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Abstract: In the process of rice straw nutrient bowl tray drying, real-time detection of changes in
moisture content to achieve automatic adjustment of drying factors is one of the important means
to ensure its drying quality. At present, the main method for measuring the moisture content of
rice straw nutrient bowl trays is the drying and weighing method. This method is not only time
consuming, labor intensive, and complex to operate, but also has poor real-time performance, which
cannot meet the demand for real-time detection of the moisture content in the production process
of rice straw nutrient bowl trays. In this regard, a real-time moisture content detection method for
rice straw nutrient bowl trays based on hyperspectral imaging technology was studied. In this study
we took the rice straw nutrient bowl tray during the drying process as the research object, adopted
a single factor experiment, took microwave power, hot air temperature, and hot air speed as the
drying factors, and took the moisture content of the rice straw nutrient bowl tray as the drying
index. The rice straw nutrient bowl tray was dried according to the designed drying conditions.
When drying, we removed the rice straw nutrient bowl tray every 5 min for weighing and collected
hyperspectral image data within the wavelength range of 400~1000 nm until its quality remained
unchanged. A total of 204 samples were collected. Using the average spectrum of the region of
interest as the sample for effective spectral information, spectral preprocessing was performed using
multivariate scattering correction (MSC), standardization normal variables (SNV), and Savitzky–
Golay convolution smoothing (SG) methods. Principal component analysis (PCA) and competitive
adaptive reweighting (CARS) methods were adopted for the dimensionality reduction of the spectral
data. Three prediction models of rice straw nutrient bowl tray moisture content, namely random forest
regression (RF), particle swarm optimization support vector regression (PSO-SVR), and XGBoost
model were constructed using the reduced dimension spectral data. Finally, the performance of
the model was compared using the coefficient of determination (R2) and mean square error (RMSE)
as evaluation indicators. The research results indicate that the PCA-PSO-SVR model established
based on SG method preprocessing has the best predictive performance, with a training set decision
coefficient R2C of 0.984, a training set mean square error RMSE-C of 2.775, a testing set decision
coefficient R2P of 0.971, and a testing set mean square error RMSE-P of 3.448. The model therefore
has a high accuracy. This study achieved rapid detection of water content in rice straw nutrition trays.
This method provides a reliable theoretical basis and technical support for the rapid detection of rice
straw nutrient bowl tray moisture content, and is of great significance for improving the quality of
rice straw nutrient bowl trays; promoting the popularization and application of raising rice straw
nutrient bowl tray seedlings and whole process mechanized planting technology system; improving
soil structure; and protecting the ecological environment.

Keywords: hyperspectral; rice straw nutrition bowl tray; moisture content; particle swarm optimization
support vector regression
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1. Introduction

China is a major agricultural country, producing approximately 1.04 billion tons of crop
straw annually, ranking first in the world in terms of production [1]. At present, in addition
to the “Five Modernizations” technology project [2], there are still about 200 million tons of
straw that have not been developed and utilized annually [1]. The surplus straw is mainly
treated by burning in the field, which not only causes serious environmental pollution and
a large amount of resource waste [3], but also damages the soil’s drought resistance and
moisture retention ability. With the country’s emphasis on environmental protection and
soil fertility, the resource utilization of excess straw has become an urgent problem to be
solved [4,5]. To address the above-mentioned issue, our research group has developed the
rice straw nutrient tray. Rice straw nutrition bowl tray (referred to as rice seedling tray)
is the core of the rice straw nutrition bowl tray seedling cultivation and fully mechanized
planting technology system. It is made mainly from crop straw as the raw material, to
which nutritional additives, sterilization and disinfection agents, biological glue and pulp
are added and processed through processes such as air pressure molding, drying, and
shaping. The production practice has proved that the application of rice straw nutrition
bowl trays seedling raising and whole process mechanized planting technology system to
plant rice can consume a large amount of crop straw, broaden the resource utilization of
straw, significantly improve the quality and yield of rice, improve the soil environment,
increase the content of organic matter in the soil, and enhance soil fertility [4,6].

