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Abstract: The purpose of this study was to develop a deep understanding of the interactions between
the ecological footprint, forest resources, land resources, environmental technology, and renewable
energy consumption in Saudi Arabia. The study uses the data from 1980 to –2019 for econometric
analysis. The findings of nonlinear ARDL estimates have reported the significance of forest and
land resources to curtail the ecological footprint. Environmental technology and renewable energy
empirical outcomes are insignificant in pre-Vision 2030 analyses, but become negative and significant
in positive shock analyses. These results underscore that Saudi Vision 2030 has proposed workable
and practical policies to address environmental challenges. Considering these findings, policymakers
should implement beneficial policies that manage the country’s natural resources to reduce the
ecological footprint and achieve the goals of Vision 2030.

Keywords: ecological footprint; green natural resources; green factors; nonlinear ARDL

1. Introduction

Currently, the primary goal of any country is to achieve long-term economic growth.
The rapidly increasing use of energy for economic growth leads to a deterioration of the
environment. It is imperative that we make an effort to use resources wisely and keep
the economy growing at a pace that does not harm the environment [1]. According to
EPC 2021, environmental pollution affects social life, increases the death ratio, and affects
natural life. Environmental degradation encourages us to think how effectively we can use
our natural resources. Concurring to the International Energy Agency report, presented
in 2022, environmental pollution has been increasing over the years. One of the causes
of environmental pollution is the use of fossil fuels in the energy sector, which represents
two-thirds of total greenhouse gas emissions. Nonetheless, global energy consumption,
investments in energy sources, and initiatives to mitigate the negative consequences of
economic expansion on the environment must be considered [2]. The 26th UN Climate
Change Conference (COP26) focused on reducing demand for fossil fuels in the energy
sector, preventing deforestation, and investing in renewable resources to stabilize global
temperatures. The importance of this study stems from emissions caused by the combus-
tion of fossil fuels, which pollute the environment. According to [3], fossil fuels are the
main contributors to environmental deterioration because of their high carbon emission
levels. Saudi Arabia is the largest oil-producing country in the Middle East, with about
three million barrels a day [4]. Despite several efforts, the Saudi economy is not entirely
reoriented towards non-oil resources to reach the Sustainable Development Goals and
Saudi Vision 2030. The large quantity of energy consumption in transportation, electric-
ity, industrialization, etc., creates problems for the country’s environment [5]. In 2021,
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Saudi Arabia emitted 586.4 million metric tons of carbon dioxide from fossil fuels and
manufacturing activities, or about 19 metric tons per inhabitant. Saudi Aramco, one of the
biggest carbon producers in the world, is based in Saudi Arabia and is a state-owned oil
and gas company [6]. Saudi Aramco has emitted more than 60 billion metric tons of carbon
emissions into the environment since the 1960s [7]. To achieve sustainability goals, it is
necessary to change the country’s current energy mix and provide new, environmentally
friendly energy sources. However, to address these environmental concerns, Saudi Arabia
has announced sustainable environmental policies, which have launched around 60 pro-
grams in October 2021 with an approximate 600 billion Saudi Riyals [8]. The importance
and adoption of circular carbon economy has been highlighted and is being considered
for implementation in the coming years. Following that, the Saudi public investment fund
concluded the auction of a 3 billion US dollar green bond with an auction of 1.4 million
tons of carbon. A target of 1 trillion dollars by 2026 has been set by the sovereign fund with
a further increase of 10 billion dollars by 2025 [8]. In terms of energy, Saudi Vision 2030
aimed to be a world leader in exporting blue and green hydrogen [9]. In concise, Saudi
Vision 2030 aimed to move towards a green economy by 2026.

The ecological footprint is a method to compare the sustainability of natural resource
consumption by the population. Mathis Wackernagel and Bill Rees developed this method
in the early 1990s. In traditional ecological footprint calculations, the amount of “bio
productive” space appropriated by different nations is measured in hectares per person. The
ecological footprint is a planning and policy tool for sustainability. Ecological footprint and
energy consumption growth increase the world’s resource shortage. According to statistics,
worldwide energy consumption and production process account for 25% of environmental
pollution [10]. As a result, failure to meet the United Nations Sustainable Development
Goals (SDGs) pollution reduction targets would result in an ecological deficit. Thus, the
main objective is to achieve economic growth without compromising the environmental
quality by balancing energy demands and exploring more sustainable means to prevent
socio-ecological disasters [11].

