monoxide Inhalation by Rats. Regul. Toxicol. Pharmacol. 2016, 80, 102–115. [CrossRef]

115. Ashauer, R.; Escher, B. Advantages of Toxicokinetic and Toxicodynamic Modeling in Aquatic Ecotoxicology and Risk Assessment.
J. Environ. Monit. 2010. [CrossRef]

116. Delignette-Muller, M.L.; Ruiz, P.; Veber, P. Robust Fit of Toxicokinetic–Toxicodynamic Models Using Prior Knowledge Contained
in the Design of Survival Toxicity Tests. Environ. Sci. Technol. 2017, 51, 4038–4045. [CrossRef]

117. Diepens, N.J.; Arts, G.H.P.; Brock, T.C.M.; Smidt, H.; Van Den Brink, P.J.; Van Den Heuvel-Greve, M.J.; Koelmans, A.A. Sediment
Toxicity Testing of Organic Chemicals in the Context of Prospective Risk Assessment: A Review. Crit. Rev. Environ. Sci. Technol.
2014, 44, 255–302. [CrossRef]

118. Trisciuzzi, D.; Alberga, D.; Mansouri, K.; Judson, R.; Novellino, E.; Mangiatordi, G.F.; Nicolotti, O. Predictive Structure-Based
Toxicology Approaches to Assess the Androgenic Potential of Chemicals. J. Chem. Inf. Model. 2017, 57, 2874–2884. [CrossRef]

119. Garner, K.L.; Keller, A.A. Emerging Patterns for Engineered Nanomaterials in the Environment: A Review of Fate and Toxicity
Studies. J. Nanoparticle Res. 2014, 16, 2503. [CrossRef]

120. Tortella, G.R.; Rubilar, O.; Durán, N.; Diez, M.C.; Martínez, M.; Parada, J.; Seabra, A.B. Silver Nanoparticles: Toxicity in Model
Organisms as an Overview of Its Hazard for Human Health and the Environment. J. Hazard. Mater. 2020, 390, 121974. [CrossRef]
[PubMed]

121. Tan, B.; Wang, Y.; Gong, Z.; Fan, X.; Ni, B. Toxic Effects of Copper Nanoparticles on Paramecium Bursaria–Chlorella Symbiotic
System. Front. Microbiol. 2022, 13, 834208. [CrossRef]

122. Auclair, J.; Peyrot, C.; Wilkinson, K.J.; Gagné, F. The Influence of Silver Nanoparticle Form on the Toxicity in Freshwater Mussels.
Appl. Sci. 2022, 12, 1429. [CrossRef]

123. Fernández-Pampín, N.; González Plaza, J.J.; García-Gómez, A.; Peña, E.; Rumbo, C.; Barros, R.; Martel-Martín, S.; Aparicio, S.;
Tamayo-Ramos, J.A. Toxicology Assessment of Manganese Oxide Nanomaterials with Enhanced Electrochemical Properties
Using Human in Vitro Models Representing Different Exposure Routes. Sci. Rep. 2022, 12, 20991. [CrossRef] [PubMed]

124. Reddy, S.S.; Chhabra, V. Nanotechnology: Its Scope in Agriculture. J. Phys. Conf. Ser. 2022, 2267, 012112. [CrossRef]

https://doi.org/10.1016/j.scitotenv.2017.01.182
https://doi.org/10.1016/j.scitotenv.2017.11.081
https://doi.org/10.1016/j.ecoenv.2008.09.003
https://doi.org/10.1016/j.envint.2016.07.011
https://doi.org/10.1016/j.ecoenv.2017.07.050
https://doi.org/10.1016/j.jclepro.2017.12.285
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533
https://doi.org/10.1016/j.envpol.2016.10.104
https://doi.org/10.1016/j.envint.2016.03.003
https://doi.org/10.1016/j.scitotenv.2016.04.146
https://www.ncbi.nlm.nih.gov/pubmed/27178754
https://ec.europa.eu/health/ph_risk/committees/04_scher/docs/scher_o_055.pdf
https://ec.europa.eu/health/ph_risk/committees/04_scher/docs/scher_o_055.pdf
https://doi.org/10.1002/ece3.3054
https://www.ncbi.nlm.nih.gov/pubmed/28690816
https://doi.org/10.1016/j.ecolmodel.2019.03.014
https://doi.org/10.1016/j.ecoenv.2019.109949
https://www.ncbi.nlm.nih.gov/pubmed/31757512
https://doi.org/10.1016/j.yrtph.2016.06.014
https://doi.org/10.1039/c0em00234h
https://doi.org/10.1021/acs.est.6b05326
https://doi.org/10.1080/01496395.2012.718945
https://doi.org/10.1021/acs.jcim.7b00420
https://doi.org/10.1007/s11051-014-2503-2
https://doi.org/10.1016/j.jhazmat.2019.121974
https://www.ncbi.nlm.nih.gov/pubmed/32062374
https://doi.org/10.3389/fmicb.2022.834208
https://doi.org/10.3390/app12031429
https://doi.org/10.1038/s41598-022-25483-w
https://www.ncbi.nlm.nih.gov/pubmed/36471154
https://doi.org/10.1088/1742-6596/2267/1/012112