In the production of rice trays, the drying process is the determining factor for the
drying quality of rice trays [7], and the change in moisture content of rice trays during
the drying process is an important standard for judging the drying quality of rice trays.
At present, the main method for measuring the moisture content of rice seedling trays is
the drying and weighing method, which is not only time consuming, labor intensive, and
complex to operate, but also has poor real-time performance. This poses great difficulties
in studying the changes in moisture content of the rice straw nutrient bowl trays during
the drying process and achieving an automatic adjustment of drying factors through the
real-time detection of the moisture content of rice straw nutrient bowl trays during the
drying process, to ensure their drying quality. With the continuous progress of spectral
technology, the application of moisture content detection based on spectral technology is
gradually increasing. For example, to quickly detect the water content of potato leaves, Sun
Hong [8] and others collected hyperspectral data of 71 leaves, used correlation analysis and
random forest to screen characteristic wavelengths, and established partial least squares
regression models to verify that the set determination coefficients reached 0.933 and 0.941.
Wei et al. [9] used tea as the research object to detect the moisture content and established an
LS-SVR model. The accuracy of the model using both front and back modeling of tea was
0.951 and 0.918, respectively, proving the feasibility of using the hyperspectral prediction
of tea moisture content. Zhang Jue et al. [10] used a hyperspectral imaging system to
quickly, non-destructively, and accurately detect the moisture content of silage corn raw
materials. They obtained hyperspectral images of silage corn raw materials and measured
the actual moisture content using an oven heating method. Based on an improved discrete
particle swarm optimization algorithm, feature bands were extracted and a partial least
squares regression model was established to verify that the set decision coefficient reached
0.81. Dong et al. [11] used hyperspectral technology to obtain hyperspectral data of black
tea and modeled it. Based on the SNV-Si-CARS-ELM model, they successfully predicted
black tea moisture content with a prediction accuracy of 0.994. Li Hong et al. [12] used
hyperspectral technology to study the moisture content of a lettuce canopy and achieved
the visual detection of lettuce canopy leaves. Zhang Zhitao et al. [13] used hyperspectral
technology to study soil moisture content, providing a new method for the rapid detection
of soil moisture content. Liu et al. [14] collected hyperspectral data of pork slices and
developed an MLR model, achieving a testing set accuracy of 0.914 for the water content
detection of pork slices.
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However, current research on using hyperspectral technology to detect moisture
content mainly focuses on soil [15], meat [16], crops [17], and plant leaves [18]. There is no
report on the use of hyperspectral technology to detect the moisture content of rice straw
nutrient bowl trays. Therefore, this study proposes the use of hyperspectral technology for
the water content detection in rice straw seedling trays.

In summary, this study focuses on the water content detection of seedling trays during
the drying process using hyperspectral technology. Using multiple spectral preprocessing
and dimensionality reduction methods, multiple moisture content detection models for
rice seedling trays were constructed. Through comparative analysis, the optimal prediction
model was determined to achieve the rapid water content detection of rice seedling trays.
This provides assurance for improving the drying quality of rice seedling trays and is
significant in promoting the popularization and application of rice straw nutrient bowl
trays seedling raising and whole process mechanized planting technology system.

2. Materials and Methods
2.1. Sample Preparation

The preparation location of the rice seedling tray was the Heilongjiang Province
Ecological Rice Seedling Raising Device and Whole Process Mechanized Engineering
Technology Research Center. During preparation, the crushed rice straw, nutritional
additives, sterilization and disinfection agents, bio glue, and pulp were made into a
slurry in a certain proportion, and compressed into shape using a pneumatic bowl tray-
forming machine under the following working conditions: vacuum degree −0.09 MPa,
holding time 14 s, and adsorption time 5 s. The size of the formed rice seedling tray was
581 (long) × 273 (wide) × 16 (high) mm, with a total of 612 holes and an initial moisture
content of approximately 81% (wet basis). A hot air-assisted microwave dryer was used to
dry the rice seedling tray. The dried rice straw nutrient bowl tray is shown in Figure 1.
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Figure 1. Dried Rice Straw Nutrient Bowl Tray.