As a consequence of high energy usage and waste, combined with the loss of natural
resources, the goal of sustainable development has been continuously affected by the
rise in global warming [12–15]. Natural resources such as agriculture and forests are
assumed as significant contributors to economic development, but their depletion is also
the leading factor of ecological degradation [16–18]. Additionally, economic expansion
drives industrialization, which boosts the use of natural resources [19]. Agriculture and
deforestation that consume natural resources can negatively impact the ecosystem [15]. The
pace of resource depletion in areas such as agriculture and forests will decrease if sustainable
management techniques are incorporated into consumption and production, as a result
allowing resources to repopulate. A successful strategy for improving the environmentally
friendly use of land resources is fiscal decentralization. Local governments with effective
fiscal decentralization have more influence when it comes to developing policies for using
land for environmental goals [20].

Environmental technology helps to minimize the negative ecological impact on the
environment. Production processes utilize environmental technologies to use resources
efficiently and to reduce environmental pollution [21]. Additional resources should be put
into environmental technologies involved in production processes to reduce their ecological
footprint and carbon footprint levels [22]. The development of new technologies is helpful
for improving energy efficiency and the industrial sector’s ability to reduce environmental
pollution [23].

Renewable energy is a main element in transforming a more sustainable environment
due to its fewer greenhouse gases emissions, high power, and fast electricity generation ca-
pacity with less land area [24]. Renewable energy sources provide considerable advantages
in terms of an energy structure optimization, ecological stability, and pollution reduc-
tion [25,26]. Additionally, renewable energy increases the industry’s production and energy
efficiency, lowers electricity costs, and reduces energy dependence, which contributes to
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achieving a green environment [27,28]. Hence, to support environmental policies aiming to
achieve ecological stability and green growth, renewable energy is the ideal solution [29].

This study adds to the body of literature in several ways. A primary contribution of
this research is the development of a mechanism to manage natural resources to reduce
environmental pollution. To our knowledge, this is the first study to use “natural and
semi-natural land” as a proxy for land recourse. There is a plethora of prior writing on
natural resources using the proxy of “total natural resource rent.” The use of “total natural
resources” or “agriculture value added” can mislead policymakers [30]. The total natural
resource rent includes the sum of all natural resources such as oil, coal, gas, forest land,
minerals, water. However, the extraction of some natural resources increases the ecological
footprint, whereas the depletion of some natural resources increases the ecological footprint.
To counter this issue, we use the natural and semi-natural vegetated land that consists of
the green proportion of land. Additionally, the second proxy is the forest to reexamine
the role of green natural resources on the environmental footprint. The second objective
of this study was to improve the established ecological footprint model by considering
green activities such as renewable energy consumption and environmental technology. The
addition of such factors would contribute towards environmental quality. Lastly, this study
looks at the factors influencing the accomplishment of the Sustainable Development Goals
(SDGs) and the goals of Saudi Vision 2030 from the standpoint of reducing Saudi Arabia’s
ecological footprint. This study is primarily concerned with nonlinear Autoregressive
Distributed Lag [31].

In light of the contributions, the study’s four main objectives were as follows. The
first objective of this study was to check the impact of economic growth on the ecological
footprint. The second objective was to examine the role of natural resources (forest resource
and land resource) on the ecological footprint. The third objective of the study was to check
the impact of green factors (environmental technology and renewable energy resources) on
the ecological footprint. The fourth and last objective of the study was to check the role of
Vision 2030 in the green environment.

The remaining sections are organized as follows: Section 2 contains a review of the
literature, while Section 3 contains the data and methodology. Section 4 analyzes and
explains the study’s findings, and Section 5 summarizes the findings by outlining any
policy implications.

2. Literature

Studies on energy, the environment, and economic growth have utilized several
proxies to gauge environmental quality. For example, studies [32–35] utilized carbon
dioxide emissions, [36] used sulfur dioxide (SO2), and [14] used two proxies (carbon
dioxide and NH4). In comparison, rare studies employed the ecological footprint as a
proxy for the environmental deterioration. Analyzing ecological footprint variables has
become crucial for establishing environmental sustainability [37]. The effects of human
activity on ecosystems have persistently worried academics over the years. It is obvious
that human activities have risen on Earth after a surge in the world’s population. Despite
calling for countries to maintain natural boundaries, 80% of the world’s population live in
ecological deficit countries. Therefore, identifying the factors that influence environmental
quality became essential in the context of the sustainable development targets for 2030 [38].
Ref. [33] used the ARDL model to examine the relationships between economic growth
and environmental quality in Qatar from 1980 to 2011 utilizing an ecological footprint
variable as a proxy for environmental quality. The outcomes of their long-run estimations
showed that economic expansion significantly reduces environmental quality by raising
the ecological footprint.

