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Abstract: The carbonaceous particles represent a significant fraction in the particulate matter (PM)
and are considered an environmental hazard due to their effects on climate and health. The main
goal in this research is to identify and analyze the scope that have been achieved so far on the
characterization and measurement of the carbonaceous fraction present in PM, a great contribution
to global pollution and thus to the deterioration of public health. The ProKnow-C methodology
was used to build a bibliographic portfolio and perform a bibliometric and systemic analysis of the
information found in the chosen databases. The contribution of these carbonaceous compounds to
PM is very significant, reaching values up to 50%. The most used methods for the determination of
organic and elemental carbon are thermo-optical reflectance and transmittance. Positive Factorization
models are used worldwide to determine potential sources of particulate matter emissions. Even
though various studies have been developed to understand these carbonaceous substances, there are
several limitations in the measurements and limited knowledge on the subject. The positive outcomes
and future possibilities were analyzed as well.

Keywords: pollution; particulate matter; organic carbon; elemental carbon; characterization;
measurements

1. Introduction

Atmospheric pollution is a global problem that is closely related to the way in which
man satisfies his needs and develops the everyday activities, which depend on industrial
production, energy generation, and transportation, all of them generating atmospheric
pollutants that deteriorate air quality [1]. A pollutant of interest in the deterioration of
air quality is particulate matter (PM), also known as atmospheric aerosol. PM is defined
as the suspension of fine solid or liquid particles, with a wide variety of anthropogenic
and natural sources, whose presence in the atmosphere can be due to direct emissions
or secondary formation from gaseous precursor species [2,3]. Particulate matter can be
classified according to its origin, formation mechanism, chemical composition, and size.
PM10 and PM2.5 particles are those whose aerodynamic diameter is equal to or less than
10 µm and 2.5 µm, respectively [4]. This contaminant is the cause of various effects on
human health, mainly generating pulmonary and cardiac effects. Exposure to PM not only
significantly affects children and older adults, but especially people with lung and heart
diseases [2].

Due to the various emissions sources, PM has a varied geochemical composition.
Within the compounds of PM, carbon (organic and inorganic) is especially relevant, since
various studies have found that it represents a significant percentage of its contents [5–7],
especially black carbon, which is defined as an unwanted by-product of the incomplete
combustion of fossil fuels and biomass, and encompasses a wide variety of carbonaceous

Sustainability 2023, 15, 8717. https://doi.org/10.3390/su15118717 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15118717
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-3666-0767
https://orcid.org/0000-0001-7932-7046
https://orcid.org/0000-0003-4948-0482
https://doi.org/10.3390/su15118717
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15118717?type=check_update&version=1


Sustainability 2023, 15, 8717 2 of 23

substances, from partially charred plant residues to highly graphitized soot [8]. Black car-
bon is a solid composed almost entirely of elemental carbon, which absorbs solar radiation
at all wavelengths [9]. Brown carbon is another organic carbonaceous particle emitted in
biomass burning processes able to absorb ultraviolet and visible solar radiation [10].

There are several methods and equipment for on-line and offline measurements of
carbonaceous aerosols, which are used to know not only the optical properties but also
the concentrations of these compounds. Generally, optical properties are tested by mea-
suring the light absorption with spectrophotometers, aethalometers, absorbance analyzers,
and more recently, using thermo-optical equipment [11]. One of the most widely used
equipment is the aethalometer, which measures the attenuation of light passing through
a filter on which the carbonaceous aerosol is deposited. This attenuation signal, together
with the deposition area and the volume of air sampled, is used to determine parameters
such as the absorption coefficient [12]. Thermo-optical processes are most used for off-line
measurements, during these processes ambient air samples are collected on heat resistant
filters and a small portion of the filter is subjected to temperature increases and stepwise
changes of atmospheres (usually inert helium atmospheres and then helium/oxygen mix-
ture) [13]. The carbon present in the PM sample undergoes a volatilization process and is
oxidized to carbon dioxide (which can be determined by an infrared detector) or reduced to
methane, quantified by a flame ionization detector [14]. Several temperature protocols exist
for these methods, differing in the temperature set points used and the residence times at
each temperature step [15]. Usually, the filter material used for the determination of these
aerosols is quartz fiber, due to its resistance to high temperatures.

These carbonaceous aerosols have been considered an environmental problem because
they affect human health and climate change. In terms of health effects, exposure to this
substance can be associated with cardiovascular and respiratory diseases, cancer, and even,
congenital malformations [16–19]. In the case of climate effects, elemental carbon, due to its
special characteristic of strong absorption, contributes to the warming of the atmosphere
and the darkening of the surface, disturbing or influencing the hydrological cycle through
changes in variables such as latent heat, modifying circulation, and convection patterns [9].
Black Carbon is considered the second largest contributor to global warming after carbon
dioxide [7]. On the other hand, organic carbon (OC) is a dispersal medium and exerts a
negative climatic forcing influence [6].