This study adopted a single factor experimental design for drying conditions. The
single factor experimental conditions were as follows: a fixed heating temperature of 65 °C,
a hot air speed of 20 m/s, and a change in microwave power of 1000, 1200, 1400, 1600, and
1800 W. The fixed microwave power was 1400 W, the wind speed was 20 m/s, and the
heating temperature was changed to 55, 60, 65, 70, and 75°C. The fixed microwave power
was 1400 W, the heating temperature was 65 °C, and the wind speed was changed to 10, 15,
20, 25, and 30 m/s. A total of 15 sets of experiments were conducted. When drying, we
first ran the hot air-drying system for 10–20 min for preheating, placed the rice seedling
tray on a tray, placed it in the drying room, and dried it according to the designed drying
conditions. During the drying process, the rice seedling trays were weighed every 5 min
and hyperspectral data were collected until the moisture content (wet basis) of the trays
reached about 10%. The collected data were used to establish a hyperspectral moisture
content prediction model.



Sustainability 2023, 15, 8703 4 of 20

2.2. Determination of Moisture Content in Rice Seedling Trays

The specific steps for measuring the moisture content of rice seedling trays were as
follows: we washed the trays and placed them in a hot air-assisted microwave dryer. We
set the temperature of the hot air at 105 ◦C, dried them using a hot air system for 1 h,
took them out and weighed them, and repeated the drying until the quality of the trays
remained unchanged. Then, we placed the rice seedling tray on a tray and weighed it;
placed it in a hot air-assisted microwave dryer and dried it under the designed experimental
conditions; and took it out and weighed it every five minutes to collect hyperspectral data.
The moisture content calculation is shown in Formula (1) [19]:

Dc =
mt −md

mt
× 100% (1)

In the formula, Dc is the moisture content of the material on a wet basis at time t, %;
mt is the mass of the material at time t, g; and md is the dry matter mass of the material, g.

2.3. Spectral Data Collection and Region of Interest Selection

Sample collection requires a darkroom environment, with the light source preferably
confined to a halogen lamp on the experimental platform. Therefore, sample collection
should be conducted in a completely dark room or during the late-night hours. Considering
these factors, the optimal time for sample collection is from 23:00 to 02:00 at night, with all
external light sources in the laboratory sealed off to ensure complete darkness.

The experimental data were collected using a hyperspectral imaging system produced
by Headwall Company, with a spectral range of 400~1000 nm, a sampling wavelength
interval of 0.74 nm, and a resolution of 2~3 nm. We set the parameters as follows: exposure
time was 250 ms, object distance was 450 mm, step length was 120 mm, and movement
speed was 4 mm/s. The image sensor should be fixed, and the seedling tray should be
placed on the loading platform for spectral data acquisition using a line scanning method.
During the collection process, the halogen lamp should be adjusted to its maximum power
of 50 W, and the lampshade should be adjusted to achieve an incident angle of 45◦ on the
surface of the rice seedling tray sample, with the distance between the light source and the
sample surface approximately 20 cm. To reduce the noise caused by system light source
factors or camera dark current interference, after each group of samples was photographed,
a black-and-white calibration correction was performed on the system.

Due to the unevenness of the front of the rice seedling tray and the large height
difference, diffuse reflection may occur. Therefore, the back of the rice seedling tray was
selected for spectral data collection, and holes were avoided when we selected areas of
interest. The selected location is shown in Figure 2.
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2.4. Hyperspectral Preprocessing Methods

The collection process of hyperspectral data is prone to interference from the sur-
rounding environment [20] (such as scattered light, current fluctuations, diffuse reflection,
etc.). Due to the uneven height of the rice seedling tray, there is a significant difference in
the brightness of the image. Therefore, it is necessary to preprocess the rice seedling tray
spectral data. In this article we used Multiple Scatter Correction (MSC), Standardization
Normal Variables (SNV), and Savitzky–Golay Convolutional Smoothing (SG) to preprocess
spectral data. Among them, MSC can effectively eliminate the impact of diffuse reflection
on spectral data [21,22], SNV can eliminate scattering effects by scaling and centering each
individual spectrum [23], and SG can to some extent eliminate the impact of noise caused
by external interference [24,25]. After processing the hyperspectral information through
three preprocessing methods, the spectral data were used as the input variable and the
moisture content of the rice seedling tray was used as the output variable for subsequent
modeling work.