Numerous empirical studies have shown how economic growth affects the environ-
ment. It included a wide range of studies that covered several countries, elements, and
approaches. Prior research [39–41] utilized the EKC analytic approach to study the rela-
tionship between economic growth and environmental deterioration and hypothesized an
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inverted U-shaped relationship between them. According to [42], South Africa’s economic
growth and coal use have caused environmental pollution. Ref. [43] discovered that eco-
nomic growth in Mexico has a positive significant impact on the environment by employing
ARDL, FMOLS, and DOLS estimation methods on annual data from 1971 to 2016. Similarly,
using the ARDL technique and data from 1985 to 2018, researchers found that economic
growth has a positive impact on the environment in OECD member countries [44]. The
same results obtained using the STIRPAT and ARDL methodologies [45] reported that
economic growth had a positive impact on the environment in GCC countries from 1980
to 2017.

By absorbing excess atmospheric carbon dioxide and maintaining it in tree biomass, a
process known as carbon sequestration, forests have significantly contributed to climate
change mitigation [12]. The demand for food, shelter, agriculture, transportation, and other
infrastructure has increased along with the global population, placing pressure on the
world’s forests. The Southeast Asian region has lost its forest cover due to clearing forests
for oil palm, industrial, farming, agricultural fires, and rubber plantations, as well as other
types of agriculture [17]. Ref. [13] examined how Malaysian forests could help achieve
environmental sustainability by reducing carbon dioxide emissions. The empirical results
supported the hypothesis that the coefficient of forested area has a significant negative
impact on carbon dioxide emissions, suggesting that a 1% increase in the forested area
resulted in a 3.86% decrease in carbon dioxide emissions. Ref. [18] demonstrated a negative
connection between forested areas and environment degradation using country-specific
panel data ranging from 1990 to 2014 for 86 countries. Furthermore, analyzing data for
Indonesia from 1990 to 2020 using the DOLS, FMOLS, and CCR methodologies, Ref. [46]
confirmed the negative effects of forest on the environment.

Recently, experts have focused on environmental degradation and land resources [47],
and few studies in recent time conducted on the land resources impact on the environment.
For instance, when examining the relationship between income and the environment in the
EU-5 countries, Ref. [48] included land resources as a control variable. They proposed a
negative relationship between environment and land resources. According to [20], analysis
based on data collected on fiscal decentralization, land resource usage, and environmental
emissions in China from 2011 to 2018, fiscal decentralization has proven to be a useful tool
for promoting the environmentally friendly use of land resources. According to [49], the
study results revealed that land resources in the United States help to reduce the ecological
footprint. Ref. [19] found a similar correlation between land resources and an environment
in the BRICS economic bloc countries. Another study investigated how to reduce the waste
of natural resources by educating people about consumption patterns, deforestation, careful
use of water and energy resources, and energy-efficient luxury products in daily life [14].

The results from the study [50] revealed that when we have a sustainable structure,
technology, and a suitable environment, that stage can make prudent judgments regarding
the climate. According to research on the EU-5 countries by [48], innovation positively
influences environmental quality. The same result was obtained by [51], which reported that
energy innovation policies have a favorable impact on reducing environmental pollution.
One study [52] found technology advancement crucial for reducing the usage of fossil fuels.
According to the findings, a strong correlation existed between electricity usage, economic
growth, technological advancement, and environmental protection.