Some studies have used the effective carbon ratio (ECR), which is an indication of
atmospheric warming due to carbonaceous aerosols [19–21]. This concept was proposed by
Safai, et al., in 2014 [22] to better associate carbonaceous atmospheric aerosols with climate
change. This relationship is defined as ECR = Secondary Organic Carbon/(Primary Organic
Carbon + Elemental carbon). Primary organic carbon and elemental carbon (POC and EC)
are potential light absorbing species and therefore contribute to global warming. Secondary
organic carbon (SOC) scatters solar radiation. High values (≥0.7) of ECR indicate low
POC and EC, leading to reduced atmospheric warming effects of combustion aerosols and
increased radiation scattering properties. Low ECR values (≤0.3) indicate high POC and
EC concentrations and contribution to global warming.

Figure 1 shows typical images of critical polluted days during 2022 at Medellin,
Colombia. Figure 1a shows a long-distance view of the valley, showing the pollution during
the day hours. Figure 1b shows typical filters used for collecting samples. Figure 1c,d show
PM emissions of fixed and mobile sources respectively.

This review article summarizes and analyses the current state of the art of the charac-
terization and measurements of the carbonaceous fraction present in PM. Since this is a
critical subject for both environment and human health, this research analyzes the gaps
in knowledge, advantages, and opportunities of the current technologies, and draw plans
and perspectives to have initiatives, research, and developments that contribute to the
mitigation of such a global issue.
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Figure 1. (a) Pollution in Aburrá Valley during a period of air quality episode management in 2022; 
(b) Particulate matter filters collected at monitoring stations in the Aburrá Valley; (c) Emissions from 
fixed sources; (d) Emissions from mobile sources. 
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Figure 1. (a) Pollution in Aburrá Valley during a period of air quality episode management in 2022;
(b) Particulate matter filters collected at monitoring stations in the Aburrá Valley; (c) Emissions from
fixed sources; (d) Emissions from mobile sources.

2. Materials and Methods

The current study identifies and analyzes the scientific production available on re-
search regarding the characterization and measurement of the carbonaceous fraction of
particulate matter (PM), especially carbonaceous aerosols, such as brown carbon and
black carbon. The methodology used was the Knowledge Development-Constructivist
process, known as the ProKnow-C methodology. It consists of four phases or struc-
tural blocks [23,24]: (a) Selection of the bibliographic portfolio; (b) Bibliometric analysis;
(c) Systemic analysis; and (d) Research questions. Figure 2 displays the methodology used
in this research.

For the selection of the bibliographic portfolio, the topic of interest, keywords, and
databases were established. The search commands, or equations, were built by combining
the keywords and the Boolean operators. The delimitations were established, which
included the type of document, language, and publication year, all this, according to
the methodology established by Enssil in 2014. Thus, the search was limited only to
scientific articles from the year 2013 in English and Spanish, but due to the large volume of
information, another document selection filter was used from 2018 onwards.

The documents found were stored in the Mendeley bibliographic manager, obtaining
an initial database that was later filtered to discard documents that were not related to
the topic of interest. A bibliometric analysis was carried out on the already consolidated
bibliographic portfolio, where characteristics of the entire set of documents such as authors,
journals, keywords, and publication dates are identified, and thus, the representativeness
of the documents was analyzed. Then, having the representative articles of the topic of
interest, a complete reading of them was carried out to make a systemic analysis [24].
Table 1 summarizes the process carried out with the ProKnow-C methodology.
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Table 1. Search commands used to obtain the investigated information.

Command Search Commands

1 “Determination” AND “Carbon Compounds” AND “Particulate Matter”

2 “Chemical Analysis” AND “Carbon Compounds” AND “Particulate Matter”

3 “Techniques” AND “Determination” AND “Carbon compounds” AND
“Particulate matter”

4 “Techniques” AND “Chemical Analysis” AND “Carbon Compounds” AND
“Particulate Matter”

5 “Carbon” AND “Air pollution” AND “Particulate Matter” AND “Emission
sources”

6 “Characterization” AND “Carbon compounds” AND “Air pollution”

7 “Characterization” AND “Carbon compounds” AND “Air pollution” AND
“Particulate Matter”

8 “Emission sources” AND “Carbon compounds” AND “Air pollution” AND
“Particulate Matter”

9 (“Carbon compounds” OR “Carbon”) AND “PM10” AND “PM2.5” AND
“Determination” AND “Techniques”

10 “Techniques” AND “Chemical Analysis” AND “Determination” AND “Carbon
compounds” AND “Particulate matter” AND “Filters”

11 “Brown Carbon” AND “Black Carbon” AND “Particulate Matter”

12 “Brown Carbon” AND “Black Carbon” AND “Particulate Matter” AND “Water
Soluble Organic Carbon”

13 “Brown Carbon” AND “Black Carbon” AND “Particulate Matter” AND “Water
Soluble Organic Carbon” AND “Air Pollution”

14 “Water Soluble Organic Carbon” OR “Brown Carbon” OR “Black Carbon” AND
“Characterization” AND “Air Pollution”

15 “BrC” AND “BC” AND “WSCO” AND “PM” AND “Chemical Analysis” AND
“Air Quality”

16 “Water Soluble Organic Carbon” AND “Particulate Matter” AND “Air
Pollution” AND (“Techniques” OR “Chemical Analysis”)

17 “Water Soluble Organic Carbon” AND “Characterization” AND “Particulate
Matter” AND “Air Pollution” AND (“Chemical Analysis” OR “Techniques”)

18 “BrC” AND “BC” AND “WSCO” AND “PM” AND “Air Quality” AND
(“Chemical Analysis” OR “Characterization” OR “Techniques”)

3. Results

A total of 9 databases and 18 search commands were selected from the search, finding
3507 documents. Eliminating documents without data access, repeated, or unrelated to
the subject, a total of 2456 articles were obtained. Subsequently, a consolidated of 853
representative articles were filtered. This value represents a large volume of information,
and thus, the search was delimited from the year 2018 onwards, obtaining a total of 462
articles. From these, 146 were selected as representing the bibliometric matrix of the state
of the art. Finally, 110 articles were targeted as corresponding to the systemic analysis of
this search (Table 2).
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Table 2. Compilation of results of the search from the current research.