2.5. Dimension Reduction Method

Hyperspectral data contains many spectral bands, and the direct use of full-band
modeling can easily lead to high model complexity and overfitting problems, so it is
necessary to reduce the dimensions of the spectral data before subsequent modeling. There
are two main types of dimensionality reduction methods for hyperspectral data. One
is to perform mathematical transformations on the original spectral data to obtain new
feature combinations, which is called feature extraction; another type is to directly select
effective feature bands from the original spectral data, known as feature selection. Principal
component analysis (PCA) is a commonly used feature extraction method [26], which
has the advantages of low complexity and no parameter settings. It is used by many
researchers for the feature extraction of hyperspectral data. PCA can convert multiple
features into a few principal components, which are uncorrelated linear combinations
of the original variables and can reflect most of the information in the original data [27].
Competitive adaptive reweighted sampling (CARS) is a common feature band selection
method [28], which can improve the collinearity problem between spectral features. The
variables included in this set are the optimal combination of feature variables [29]; in this
study we used two methods, PCA and CARS, to reduce the dimensionality of rice seedling
tray spectral data.

2.6. Modeling Methods
2.6.1. Random Forest Regression

Random forest (RF) belongs to the Bagging algorithm, which can be used to process
high-dimensional data and has a strong adaptability to data sets. It obtains m subsets by
randomly selecting n samples from the training samples and trains a decision tree for each
subset separately; a total of m decision trees are trained. The output of random forest is
the average of the prediction results of m decision trees [30]. In this paper, a random forest
regression model was established based on the classification regression tree (CART). In
the input space D composed of samples, for any partition feature A, the corresponding
arbitrary partition point s was divided into datasets D1 and D2 on both sides. We found
the feature and feature value partition point corresponding to the minimum sum of the
mean squared deviations of D1 and D2, and the expression is:

min
A,s

[min ∑
xi∈D1

(yi − c1)
2
+ min ∑

xi∈D2

(yi − c2)
2
] (2)

where c1 is the sample output mean of the D1 dataset and c2 is the sample output mean of
the D2 dataset.

We repeated the partitioning of the D1 and D2 subspaces until there were no features
to partition; we constructed a regression tree with the nodes at this time.
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2.6.2. Particle Swarm Optimization Support Vector Regression Model

Support Vector Regression (SVR) is a kernel function that transforms the original
nonlinear regression problem into a dual problem in a high-dimensional feature space [31].
It has advantages in small sample, nonlinear, and high-dimensional data. Penalty function C
and insensitive loss function parameters in SVR ε will affect the accuracy and generalization
ability of the model [32,33], but in practical operation, it is difficult to select the optimal
value between C and ε, so particle swarm optimization (PSO) is used for optimization. The
goal of PSO is to enable all particles to find the optimal solution in the multi-dimensional
hypervolume. Firstly, we assigned initial random positions and initial random velocities to
all particles in space. Then, based on the velocity of each particle, the known optimal global
position in space, and the known optimal position of each particle were determined. The
position of each particle was sequentially changed until the particles gather or aggregate
around one or more optimal positions [34].

The principle of the particle swarm optimization algorithm is as follows: The opti-
mization algorithm is a group of particles moving in the search space, influenced by their
own best past position, pbest, and the best past position of the entire group or nearest
neighbors, gbest. The formula for updating the d-th dimensional velocity of particle I in
each iteration is:

vk
id = wvk−1

id = c1r1(pbestid − xk−1
id ) + c2r2(gbestid − xk−1

id ) (3)

where c1 and c2 are acceleration constants used to adjust the maximum step size of learning;
r1 and r2 are random functions used to increase search randomness; and w is the inertia
weight, with a non-negative value, used to adjust the search range of the solution space.

The formula for updating the d-th dimensional position of particle I is:

xk
id = xk−1

id + vk−1
id (4)

where xk
id is the d-th dimensional component of the velocity vector of particle I in the k-th

iteration, vk
id is the d-th dimensional component of the particle I position vector in the k-th

iteration. The flow chart of the particle swarm optimization support vector regression
algorithm is shown in Figure 3.
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2.6.3. Xgboost Model

XGBoost is a gradient-enhanced decision tree (GBDT) [35,36], which has the advan-
tages of high adjustability and fast model training. In this study, a greedy algorithm was
used to divide the tree; that is, we first calculated the loss function of the current tree, and
then took the tree whose loss function decreased the most and whose gain function was the
largest as the shape of the current tree.