Numerous studies have attempted to examine how total energy consumption (the
sum of all renewable and nonrenewable energy) affects the environment. The majority
of these projects have indicated that overall energy consumption has a positive impact
on environmental pollution [53–55]. However, Refs. [56,57] pointed out that the positive
impact of energy usage on environmental deterioration only becomes applicable when
the overall energy consumption divides into renewable and nonrenewable energy. In
Algeria, China, and India, Refs. [56,58,59] found that renewable energy had a negative
and significant impact on the environment. The AMG approach was employed in the
study by [15] to examine the relationship between emissions and renewable energy in the
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BRICS. The panel analysis of data using the AMG approach demonstrated that renewable
energy negatively impacted emissions. However, Ref. [60] asserted that renewable energy
causes a rise in environmental pollution in five Middle East and Northern African nations
(MENA). However, as the renewable energy contains flammable and waste, the study re-
sults contradicted previous ones. Similarly, Ref. [61] studied the process of decarbonization
in Europe and its challenges. According to the findings, low-emissions energy has been
viewed essentially at the highest decision-making levels. By using the DOLS, FMOLS, and
CCR methodologies with data spanning 1990–2018, Ref. [16] revealed a negative correlation
between the utilization of renewable energy and black footprint in Peru.

While reviewing the literature, few studies have investigated the role of land resources
in addressing the environmental footprint. However, based on our limited knowledge,
none of the studies are about the Saudi context. Moreover, the previous literature has not
addressed the Vison 2030-based estimations, which are quite important to evaluate the
performance, implementation, and consequences to counter the environmental degradation
process. Furthermore, past studies used basic linear estimations, quantile estimations, and
threshold estimations, but asymmetric empirical estimation is missing in previous studies,
particularly in the context of Saudi Arabia. Nonetheless, the current work is an attempt to
address the lacking gaps.

3. Methodology
3.1. Data and Models

To examine the significant factors of environmental footprint, we have employed
the ecological footprint (EFP) as a dependent variable. Previously, academia used carbon
emissions as a proxy for environmental degradation. The use of such a metric as an
environmental degradation indicator may be invalid in some situations when it comes to
resource stocks [30]. The independent variables are divided into two subsets: (i) natural
resource indicators that include forest resource (FR) and land resource (LR). A study by [30]
used total natural resource rent as a proxy for natural resources. We are using natural and
seminatural land as a proxy for the land resource. The second is green, indicating the usage
of environmental technology (ET) and renewable energy resources (RE). Gross domestic
product (GDP) represents the economic growth and is used as a control variable. We
collected the data from the World Development Indicators (WDI), International Renewable
Energy Agency (IREA), Global Footprint Network, and Organization for Economic Co-
operation and Development (OECD). We used the data from 1980 to 2019 for empirical
analysis. To simulate the data series with missing data, we used the Markov Chain Monte
Carlo (MCMC) algorithm, which is one of the best approaches. Following are the empirical
equations that are used to examine the relationship between the variables individually:

(1) Model 1 for the natural resources role towards the ecological footprint of Saudi Arabia
is as follows:

EFP = f (GDP, FR, LR) (1)

(2) Model 2 for the green variables impact on the ecological footprint in Saudi Arabia is
as follows:

EFP = f (GDP, ET, REC) (2)

Table 1 presents the definitions of all the variables and detail of sources.
The natural logarithm of all variables is used to stabilize the variance and to linearize

the nexus between variables. The empirical equations after log are as follows:

lnEFP = α0 + β1lnGDP + β2lnFR + β3lnLR + εt (3)

lnEFP = α0 + β1lnGDP + β2lnET + β3lnREC + εt (4)

where lnEFP, lnGDP, lnFR, lnLR, lnET, and lnREC, respectively, stand for the natural loga-
rithm of ecological footprint, GDP, forest resource, land resource, environmental technology,
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and renewable energy consumption. The β0 is the intercept that shows when there is no
variation in other variables, and the ecological footprint is equal to this autonomous value.
The parameters βi = 1, 2, and 3 are the coefficients and represent the long-run elasticity.
Moreover, εt represents error term.

Table 1. Definition and source.

Indication Variable Definition Measure Source

EFP Ecological footprint

EFP measures human demand from
agriculture, construction, grazing,
fishing and forest land, and CO2
absorption from fossil fuel combustion.

Global hectares Per person Global Footprint
Network

GDP Economic growth Gross domestic product (Constant 2015 US dollars) WDI
FR Forest resource Forest resource stocks Cubic Metrics, Millions WDI

LR Land resource Natural and seminatural vegetated land,
% total Percentage OECD

ET Environmental
Technology

Development of environment-related
technologies, % of all technologies Percentage OECD

REC Renewable energy
consumption Renewable energy consumption Gigawatt hours IRENA

Further, we distributed the data into two subsets, before-Vision and after-Vision, to
examine the effects of models towards Saudi Vision 2030. This helped to identify future
plans and orientations that lead to a green environment by assessing the effects of plans
developed under the framework of Vision 2030.