Compilation of Results

Raw articles 3507

Articles not repeated and with access 2456

Representative articles (2018 onwards) 462

Bibliographic portfolio 110

Figures 3 and 4 show which are the countries and journals with the highest number of
articles related to the topic of characterization and measurement of carbon in PM, according
to the selected articles. It is observed that India and China lead the scientific production
related to this topic.
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4. Discussion
4.1. Carbonaceous Fraction Present in Particulate Matter

Carbonaceous aerosols constitute representative fraction within the particulate matter
(PM). These species are usually classified as organic and elemental carbon [6,25,26]. Some
studies have determined that the contribution of this fraction to PM2.5 particulate matter
can be 25% for organic carbon (OC) and 22% for elemental carbon [27]. Other studies
mention that the carbonaceous fraction may represent 50% of the PM [28]. Buchunde et al.,
found that total carbon mass accounted for about 55% and 90% of PM2.5 during winter and
summer seasons, respectively. OC concentration contributed 42% (in winter) and 79% (in
summer) to the PM2.5 concentration, while EC concentration contributed about 13% (in
winter) and 12% (in summer) of PM2.5 [29]. Other authors such as Moretti et al., [17] have
found that that carbonaceous compounds contribute between 20% and 35% of PM10 and
between 20% and 45% of PM2.5.

These carbonaceous particles mainly originate during the incomplete combustion
processes of fossil fuels and biomass [30]. Elemental Carbon is considered as the fraction of
carbon that does not volatilize at low temperature, with prolonged photochemical useful
life, is generally classified as a primary pollutant; while the OC that represents the organic
fraction of the carbonaceous material, can come from primary and secondary sources, the
latter being the product of oxidation of volatile organic compounds that are present in the
atmosphere during photochemical reactions [17,26,28,31]. Organic carbon encompasses
organic compounds (aliphatic, aromatic compounds and acids), and it is hygroscopic,
acting as a cloud condensation nucleus and a scattering system for the solar radiation. In
contrast, elemental carbon is hydrophobic and efficiently absorbs solar radiation [32].

Within these two classifications, other components of interest can be found, such as
black carbon, which encompasses a wide variety of carbonaceous substances and is an
almost impure form of elemental carbon with structures very similar to graphite [8]. Some
of the definitions of this component of PM have been based on its physical or chemical
properties, since it is the fraction of total carbon that presents high absorption in a broad
spectrum of visible and infrared wavelengths. Black carbon (BC) is frequently used for
optical determination of the carbon content in the PM with attenuation or absorption
measures. Black carbon aerosol measured by optical absorption methods is known as
equivalent black carbon [33]. Measurements of the concentrations of this component are
complex since it does not have a sufficiently clear chemical definition [28,34].

Another compound of interest that is part of the carbonaceous fraction of the particu-
late matter is brown carbon, which has a brownish or yellowish appearance and is made
up mainly of carbonaceous organic compounds. It is generally associated with the burning
of biomass, biofuels and has little or even no amount of elemental carbon [8,28]. Generally,
carbonaceous aerosols are mostly composed of organic carbon (OC) reaching values up
to 90% of the total carbon, so elemental carbon (EC) represents a low contribution, being
of around 10% [35,36]. This OC can also be subdivided as primary organic carbon (POC),
which is derived primarily from combustion activities, and secondary organic carbon (SOC),
formed due to oxidation of gaseous precursors such as volatile organic species or through
aging of POC in the atmosphere [29].

Water soluble organic carbon (WSOC) can contribute substantially to the mass of
organic carbonaceous aerosols, as it can account for approximately 10–80% of organic
carbon [37,38]. In addition, it can alter the hygroscopic properties of aerosols and affect
global climate change because some of its components, for example, brown carbon and
humic substances have light absorbing properties [39]. This compound generally has
several sources such as primary emission from biomass burning, fossil fuel combustion, and
photochemical oxidation of organic precursors of anthropogenic and biogenic origin [40].
Biomass burning is a major source of WSOC, so along with levoglucosan and potassium
are considered good tracers of this emission source [30,41].

Table 3 summarizes some definitions and properties of carbonaceous species such as
elemental carbon, organic carbon, black carbon, and brown carbon.
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Table 3. Definitions and characteristics of some carbonaceous species.