2.6.4. Establishment and Evaluation of Regression Models

We used MSC-, SNV-, and SG-smoothing methods for spectral preprocessing. PCA
and CARS methods were also used for spectral data dimensionality reduction. Using
reduced dimensional spectral data, we established RF, PSO-SVR, and XGBoost models.
In this article we used the coefficient of determination (R2) and root mean square error
(RMSE) as evaluation indicators to analyze the fitting effect of the regression model, and
then determined the quality of the model.

R2 = 1−

n
∑

i=1
(yi − ŷ)2

n
∑

i=1
(yi − y)2

(5)

RMSE =

√
n

∑
i=1

(yi − ŷ)2/n (6)

In the formula, yi represents the measured value of the i-th sample; y represents the
predicted value of the i-th sample; y represents the average measurement value; and n
represents the number of samples.

In this study we used ENVI 5.2 for sample region-of-interest selection, drew spectral
curves using Origin Pro 8, used The Unscrambler X 10.4 for spectral data preprocessing, and
used Python 3.6 for spectral data dimensionality reduction and prediction model fitting.

3. Results
3.1. Data Statistics and Analysis

To visually distinguish the differences between samples with different moisture con-
tents from the perspective of spectral curves, the spectral curves with moisture contents
ranging from 0 to 10%, 10% to 20%, 20% to 30%, 30% to 40%, 40% to 50%, 50% to 60%,
and above 70% were averaged, and the average spectral curve is shown in Figure 4. As
shown in the figure, samples with a moisture content of 0–10% have the highest reflectivity,
while samples with a moisture content above 70% have the lowest reflectivity. In the
entire region of 400–1000 nm, the moisture content and reflectance of the rice seedling tray
generally show a trend of higher moisture content and lower reflectance; this is consistent
with previous research. The overall spectral curve exhibits an increasing trend between
400 and 792 nm, reaching the peak of the full spectrum reflectance at a wavelength of
792 nm. The spectral curve shows slight fluctuations between 792 and 877 nm. From 792
to 1000 nm, the spectral curve exhibits a decreasing trend. The peak values of the spectral
curve are 0.947 (0–10%), 0.883 (10–20%), 0.827 (20–30%), 0.779 (30–40%), 0.719 (40–50%),
0.622 (50–60%), 0.501 (60–70%), and 0.369 (70% and above).

3.2. Spectral Preprocessing

The original spectral curve and pre-treatment curve of the rice seedling tray are shown
in Figure 5. Each curve in the Figure 5 represents the spectral values of a specific sample.
From the graph, it can be seen that the original spectral data are relatively scattered, with
a significant difference in brightness and darkness. The spectral data preprocessed by
MSC and SNV are more concentrated than the original spectral data, and the trend and
characteristics of changes are more obvious. The spectral data preprocessed by SG have no
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significant difference compared to the original data, but their curve is smoother, preserving
most of the information in the original data.
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The PCC heatmap of the spectral data is shown in Figure 6. From the figure, it can be
observed that there is a strong correlation between the bands. Therefore, it is necessary to
perform dimensionality reduction on the data.
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3.3. Spectral Data Dimensionality Reduction

The cumulative contribution rates of the top 10 principal components of the new
feature matrix after dimensionality reduction using PCA are shown in Figure 7. From
the figure, it can be seen that the cumulative contribution rates of the first four principal
components of the original spectral data and the spectral data preprocessed by SG gradually
increase, while the cumulative contribution rates after the fourth principal component
do not increase significantly. To ensure that the reduced feature matrix contains as much
information as possible, and to control the complexity of subsequent modeling, the first
four principal components are selected for subsequent modeling work. The cumulative
contribution rate of the first six principal components of the spectral data preprocessed
by MSC and SNV gradually increases, and the cumulative contribution rate after the
sixth principal component does not increase significantly. Therefore, the first six principal
components are selected for subsequent modeling work.