Sustainability 2023, 15, 8881 27 of 28

125. Liu, R.; Lal, R. Potentials of Engineered Nanoparticles as Fertilizers for Increasing Agronomic Productions. Sci. Total Environ.
2015, 514, 131–139. [CrossRef]

126. Malysheva, A.; Lombi, E.; Voelcker, N.H. Bridging the Divide between Human and Environmental Nanotoxicology. Nat.
Nanotechnol. 2015, 10, 835–844. [CrossRef]

127. Lyu, H.; Gao, B.; He, F.; Ding, C.; Tang, J.; Crittenden, J.C. Ball-Milled Carbon Nanomaterials for Energy and Environmental
Applications. ACS Sustain. Chem. Eng. 2017, 5, 9568–9585. [CrossRef]

128. Yang, Y.; Qin, Z.; Zeng, W.; Yang, T.; Cao, Y.; Mei, C.; Kuang, Y. Toxicity Assessment of Nanoparticles in Various Systems and
Organs. Nanotechnol. Rev. 2017, 6, 279–289. [CrossRef]

129. Fournier, S.B.; D’Errico, J.N.; Stapleton, P.A. Engineered Nanomaterial Applications in Perinatal Therapeutics. Pharmacol. Res.
2018, 130, 36–43. [CrossRef]

130. Guggenheim, E.J.; Milani, S.; Röttgermann, P.J.F.; Dusinska, M.; Saout, C.; Salvati, A.; Rädler, J.O.; Lynch, I. Refining in Vitro
Models for Nanomaterial Exposure to Cells and Tissues. NanoImpact 2018, 10, 121–142. [CrossRef]

131. Li, D.; Lai, W.-Y.; Zhang, Y.-Z.; Huang, W. Printable Transparent Conductive Films for Flexible Electronics. Adv. Mater. 2018, 30,
1704738. [CrossRef] [PubMed]

132. Vilela, P.; Liu, H.; Lee, S.C.; Hwangbo, S.; Nam, K.J.; Yoo, C.K. A Systematic Approach of Removal Mechanisms, Control and
Optimization of Silver Nanoparticle in Wastewater Treatment Plants. Sci. Total Environ. 2018, 633, 989–998. [CrossRef]

133. Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science (80-) 2006, 311, 622–627. [CrossRef]
134. Aljabali, A.A.; Obeid, M.A.; Bashatwah, R.M.; Serrano-Aroca, Á.; Mishra, V.; Mishra, Y.; El-Tanani, M.; Hromić-Jahjefendić, A.;

Kapoor, D.N.; Goyal, R.; et al. Nanomaterials and Their Impact on the Immune System. Int. J. Mol. Sci. 2023, 24, 2008. [CrossRef]
[PubMed]

135. Jarrar, B.; Al-Doaiss, A.; Shati, A.; Al-Kahtani, M.; Jarrar, Q. Behavioural Alterations Induced by Chronic Exposure to 10 Nm
Silicon Dioxide Nanoparticles. IET Nanobiotechnol. 2021, 15, 221–235. [CrossRef]

136. Brown, D.M.; Johnston, H.J.; Gaiser, B.; Pinna, N.; Caputo, G.; Culha, M.; Kelestemur, S.; Altunbek, M.; Stone, V.; Roy, J.C.; et al. A
Cross-Species and Model Comparison of the Acute Toxicity of Nanoparticles Used in the Pigment and Ink Industries. NanoImpact
2018, 11, 20–32. [CrossRef]

137. Sarkheil, M.; Johari, S.A.; An, H.J.; Asghari, S.; Park, H.S.; Sohn, E.K.; Yu, I.J. Acute Toxicity, Uptake, and Elimination of Zinc
Oxide Nanoparticles (ZnO NPs) Using Saltwater Microcrustacean, Artemia Franciscana. Environ. Toxicol. Pharmacol. 2018, 57,
181–188. [CrossRef]