Carbonaceous
Specie Definition Emission Sources Properties or Characteristics

EC 1

Primary pollutant that originates
from the incomplete combustion of
carbon-based fuels. EC occurs in an
inert state in the atmosphere;
therefore, it can be a direct indicator
of the degree of air pollution in urban
areas [42,43]. It refers to the fraction
of carbon that is oxidized in the
combustion analysis above a certain
temperature threshold, and only in
the presence of an oxygen-containing
atmosphere [10].

It is generated in the
combustion of fossil fuels
and the burning of
biomass [20,44].

Ability to absorb solar radiation
causes positive radiative forcing,
generating impacts on climate change.
It is ranked as the second most
important contributor to global
warming after CO2 [43].
It is the fraction of TC carbon that
does not volatilize at low
temperatures, generally below
550 ◦C [28].
It plays an important role in reducing
visibility [44].
It is highly refractive [29].

OC 2

It can be divided into primary and
secondary OC. Primary OC is emitted
from biogenic and anthropogenic
sources. Secondary OC is formed
through chemical reaction of gaseous
precursors, including volatile organic
compounds [42,43].

The main anthropogenic
sources of OC in the
atmosphere are vehicle
exhaust and combustion
of fossil fuels and
biomass [29].
Other sources may be the
degradation of
carbon-containing
products (e.g., vegetation,
windblown biological
particles) [17]

It has an impact on climatic change
due to its ability to absorb and scatter
radiation [44].
It can act as cloud condensation
nuclei [44].
It comprises a wide variety of organic
compounds (aliphatic, aromatic and
acid compounds) [22].

BC 3

It is a kind of carbonaceous particle in
the air that forms during combustion
and is emitted when there is
insufficient oxygen and heat available
for the combustion process to
completely burn the fuel [45]. BC is
also operationally defined as the TC
fraction that exhibits high absorption
over a broad spectrum of visible and
infrared wavelengths. The acronym
BC is frequently used to identify the
results of optical determination of
carbon content in PM, as in the case
of attenuation and/or absorption
measurements [28].

Anthropogenic sources
such as diesel engines and
to a lesser extent gasoline
engines. Utility generating
units that use fossil fuels.
Industrial boilers.
Residential combustion
sources (furnaces,
fireplaces, wood stoves).
Open biomass burning
sources [8].

Black carbon is the most effective
form or particulate matter, by mass,
at absorbing solar energy [8].
BC can absorb a million times more
energy than CO2 [9].
A major climate warming pollutant in
regions affected by combustion
emissions [9].
BC originates as tiny spherules,
ranging in size from 0.001 to 0.005
micrometers (µm), which aggregate
to form larger particles (0.1 to
1 µm) [9].

BrC 4

It is another product of incomplete
combustion. BrC particles, referred to
as brown carbon to reflect its
characteristic brown appearance, are
found in biomass and biofuel
combustion soot and contain little or
no elemental or black carbon [8]. BrC
is a fraction of OC generally
associated with biomass burning [28].
BrC can be directly emitted as a
product of incomplete combustion, or
it can be formed in the atmosphere as
pollutants age [9].

Atmospheric BrC can
come from biomass
burning, coal combustion,
secondary formation and
vehicle emissions [46].

It contributes considerably to the
absorption of the visible and
ultraviolet regions of the light
spectrum [46].
Is less efficient at capturing solar
energy than BC [9].
It can be referred to as “tar balls” or
“carbon spheres”, ranging in diameter
from 0.03 to 0.5 µm [9].
The half-life of BrC in the atmosphere
during biomass burning is 9 to 15 h,
although it varies from case to
case [47].

1 EC: Elemental Carbon; 2 OC: Organic Carbon; 3 BC: Blac Carbon; 4 BrC: Brown Carbon.
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As mentioned above, carbonaceous aerosols make up a large part of the particu-
late matter (PM). Below is Table 4 with some studies that have tried to determine the
contribution of these components to the particulate matter.

Table 4. Contribution of the carbonaceous fraction to PM.

Percentage Carbonaceous Aerosol PM Size Place References

25%, 22% (KS Site)
35%, 8% (BG Site)

OC 1, EC 2

OC, EC
PM2.5 Mumbai, India [27]

41%, 53% EC TSP Kathmandu Valley, Nepal [48]

~30% EC PM2.5 Changzhou, China [49]

11.8% Carbon compounds PM2.5 Nanchang subway, China [50]

38%
27%, 11%

TC 3

OC, EC
PM2.5 National Park in Bhopal, central India [51]

42% (Winter)
79% (Summer)
13% (Winter)

12% (Summer)
55% (Winter)

90% (Summer)

OC
OC
EC
EC
TC
TC

PM2.5 Western Ghat Mountains, India [29]

24.1% (2012)
22.4% (2013) TC PM2.5

Debrecen,
Hungary [52]

13.81%
16.37%
1.16%
1.59%

OC
OC
EC
EC

PM10
PM2.5
PM10
PM2.5

Monte Curcio, Italy [17]

22.48%
9.16%

45.18%

OC
EC
TC

PM1 Industrial area of Delhi, India [53]

18.6%
20.6%

TC
TC

PM10
PM2.5

Eastern Himalaya, India [54]

22.5% TCA 4 PM10 Delhi, India [19]

26.0%
28.9%
24.4%

TCA
TCA
TCA

TSP
TSP
TSP

Three Locations in Uttarakhand
Himalaya, India [55]