We used CARS to select feature bands from the original spectral data and preprocessed
spectral data. The screening threshold was 0.8, and the Monte Carlo sampling frequency
was 200. The screening process is shown in Figure 8. In the figure, it can be seen that as the
number of runs increases, the number of characteristic wavelengths gradually decreases,
and RMSECV first decreases and then increases. The characteristic wavelength results
extracted by CARS from four different preprocessing methods of spectral data are shown
in Table 1. From Table 1, it can be seen that the order of feature wavelengths extracted from
different preprocessed hyperspectral is: SNV > SG > original hyperspectral > SNV, with
the selected feature wavelengths accounting for 16.57%, 12.12%, 10.10%, and 9.02% of the
total wavelength, respectively. The number of invalid wavelengths removed is 413, 435,
445, and 449, respectively.
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3.4. Detection Results Based on Different Spectral Preprocessing Methods and Dimensionality
Reduction Methods Modeling

To eliminate the influence of human factors on sample partitioning, a random parti-
tioning method was employed in this study. During sample partitioning, the number of
training samples is usually greater than that of testing samples. The ratio of training set
to validation set and to testing set is set to 6:2:2 in this chapter, resulting in 142 training
samples, 41 validation samples, and 41 testing samples. The sample partitioning results are
shown in Table 2. As shown in the Table 2, the mean and standard deviation of the training
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set, validation set, and testing set are all relatively close, indicating a relatively uniform
sample partitioning.

Table 1. Hyperspectral characteristic wavelengths extracted by CARS.

Preprocessing
Method

Number of
Feature Bands RMSECV_min Best Sampling

Times Feature Bands (nm)

NO 50 2.8737 83

472 498 504 505 514 546 567 573 579 588 589 590 592 594 596
597 598 604 609 610 611 612 618 619 620 621 639 640 650 651
655 661 662 665 678 684 685 693 694 695 728 742 743 744 749
792 839 850 940 957

MSC 45 3.4966 87
465 466 486 488 490 497 501 503 504 516 523 554 574 575 581
592 595 596 598 607 611 617 619 620 622 665 684 691 693 696
701 702 703 706 729 731 743 747 817 818 821 825 848 850 939

SNV 82 3.4827 65

463 488 490 494 495 497 501 502 503 504 506 516 528 532 537
542 547 552 554 556 560 572 578 579 581 595 598 607 611 617
618 619 620 622 634 639 640 641 650 651 653 655 657 659 660
661 682 684 689 690 691 692 693 694 695 696 699 701 702 728
729 730 731 743 783 788 789 798 816 817 821 822 825 842 846
847 848 850 876 951 952 957

SG 60 2.8522 76

472 476 480 485 488 495 498 503 505 517 531 567 568 573 580
586 592 596 597 598 599 608 609 612 616 617 618 619 621 640
651 652 655 659 665 666 675 683 684 685 686 692 693 694 695
716 717 730 742 743 792 819 851 852 879 880 890 892 908 938

Table 2. Statistics of rice seedling tray samples moisture content.

Number of
Samples Max (%) Min (%) Mean (%) Standard

Deviation

Training set 122 87.027 4.477 58.454 20.523
Validation set 41 86.475 6.087 52.714 22.762

Testing set 41 87.937 7.415 51.007 24.220

The selection of hyperparameters for each model is shown in the Tables A1–A3. The
process of PSO-optimized SVR is shown in the Figure A1. The results of the rice seedling
tray moisture content model established based on different preprocessing methods and
dimensionality reduction methods are shown in Table 3. The Taylor diagram for the training
and testing datasets is shown in Figure 9.

Table 3. Determination coefficients and mean square error of different modeling methods.