3.2. Autoregressive Distributed Lag (ARDL)

For empirical estimations, current study uses the autoregressive distributed lag
(ARDL)-bound cointegration technique to assess the short-term elasticities and long-term
cointegration. We used the above linear equations for this purpose.

The ARDL form of above Equations (3) and (4) are as follows:

∆lnEFPt = α0 +
n
∑

i=1
µ1∆lnEFPt−i +

n
∑

i=0
µ2∆lnGDPt−i +

n
∑

i=0
µ2∆lnFRt−i +

n
∑

i=0
µ2∆lnLRt−i + γ0lnEFPt−1

+γ1lnGDPt−1 + γ2lnFRt−1 + γ3lnLRt−1 +ωt

(5)

∆lnEFPt = α0 +
n
∑

i=1
µ1∆lnEFPt−i +

n
∑

i=0
µ2∆lnGDPt−i +

n
∑

i=0
µ2∆lnETt−i +

n
∑

i=0
µ2∆lnRECt−i + γ0lnEFPt−1

+γ1lnGDPt−1 + γ2lnETt−1 + γ3lnRECt−1 +ωt

(6)

where ∆ is the first difference operator, µ1 to µ4 are short-run elasticity operators, Υ1 to
Υ are long-run elasticity operators, α0 is the constant, and εt is the noise. The decision of
acceptance or rejection of the hypothesis is based on F-statistics and critical values. The
critical values presented by [62,63] are used for cointegration test results.

3.3. Nonlinear ARDL

Though cointegration tests can verify the linearity of the relationships among variables,
Ref. [64] recommended a nonlinear ARDL strategy to further investigate whether the
association is positive or negative. This method is used in the current paper to ascertain the
direction. The concise equation is as follows:

K = ϕ0 +∅+ IK+
t +∅− IK−

t + εit and ∆IKt = kt

where Kjt and IKt represent scalar I (1). Kjt is the return of ith at time t and split up into
positive and negative shocks. IK+

t and IK−
t propose the positive and negative shocks in
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IK (independent variable). εit and kt are the random distribution term. The equations are
transformed according to this study and are mentioned from Equation (7) to Equation (11).

POS(GDP)t =
t

∑
i=1

lnGDP+
i =

t
∑

i=1
MAX(∆lnGDPi, 0)

NEG(GDP)t =
t

∑
i=1

lnGDP−
i =

t
∑

i=1
MIN(∆lnGDPi, 0)

(7)


POS(FR)t =

t
∑

i=1
lnFR+

i =
t

∑
i=1

MAX(∆lnFRi, 0)

NEG(FR)t =
t

∑
i=1

lnFR−
i =

t
∑

i=1
MIN(∆lnFRi, 0)

(8)


POS(LR)t =

t
∑

i=1
lnLR+

i =
t

∑
i=1

MAX(∆lnLRi, 0)

NEG(LR)t =
t

∑
i=1

lnLR−
i =

t
∑

i=1
MIN(∆lnLRi, 0)

(9)


POS(ET)t =

t
∑

i=1
lnET+

i =
t

∑
i=1

MAX(∆lnETi, 0)

NEG(ET)t =
t

∑
i=1

lnET−
i =

t
∑

i=1
MIN(∆lnETi, 0)

(10)


POS(REC)t =

t
∑

i=1
lnREC+

i =
t

∑
i=1

MAX(∆lnRECi, 0)

NEG(REC)t =
t

∑
i=1

lnREC−
i =

t
∑

i=1
MIN(∆lnRECi, 0)

(11)

The variables are decomposed into positive and negative shocks in the above equations.

3.4. Vector Error Correction Model

Additionally, there should be a causal relationship between the variables if there is a
long-term association between the variables [65]. To determine the causal relationships be-
tween ecological footprint, natural resources, and green variables, we employed the Vector
Error Correction Model (VECM). VECM will aid in determining the causal relationships
between the study’s independent and dependent variables.

4. Results

Descriptive statistics for all variables are shown in Table 2. It can be noted that forest
resource has the highest mean value, and renewable energy consumption has the lowest
mean value. In the case of standard deviation, economic growth displays the highest
standard deviation, whereas land resource is less volatile. As the values of the skewness
statistics are different from zero, it can be argued that the variables under study are not
symmetric and normally distributed. The Kurtosis value is less than 3 in most cases,
suggesting that the series have low tails.