8.27 ± 5.00%
6.63 ± 4.49%

BC
BC

PM2.5
PM10

Yaoundé, Cameroon [56]

17.3%
16.2%

OC
EC

PM2.5
PM2.5

Delhi, India [57]

49.8% TC PM2.5 Córdoba, Argentina [58]

35.2%
26.6%

Carbonaceous species
(OC + EC)

Carbonaceous species
(OC + EC)

PM0.5–1.0
PM2.5–10

Kuala Lumpur, Malasia [59]

48%
26%

Carbonaceous species
(OC + EC)

Carbonaceous species
(OC + EC)

PM1
PM10

Elche, Spain [44]

42.5% Carbonaceous species
(OC + EC) PM2.5 Yibin, China [46]

~33%
~40%

TC
TC

PM10
PM10

Rural station in southern Poland
Urban station in southern Poland [42]
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Table 4. Cont.

Percentage Carbonaceous Aerosol PM Size Place References

12.8%, 2.4%
9.8%, 2.4%

13.9%, 4.9%
15.3%, 4.4%
15.1%, 4.0%

OC, EC
OC, EC
OC, EC
OC, EC
OC, EC

PM10
PM10
PM10
PM10
PM10

Amsterdam (the Netherlands)
Wijk aan Zee (the Netherlands)

Antwerp (Belgium)
Leicester (United Kingdom)

Lille (France)

[20]

14.8%, 6.7% OC, EC PM2.5 Wuhan, China [60]

45–55% Carbonaceous fraction PM10 Bogotá, Colombia [61]

9.11–40.35% TC PM1 Changchun, China [62]
1 OC: Organic Carbon; 2 EC: Elemental Carbon; 3 TC: Total Carbonaceous; 4 TCA: Total Carbonaceous Aerosols.

The variation in the concentrations of carbonaceous compounds such as EC and
OC, and their contribution to PM can be attributed to different factors such as particle
size, time of the year wind patterns, temperature, changes in boundary layer dynamics,
geographical location, different human activities, intensity of vehicular traffic, and different
types of industrial activities. For example, in the Delhi Industrial area, high OC and EC
concentrations occurred in the post Monsoon season due to biomass burning emissions
and contribution from fireworks of Diwali festival [53]. While, for the case of Changchun
in the Northeast China, the highest OC and EC values were produced by a sandstorm [62].
Buchunde et al., [29] indicated that OC concentrations increased in the summer season,
while EC concentrations occurred in the winter season. The significant contributions of
OC to PM during the summer were attributed to increased photochemical production of
OC through oxidation of certain volatile organic compounds. The sampling site being a
high-altitude tropical station surrounded by forests and vegetation possesses high biogenic
production of secondary particulate organics enhanced by photochemical processing due to
seasonal high temperatures. Moretti et al., [17] indicated that in rural sites, OC concentration
increases in warm periods, whereas, as for traffic and urban sites, seasonal trends of OC and
EC reach the highest levels during winter. Unfavorable meteorological conditions for the
dispersion of carbonaceous aerosols may prevail in winter, as low wind speed, atmospheric
stability, and lower boundary layer height may increase OC and EC concentrations in the
atmosphere [53].

4.2. Health Effects

PM is considered the fourth highest risk factor for human health and the greatest
environmental hazards. In 2016, outdoor air pollution caused about 4.2 million premature
deaths worldwide [63].The effects of PM exposure depend on their size and composition.
Organic and elemental carbon concentrations present in PM have been associated with
cardiovascular mortality and morbidity [16–18,64]. During the combustion or emissions
of this carbonaceous fraction, toxic gases, volatile compounds, and hydrocarbons are
generated, which are the cause of the deterioration of the respiratory and cardiovascular
systems [19]. Premature death is also a consequence of exposure to the carbonaceous
fraction, with estimations that every ten thousand premature deaths are caused by BC each
year [65,66]. Forest fires are emission sources of these carbonaceous compounds as well,
so exposure to these events has been associated with increased hospital admissions and
respiratory, cardiovascular, and cerebrovascular symptoms in the general population [67].
But these are only one of the sources that people can be exposed to these pollutants. Indoor
pollution is also an exposure event due to the fuels used for cooking. A study carried out
in Colombia regarding the exposure to PM2.5 and black carbon of people with disabilities
living in rural areas show that people with disabilities who spend most of the time at
home can develop respiratory conditions or worsen current diseases such as hypertension
or chronic obstructive pulmonary disease [68]. Traffic is another source of emission of
carbonaceous particles, such as BC, and it has been associated, in addition to coronary
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risks, to deterioration in cognitive abilities [69]. Inhalation of black carbon and primary
organic aerosols (POC) generate oxidative stress and inflammation, leading to respiratory
and cardiovascular diseases. Both BC and POC may contain primary ultrafine combustion
particles that can carry harmful species such as polycyclic aromatic hydrocarbons [70].

In Delhi, India, a study showed that exposure to polycyclic aromatic hydrocarbons
(PAHSs) bound to carbonaceous species of PM increased the risk of cancer. They exposed
that if the population of Delhi inhales the concentrations found of PAHs throughout their
lives, cancer cases could increase by 25 cases per million inhabitants [57]. These PAHs as
components of OC, in addition to being carcinogenic, can be mutagenic and teratogenic,
which represents a severe threat to human health [71]. Other studies have evaluated the risk
of lung cancer (LCR) attributed to carbonaceous aerosol emission sources, where vehicle
emissions and biomass burning contributed to a greater extent to LCR with 40.3% and
31.8% respectively [72].