Modeling
Methods

Preprocessing
Method

Dimensionality
Reduction Method R2C RMSEC R2P RMSEP

RF

No
No 0.927 5.884 0.888 7.395

PCA 0.961 4.293 0.940 5.418
CARS 0.934 5.566 0.905 6.815

MSC
No 0.923 6.018 0.898 7.059

PCA 0.934 5.564 0.921 6.200
CARS 0.915 6.333 0.920 6.238

SNV
No 0.961 4.301 0.939 5.437

PCA 0.988 2.385 0.925 6.051
CARS 0.935 5.554 0.902 6.914

SG
No 0.986 2.524 0.930 5.834

PCA 0.986 2.505 0.962 4.311
CARS 0.936 5.480 0.916 6.393

PSO-SVR

No
No 0.903 7.017 0.889 6.832

PCA 0.946 5.203 0.931 5.372
CARS 0.951 4.982 0.943 4.876

MSC
No 0.972 3.714 0.944 4.846

PCA 0.971 3.782 0.943 4.914
CARS 0.965 4.217 0.944 4.868

SNV
No 0.982 3.016 0.949 4.630

PCA 0.969 3.931 0.943 4.886
CARS 0.949 5.068 0.943 4.890

SG
No 0.902 7.039 0.889 6.848

PCA 0.984 2.775 0.971 3.448
CARS 0.967 4.044 0.945 4.825
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Table 3. Cont.

Modeling
Methods

Preprocessing
Method

Dimensionality
Reduction Method R2C RMSEC R2P RMSEP

XGBoost

No
No 0.991 1.933 0.917 6.867

PCA 0.994 1.499 0.948 5.448
CARS 0.990 2.001 0.911 7.129

MSC
No 0.996 1.272 0.916 6.911

PCA 0.993 1.687 0.948 5.402
CARS 0.991 2.000 0.928 6.396

SNV
No 0.999 0.044 0.891 7.893

PCA 0.987 2.360 0.944 5.612
CARS 0.991 1.932 0.923 6.615

SG
No 0.991 1.897 0.911 7.100

PCA 0.994 1.548 0.946 5.549
CARS 0.993 1.662 0.928 6.380
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4. Discussion
4.1. Best Model Analysis

In this paper, RF, PSO-SVR, and XGBoost methods are used to establish a hyper-
spectral prediction model for estimating moisture content. The parameters of the RF and
XGBoost models are selected by drawing learning curves. In the established RF model, SG-
PCA-RF has the best performance; in the established PSO-SVR model, SG-PCA-PSO-SVR
has the best performance; in the established XGBoost model, PCA-XGBoost has the best
performance. The predicted results of these three models are shown in the Figure 10.
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It can be seen from Table 3 and Figure 9 that compared with the untreated spectral
data, the difference between the training set determination coefficient (R2C) and the test set
determination coefficient (R2P) is smaller when the pre-treated spectral data modeling is
used. The RF and PSO-SVR models established using spectral data preprocessed by SG
have better performance, while the XGBoost model established using unprocessed spectral
data has better performance. The R2P of the model established using dimensionality
reduced data is larger, indicating that the model established using dimensionality reduced
data has a better predictive performance. The model accuracy of spectral data modeling
extracted by the PCA algorithm is generally higher than that of spectral data modeling
processed by CARS, which may be due to the fact that the feature matrix extracted by PCA
contains more features related to the moisture content of rice seedling trays.

Overall, the PSO-SVR model is more suitable for establishing a model for predicting
the moisture content of rice seedling trays, followed by RF and finally XGBoost, which
performs poorly. Among all the models, the PSO-SVR model established from the spectral
data processed by SG and PCA performs best. Compared with the original data modeling,
its R2P increases by 0.085 and RMSE-P decreases by 3.384.

4.2. Limitations and Future Work

The drying conditions set in this study represent the typical scenario encountered dur-
ing the drying of seedling trays under conventional conditions. Therefore, the established
model is only effective under conventional conditions. For special drying conditions, it is
necessary to expand the range of seedling tray moisture content samples to enhance the
adaptability of the model.

In our study, due to data availability and equipment limitations, we chose to use the
visible/near-infrared (VNIR) band for water content detection. However, it is worth noting
that besides the primary water absorption bands, there are other sensitive bands that can
reflect water content differences. For instance, the red-edge spectrum in the 680–780 nm
range, where the reflectance increases with decreasing water content. By utilizing these
additional bands, it is possible to predict water content. In future research, we aim to
explore the use of short-wave infrared (SWIR) for water content detection.

The high speed and convenient estimation of moisture content in rice seedling trays
using hyperspectral analysis provides a useful tool for controlling the drying process.
However, the reflectance of rice seedling trays is affected by various components, so the
application of the model needs to be discussed for trays produced with different processes.
With the increase in the number of tray samples, we will continue to optimize the model.