138. Conine, A.L.; Rearick, D.C.; Xenopoulos, M.A.; Frost, P.C. Variable Silver Nanoparticle Toxicity to Daphnia in Boreal Lakes. Aquat.
Toxicol. 2017, 192, 1–6. [CrossRef]

139. Rossi, L.; Bagheri, M.; Zhang, W.; Chen, Z.; Burken, J.G.; Ma, X. Using Artificial Neural Network to Investigate Physiological
Changes and Cerium Oxide Nanoparticles and Cadmium Uptake by Brassica Napus Plants. Environ. Pollut. 2019, 246, 381–389.
[CrossRef]

140. Carafa, R.; Faggiano, L.; Real, M.; Munné, A.; Ginebreda, A.; Guasch, H.; Flo, M.; Tirapu, L.; der Ohe, P.C. von Water Toxicity
Assessment and Spatial Pollution Patterns Identification in a Mediterranean River Basin District. Tools for Water Management
and Risk Analysis. Sci. Total Environ. 2011, 409, 4269–4279. [CrossRef]

141. Papadakis, E.-N.; Tsaboula, A.; Kotopoulou, A.; Kintzikoglou, K.; Vryzas, Z.; Papadopoulou-Mourkidou, E. Pesticides in the
Surface Waters of Lake Vistonis Basin, Greece: Occurrence and Environmental Risk Assessment. Sci. Total Environ. 2015, 536,
793–802. [CrossRef]

142. Movahedian, H.; Bina, B.; Asghari, G.H. Toxicity Evaluation of Wastewater Treatment Plant Effluents Using Daphnia Magna. Iran.
J. Environ. Health Sci. Eng. 2005, 2, 1–4.

143. Rose, S.; Altenburger, R.; Sturm, A. Mixture Toxicity Effects of Sea Louse Control Agents in Daphnia Magna. Chemosphere 2016,
144, 599–606. [CrossRef]

144. Claessens, M.; Vanhaecke, L.; Wille, K.; Janssen, C.R. Emerging Contaminants in Belgian Marine Waters: Single Toxicant and
Mixture Risks of Pharmaceuticals. Mar. Pollut. Bull. 2013, 71, 41–50. [CrossRef]

145. Wang, B.; Bai, Z.; Jiang, H.; Prinsen, P.; Luque, R.; Zhao, S.; Xuan, J. Selective Heavy Metal Removal and Water Purification
by Microfluidically-Generated Chitosan Microspheres: Characteristics, Modeling and Application. J. Hazard. Mater. 2019, 364,
192–205. [CrossRef]

146. Yang, R.; Zhong, S.; Zhang, L.; Liu, B. PW12/CN@Bi2WO6 Composite Photocatalyst Prepared Based on Organic-Inorganic Hybrid
System for Removing Pollutants in Water. Sep. Purif. Technol. 2020, 235, 2–11. [CrossRef]

147. Yang, R.; Zhu, Z.; Hu, C.; Zhong, S.; Zhang, L.; Liu, B.; Wang, W. One-Step Preparation (3D/2D/2D) BiVO4/FeVO4@rGO
Heterojunction Composite Photocatalyst for the Removal of Tetracycline and Hexavalent Chromium Ions in Water. Chem. Eng. J.
2020, 390, 124522. [CrossRef]

148. Altenburger, R.; Brack, W.; Burgess, R.M.; Busch, W.; Escher, B.I.; Focks, A.; Mark Hewitt, L.; Jacobsen, B.N.; de Alda, M.L.;
Ait-Aissa, S.; et al. Future Water Quality Monitoring: Improving the Balance between Exposure and Toxicity Assessments of
Real-World Pollutant Mixtures. Environ. Sci. Eur. 2019, 31, 12. [CrossRef]