4.3. Environment Effects

The carbonaceous fraction of the PM not only affects air quality, visibility, human
health, but also has an adverse effect on the climate due to its optical properties. This is
because it affects the radiative balance of the earth due to its ability to absorb light, causing
heating of the atmosphere and light scattering, producing a cooling effect. In addition, it
can influence the hydrological cycle through changes in variables such as latent heat and
by modifying circulation and convection patterns [12,48].

Black carbon (BC), associated with elemental carbon (EC), is a strong absorber of visible
light, making it a promoter of climate change, since after carbon dioxide, it is the second
largest contributor to global warming due to positive radiative forcing it exerts [73]. On the
other hand, organic carbon (OC) scatters light, although compounds such as brown carbon
(BrC) that are part of OC could contribute to the light absorption process, but it does not do
so in the entire visible UV spectrum as the BC, but rather at shorter wavelengths [12,74].

One of the effects of light absorption by carbonaceous aerosols is the darkening of
the surface of glaciers due to the deposition of this pollutant, decreasing the planetary
albedo and accelerating ice melting processes [28]. Figure 5 describes how the presence of
carbonaceous aerosols like the black carbon (BC) emitted by various sources affects climatic
processes in the environment.

4.4. Measurement Equipment/Techniques

Several studies that aim to determine the organic and elemental carbon present in PM
have used quartz filters, because this is required by the equipment for the determination
or quantification of these carbonaceous substances. The most commonly used equipment
is the Carbon Analyzer DRI, 2001 as shown in Table 5. The principle of operation of this
equipment is by means of reflectance and thermo-optical transmittance methods. This ana-
lytical technique is based on the conversion of the carbonaceous fraction through pyrolysis
into methane. By means of reflectance or transmittance, the thermal evolution of the sample
is followed when it is subjected to a change, ranging from room temperature to about
550 ◦C. In this range, devolatilization of the organic fraction is observed. At temperatures
above 550 ◦C, devolatilization of the elemental carbon fraction is observed [75,76]. The
most commonly used protocols for the quantification of organic and elemental carbon
are the National Institute for Occupational Safety and Health (NIOSH) protocol, and the
Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol [26,77].
Currently, both Sunset and DRI carbon analyzers are instruments capable of operating with
any thermal protocol [78].

The main difference between the two most common thermal protocols (NIOSH and
IMPROVE) is the temperature regime used for the determination of organic and elemental
carbon. With NIOSH, the temperature is raised to 870 ◦C for OC determination, whereas in
IMPROVE, it is raised to 550 ◦C. This could mean that some of the carbon that is quantified
as organic in NIOSH can be quantified as elemental with IMPROVE [79,80]. There is



Sustainability 2023, 15, 8717 12 of 23

another commonly used protocol developed by Cavalli et al., in order to decrease the
variation of OC and EC measurements compared to the other protocols. This protocol is
the European Supersites for Atmospheric Aerosol Research 2 (EUSAAR 2). It also differs in
combustion temperatures, residence time at each temperature, atmospheric environment
composition, and optical correction schemes [81,82].
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Other equipment used for the direct measurement of black carbon are multi-wavelength
aethalometers, which are optical methods for the quantitative determination of carbon
concentration [30,33]. In this case, the attenuation of the intensity of the light passing
through the particulate matter filter is associated with an increase in the material collected.

Although in most of the literature reviewed in this investigation this equipment
is the most used to perform quantifications or measurements of concentrations of the
carbonaceous fraction in PM, there are other technologies that also allow this quantification,
such as soot particle aerosol mass spectrometers, single particle soot photometers, multi-
angle absorption photometers, and photoacoustic extinguishers [17,28,34].

Table 5. Equipment used for measurement or carbonaceous aerosols.

Equipment Technique/Method Protocol Carbonaceous
Aerosols Filter References

Sunset Carbon
Analyzer

Thermal/Optical
Reflectance IMPROVE_A OC, EC

concentrations Quartz fiber [16,26,48,58,83–85]

Carbon Analyzer DRI,
2001

Thermal/Optical
Reflectance IMPROVE_A OC, EC

concentrations Quartz fiber [19,49,51,53–
55,57,65,72,81,86–100]
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Table 5. Cont.

Equipment Technique/Method Protocol Carbonaceous
Aerosols Filter References

Lab OC-EC Aerosol
Analyzer

Thermo-Optical-
Transmittance NIOSH OC/EC

concentrations Quartz fiber [101,102]

Aethalometer (Magee
Sci., Inc., USA, Model

AE-33)

DualSpot
Multi-wavelength

absorption
technique

BC concentrations Quartz Fiber [12,33,69,103–113]

OC-EC analyzer (DRI
Model 2015)

Multiwavelength
Thermal/Optical IMPROVE_A OC/EC

concentrations Quartz fiber [27,50,74,114–118]

OC-EC analyzer
(model 5 L, Sunset

Laboratory Inc.,
Tigard, OR, USA)

Thermal Optical
Transmittance EUSAAR_2 OC/EC

concentrations Quartz fiber [17,52,119–123]

EC-OC carbon
analyzer (Model no-4F,
Sunset laboratory Inc.)