5. Conclusions

This article explores the detection effect of rice seedling tray moisture content using
hyperspectral imaging technology. Multivariate scatter correction (MSC), variable standard-
ization (SNV), and Savitzky–Golay convolution smoothing (SG) were used to preprocess
the spectral data; principal component analysis (PCA) and competitive adaptive reweight-
ing (CARS) were used to reduce the dimensions of the spectral data. Three regression
models, namely random forest (RF), particle swarm optimization support vector machine
(PSO-SVR) and XGBoost were constructed. The following conclusions are drawn: (1) The
R2P of all models can reach above 0.88, indicating that hyperspectral imaging technology
can be used for detecting the moisture content of rice seedling trays. (2) The models R2C
and R2P established using raw spectral data have a significant difference, while the model
established using preprocessed spectral data has a smaller difference between R2C and
R2P. Within the experimental scope of this study, SG preprocessing is more suitable for
the establishment of RF and PSO-SVR models, and unprocessed spectral data are more
suitable for the establishment of XGBoost models. (3) Overall, the model established
using dimensionality reduced spectral data has a larger coefficient of determination and
better performance. Among them, the model established using PCA-extracted feature
variables has the best effect, indicating that within the scope of this experiment, PCA
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is more suitable for feature extraction of rice seedling tray moisture content compared
to CARS. (4) The optimal moisture content detection model determined in this study is
SG-PCA-PSO-SVR (R2C = 0.984, RMSE-C = 2.775, R2P = 0.971, RMSE-P = 3.448), which has
the best predictive effect.

To summarize, this study determines the optimal hyperspectral detection model of
rice seedling tray moisture content by collecting samples of rice seedling tray moisture
content in the drying process. This method provides a reliable theoretical basis and
technical support for the nondestructive development of rice straw nutrient bowl tray
moisture content detection, and is of great significance for the promotion and application
of rice straw nutrient bowl tray seedling raising and whole process mechanized planting
technology system, improving soil structure, increasing rice yield and protecting the
ecological environment.
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Abbreviation

MSC multivariate scattering correction
SNV standardization normal variables
SG Savitzky–Golay convolution smoothing
PCA principal component analysis
CARS competitive adaptive reweighting
RF random forest regression
PSO-SVR particle swarm optimization support vector regression

Appendix A

Table A1. Parameter selection of RF.

Preprocessing
Method

Number of
Feature Bands n Estimators Max

Depth
Min Samples

Leaf
Min Samples

Split
Max

Features
Max Leaf

Nodes

None
No 116 16 1 2 48 14

PCA 50 9 1 2 10 49
CARS 80 10 1 2 9 44

MSC
None 185 6 1 4 38 42
PCA 118 10 1 2 7 39

CARS 50 8 1 2 49 39

SNV
None 145 6 1 4 38 42
PCA 43 15 1 2 6 48

CARS 22 10 1 2 34 49

SG
None 55 13 1 2 48 41
PCA 51 10 1 2 10 49

CARS 87 7 1 2 48 34
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Table A2. Parameter selection of PSO-SVR.

Preprocessing Method Number of Feature Bands C γ ε

NO
NO 10 4.870 0.209
PCA 10 0.100 0.209

CARS 10 0.382 0.540

MSC
NO 10 0.820 0.123
PCA 10 0.408 0.143

CARS 10 2.924 1

SNV
NO 10 1.054 0.177
PCA 10 1.044 0.184

CARS 10 2.129 1

SG
NO 10 0.562 0.209
PCA 10 0.2 0.209

CARS 10 0.416 0.619

Table A3. Parameter selection of XGBoost.

Preprocessing
Method

Number of
Feature Bands Learning_Rate Subsample Max_Depth n_Estimators

None
None 0.1 0.3 7 50
PCA 0.1 0.5 9 50

CARS 0.1 0.5 11 50

MSC
None 1 0.4 7 45
PCA 0.1 0.4 19 50

CARS 1 0.5 5 50

SNV
None 0.1 0.3 7 50
PCA 0.1 0.3 7 50

CARS 0.1 0.4 9 50

SG
None 0.1 0.3 7 50
PCA 0.1 0.2 5 50

CARS 0.1 0.5 13 50

Appendix B
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