149. Yaseen, Z.M. An Insight into Machine Learning Models Era in Simulating Soil, Water Bodies and Adsorption Heavy Metals:
Review, Challenges and Solutions. Chemosphere 2021, 277, 130126. [CrossRef]

https://doi.org/10.1016/j.scitotenv.2015.01.104
https://doi.org/10.1038/nnano.2015.224
https://doi.org/10.1021/acssuschemeng.7b02170
https://doi.org/10.1515/ntrev-2016-0047
https://doi.org/10.1016/j.phrs.2018.02.027
https://doi.org/10.1016/j.impact.2018.02.008
https://doi.org/10.1002/adma.201704738
https://www.ncbi.nlm.nih.gov/pubmed/29319214
https://doi.org/10.1016/j.scitotenv.2018.03.247
https://doi.org/10.1126/science.1114397
https://doi.org/10.3390/ijms24032008
https://www.ncbi.nlm.nih.gov/pubmed/36768330
https://doi.org/10.1049/nbt2.12041
https://doi.org/10.1016/j.impact.2018.02.001
https://doi.org/10.1016/j.etap.2017.12.018
https://doi.org/10.1016/j.aquatox.2017.09.004
https://doi.org/10.1016/j.envpol.2018.12.029
https://doi.org/10.1016/j.scitotenv.2011.06.053
https://doi.org/10.1016/j.scitotenv.2015.07.099
https://doi.org/10.1016/j.chemosphere.2015.08.053
https://doi.org/10.1016/j.marpolbul.2013.03.039
https://doi.org/10.1016/j.jhazmat.2018.10.024
https://doi.org/10.1016/j.seppur.2019.116270
https://doi.org/10.1016/j.cej.2020.124522
https://doi.org/10.1186/s12302-019-0193-1
https://doi.org/10.1016/j.chemosphere.2021.130126


Sustainability 2023, 15, 8881 28 of 28

150. Zhao, K.; Zhang, L.; Dong, J.; Wu, J.; Ye, Z.; Zhao, W.; Ding, L.; Fu, W. Risk Assessment, Spatial Patterns and Source Apportionment
of Soil Heavy Metals in a Typical Chinese Hickory Plantation Region of Southeastern China. Geoderma 2020, 360, 114011. [CrossRef]

151. Naz, A.; Chowdhury, A.; Chandra, R.; Mishra, B.K. Potential Human Health Hazard Due to Bioavailable Heavy Metal Exposure
via Consumption of Plants with Ethnobotanical Usage at the Largest Chromite Mine of India. Environ. Geochem. Health 2020, 42,
4213–4231. [CrossRef]

152. Ahmadi, M.; Jorfi, S.; Azarmansuri, A.; Jaafarzadeh, N.; Mahvi, A.H.; Darvishi Cheshmeh Soltani, R.; Akbari, H.; Akhbarizadeh,
R. Zoning of Heavy Metal Concentrations Including Cd, Pb and As in Agricultural Soils of Aghili Plain, Khuzestan Province,
Iran. Data Br. 2017, 14, 20–27. [CrossRef] [PubMed]

153. Ghayoraneh, M.; Qishlaqi, A. Concentration, Distribution and Speciation of Toxic Metals in Soils along a Transect around a
Zn/Pb Smelter in the Northwest of Iran. J. Geochem. Explor. 2017, 180, 1–14. [CrossRef]

154. Rai, N.; Sjöberg, V.; Forsberg, G.; Karlsson, S.; Olsson, P.E.; Jass, J. Metal Contaminated Soil Leachates from an Art Glass Factory
Elicit Stress Response, Alter Fatty Acid Metabolism and Reduce Lifespan in Caenorhabditis Elegans. Sci. Total Environ. 2019, 651,
2218–2227. [CrossRef] [PubMed]

155. Darabi-Golestan, F.; Hezarkhani, A. High Precision Analysis Modeling by Backward Elimination with Attitude on Interaction
Effects on Au (Ag)-Polymetallic Mineralization of Glojeh, Iran. J. Afr. Earth Sci. 2016, 124, 505–516. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.geoderma.2019.114011
https://doi.org/10.1007/s10653-020-00603-5
https://doi.org/10.1016/j.dib.2017.07.008
https://www.ncbi.nlm.nih.gov/pubmed/28761913
https://doi.org/10.1016/j.gexplo.2017.05.007
https://doi.org/10.1016/j.scitotenv.2018.10.067
https://www.ncbi.nlm.nih.gov/pubmed/30326454
https://doi.org/10.1016/j.jafrearsci.2016.09.030

	Introduction 
	Evaluation of Ecotoxicity Modeling Methodologies 
	Individual Chemical Modeling 
	Similar Mode of Action Approach 
	Dissimilar Mode of Action Approach 
	Selection between the CA and IA Modeling Approaches 

	Whole-Mixture Based Modeling 

	Case Studies of Toxicity Modeling Applications 
	Nanoparticles Toxicity Studies 
	Water Toxicity Modeling Studies 
	Soil Toxicity Modeling Evaluation for Water Quality 

	Limitations and Future Research Studies 
	Conclusions 
	References