Thermal Optical
Transmittance EUSAAR_2 OC/EC

Concentrations Quartz fiber [124,125]

OC-EC analyzer Thermal Optical
Transmittance NIOSH.1996 OC/EC

concentrations Quartz fiber [126]

Aethalometer (Magee
Scientific/Teledyne

633)

DualSpot
Multi-wavelength

absorption
technique

- 1 BC
concentrations - [67]

Micro Aethalometer
(AE51) - - BC concentrations - [69,85,127,128]

Multiangle absorption
photometer (MAAP,
Thermo-Scientific,

model 5012)

- . eBC
concentrations - [17,125,129]

OC-EC analyzer from
Sunset Laboratory

(Model 4G)

Thermal Optical
Transmittance NIOSH 5040 OC/EC Quartz Fiber [32,117,130–132]

EEL M43D Smoke
Stain Reflectometer

(SSR)
- - BC

concentrations

Nucleopore
grease-coated

and
track-etched
membrane

filters

[56]

Dual-wavelength
optical

transmissometer
(SootScan OT21,
Magee Scientific

Thermal Optical NIOSH

Bc
concentrations

Bc
concentrations

Teflon filter
papers

Quartz Fiber
[15,133]

Sunset Laboratory
Dual-Optical

Carbonaceous
Analyzer.

Thermal Optical EUSAAR_2 OC/EC
concentrations Quartz fiber [15,134]

Carbon analyzer
(Sunset Laboratory)

Tthermal-Optical
Transmittance NIOSH870 OC/EC

concentrations Quartz fiber [39,125,129,135–137]

Soot particle aerosol
mass spectrometer

(SP-AMS)
- - rBC - [138]
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Table 5. Cont.

Equipment Technique/Method Protocol Carbonaceous
Aerosols Filter References

Seven-
wavelength

aethalometers (Model
AE-31, Magee

Scientific)

Multi-wavelength
absorption
technique

- BC - [18,139]

OC-EC analyzer
(model 5 L, Sunset

Laboratory Inc.)

Thermal Optical
Reflectance IMPROVE_A OC/EC

concentrations Quartz fiber [66]

Elemental analyzer
(Vario EL III) - - OC/EC

concentrations -

Dual-wavelength
Aethalometer (Model

AE22, Magee
Scientific)

- . BC - [140]

Photometer
Low-cost Aerosol

Black Carbon Detector
(ABCD)

- - BC
concentrations - [141]

1—Dash: To indicate that the reference does not contain information on techniques/methods, protocols or filters used.

4.5. Identification of Emission Sources

Several studies have used the factorization matrix to identify sources of PM or the
substances that make it up (Table 6), such as elemental and organic carbon [25,77,142–144].
This method is a bilinear statistical factor analysis model that does not need to know the
profile of the emission source, unlike other methods that need it, such as chemical mass
balance source-receptor models [6].

Table 6. Ratio between organic and elemental carbon determined in several articles.

Ratio
OC/EC PM Size Place Year References

3.03 ± 1.47 PM2.5 Kathmandu Valley, Nepal 2022 [48]

4.64 ± 1.73 TSP Kathmandu Valley, Nepal 2022 [48]

1.5 ± 1.1 PM2.5 Mumbai, India 2021 [27]

4.9 ± 2.7 PM2.5 Mumbai, India 2021 [27]

>8.0 PM10
Indo-Gangetic Plains

of India. 2021 [119]

1.73 ± 0.48 PM2.5–PM10 Rangsit, Thailand (Wet Season). 2021 [83]

2.57 ± 0.67 PM2.5–PM10 Rangsit, Thailand (Dry Season). 2021 [83]

7.0–12.0 PM2.5
Indo-Gangetic Plains

of India (Winter) 2021 [83]

7.0–12.0 PM2.5
Indo-Gangetic Plains

of India (Winter) 2021 [124]

0.7–38.3 PM10 Northern zone of Colombia 2022 [16]

1.8 ± 2.6 PM2.5 Delhi, India 2021 [57]

2.9 ± 1.4 PM2.5 Wuhan, China 2022 [60]
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In the Metropolitan area of Costa Rica, Herrera Murillo et al., in 2013 [6], by means
of the positive factorization matrix method, identified five main sources of organic and
elemental carbon present in particulate matter PM2.5. Gasoline vehicles, whose emissions
contribute 10% of the concentration of PM2.5, diesel vehicles that contribute 16%, rail traffic
that contributes 4%, wood smoke that contributes 5% and industrial combustion with 9%
contribution to the PM2.5 mass concentration.

In Wuhan China, the positive factorization matrix (PMF) model was also used. There,
6 emission sources were identified. Secondary organic aerosols contributed 34.7% to PM2.5
% concentrations; coal combustion accounted for 20.5%; industrial emissions contributed
19.6% and fugitive dust contributed 9.8%. The PMF analysis indicated that vehicle emis-
sions contributed 10.5% to PM2.5 mass, due to high proportions of POPs and EC. Finally,
the analysis noted that there was an unidentified source that accounted for 4.9%, but could
include industrial combustion, biomass, and other sources [60].

In central Japan, the positive factorization matrix model was used to evaluate the
contribution of biomass burning (BB) to PM, OC and EC concentrations, in addition to the
identification of PM2.5 emission sources. The results indicated that Factor 1 was associated
with biomass burning as a source of PM2.5 particulate matter emission (it contributed
17% to the mass of this pollutant), since it indicated strong presence of levoglucosan and
potassium, which are useful tracers of BB, in addition to presenting significant proportions
of OC and EC (32% and 17%, respectively). PMF results also indicated that BB contributed
significantly to PM2.5, OC and EC at urban, suburban and background sites during the fall
season [145].

In Colombia, this method has also been used to identify the contributions or contribu-
tions from various sources to PM. Silva et al., 2021 [25], carried out a study in the city of
Barranquilla where was observed that the predominant sources of PM10 are attributed to
civil works and resuspended soil with a contribution of 34.2% and marine aerosols with
a contribution of 29.8%. In the case of PM2.5, it was identified that the main sources are
attributed to the burning of fuels and industrial emissions, with contributions of 36% and
23%, respectively. The relative abundances of EC and OC that is, the OC/EC ratio, are
essential to assess the impact of carbonaceous species on climate forcing [29].

The OC/EC ratio is used to identify sources of carbonaceous aerosol emissions, since
these ratios depend on fuel type, quantity, and combustion efficiency [59]. Generally,
these ratios are calculated from data obtained from off-line or laboratory measurements.
However, these data are comparable to Aerosol Organic/Black Carbon (AO/BC) ratios
obtained from on-line measurements with instruments such as mass spectrometers [124].
Generally, high OC/EC levels (3–8) are associated with biomass combustion, while lower
ratios are associated with fossil combustion (0.5–2) [83]. Other studies indicate that values
between 0.7 to 2.4 are related to vehicle emissions, and values between 0.3 to 7.6 are
related to biomass burning [48]. Other studies support that relatively low ratios reflect the
significant impact of coal combustion as well as a high contribution from traffic emissions,
while high values are associated with biomass burning or secondary organic aerosol
(SOC) formation [27,86,146]. There are some authors who have defined OC/EC ratios for
emission source determination as 1.0 to 4.2 for diesel or gasoline vehicle exhaust or fossil
fuel combustion; 16.8–40.0 for wood combustion; 2.5–10.5 for residential coal smoke; and
about 7.7 for biomass burning emission [59].

This ratio is also used to observe the aging of emissions [147]. After release into
the atmosphere, emissions such as those from wood combustion are transformed into a
complex process known as “atmospheric ageing” involving multiphase chemistry, leading
to oxidation and functionalization of particulate and gaseous pollutants [148]. The con-
centration of organic aerosols emitted in wood combustion can be increased by a factor
of two to three times due to the formation of secondary organic aerosols after less than
1.5 days of photochemical ageing [149,150]. Exhaust gases may contain large amounts
of gaseous organic compounds, which can be precursors for the formation of secondary
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organic aerosols due to atmospheric ageing, which changes the physical and chemical
properties of the primary emission [151].

Some authors have identified that the high dominance of organic carbon and the
potential formation of secondary organic aerosols (SOA) are also demonstrated by high
values of the OC/EC ratio [42]. There are studies that mention that when OC/EC ratios are
higher than 2.0, they indicate a possible SOA [6,20,152,153].

5. Summary

It is evident by multiple researches that the exposure to the carbon content present in
particulate matter has a negative impact on human health, generally causing respiratory,
cardiovascular, and carcinogenic problems. This aspect itself supports more research
that could decrease these effects, such a deep knowledge of the characterization and
measurement of the carbonaceous fraction of PM.

There are several methods that allow the determination and quantification of the
carbonaceous fraction present in PM. Among the most widely used worldwide are the
optical reflectance and the transmittance method used by Carbon Analyzer DRI 2001, whose
detection method is the flame ionization detector. However, there are recent studies that
show the existence of other equipment that perform measurements of these carbonaceous
substances and that even seek to reduce the error in the measurements, such as the multi-
angle photometer.

Statistical models such as the factorization matrix and principal component analysis
are tools used elsewhere by the scientific community since they allow establishing the
contribution of potential emission sources to the concentration of PM and the elements
that compose it. In this detailed revision was observed that the subject of understanding
the carbonaceous fraction in PM is a very significant topic almost in all countries, and
it is of great interest to the scientific community given the volume of information found
and the contemporaneity of the references. However, in developing countries there is not
much scientific production on the characterization of carbonaceous compounds present in
the particulate matter emitted. Therefore, it is necessary to develop studies to determine
the composition of PM and identify possible sources of emissions of substances such as
carbonaceous aerosols applicable elsewhere. These characterization studies allow a better
understanding of local air pollution phenomena in places where air quality is an issue of
great interest. An example of these is the Aburrá Valley in Medellin, Colombia, due to the
critical pollution episodes that have occurred since 2016. In addition, these studies allow to
specify measures and strategies for the plans formulated by the environmental authorities
for the management of air quality for the benefit of human health and the environment.
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