It is critical to check for structural breaks in the data. Hence, we used the Chow
structural break test. The null hypothesis states no structural break in the data, whereas
the alternative hypothesis reflects the presence of structural break. The result of the Chow
structural break test is shown in Table 3. The value of F-statistics is insignificant, indicating
that there is no evidence of structural break in the data series. To confirm the results of the
Chow structural break test, we further used the Quandt–Andrews structural break test. The
null hypothesis of the Quandt–Andrews breakpoint test shows no structural break [66,67].
The findings are reported in the second section of Table 3, which confirms the results of the
Chow structural break test.
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Table 2. Summary of statistics.

EFP GDP FR LR ET REC

Obs 40 40 40 40 40 40
mean 4.977 1.362 7.456 5.784 2.707 −2.268
max 6.134 3.969 7.429 5.842 3.301 −1.186
min 3.812 −2.674 7.645 5.655 1.783 −4.93
sd 0.033 1.343 0.031 0.015 0.267 1.059
variance 0.002 1.78 0.016 0.021 0.061 1.122
skewness 0.121 −1.32 0.47 0.107 −0.648 −0.945
kurtosis 1.712 5.241 2.238 1.697 4.785 2.376

Notes: EFP shows the ecological footprint, GDP is economic growth, FR and LR are forest resources and land
resource, respectively, which are natural resources. ET and REC represent the environmental technology and
renewable energy consumption, which reflects the green factors.

Table 3. Structural break test.

Chow Structural Break

F-Statistics 2.371 Prob. F (7,15) 0.064
Quandt–Andrews
structural break test Maximum LR Expected LR Average LR

F-Statistics 128.365 120.541 100.637
Note: The null hypothesis represents that coefficients are constant across the sample (no structural breakages).
Null hypothesis for the Quandt–Andrews test is “no breakpoint”. As the insignificant results of maximum LR,
expected LR, and average LR are insignificant, however, null hypothesis is accepted.

We used two unit root tests to check the stationarity of data: DF-GLS and KSUR,
which are shown in Table 4. According to the results, unit root is presented at a level for
GDP, LR and ET. Environmental technology is stationary at a level for the DF-GLS unit
root test. In the KSUR unit root test, economic growth and land resource are stationary at
level. Hence, the first difference is applied. However, all variables are stationary at the first
difference at a 1% significance level. Due to the mixed results of unit root, we must use the
bond cointegration test. It is used to confirm the long-run existence of models under study.

Table 4. Unit root test.

DF-GLS KSUR

DF-GLS Level Diff Level Diff

Variable Stat Stat p-Value p-Value

EFP −1.264 IS −4.615 *** Sig 0.911 IS 0.003 *** Sig
GDP −2.414 IS −8.021 *** Sig 0.005 *** Sig 0.004 *** Sig
FR −2.501 IS −5.498 *** Sig 0.336 IS 0.000 *** Sig
LR −1.541 IS −4.215 *** Sig 0.001 *** IS 0.005 *** Sig
ET −4.474 *** Sig −6.756 *** Sig 0.937 Sig 0.001 *** Sig
REC −1.834 IS −4.813 *** Sig 0.932 IS 0.003 *** Sig

Note: DF-GLS does not assume stationary nonlinear, whereas the KSUR unit root test presented by Kapetan-
ios and Shin (2008) considers stationary nonlinear. The null hypothesis assumes the presence of a unit root.
***, represents the level of significance at 1%.

For the presence of mixed level of significance, we applied the bound cointegration
test, which is considered to examine the long-run relationship between the studied models.
Table 5 shows the results of ARDL-bound cointegration tests, and all models show the
existence of cointegration as the value of F-status is higher than the upper bound critical
value. EFP = f (GDP, FR, LR) is cointegrated at 10% and EFP = f (GDP, ET, REC) at 1%, which
is presented in Table 5. Therefore, nonlinear ARDL models can be applied in our statistics.
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Table 5. ARDL bound cointegration test.

ARDL Bounds Cointegration Test F-Stat EFP

EFP = f (GDP, FR, LR) 5.931 * Exist
EFP = f (GDP, ET, REC) 9.454 *** Exist
Lower-bound critical value at 10% 3.34
Upper-bound critical value at 10% 4.65
Lower-bound critical value at 1% 4.87
Upper-bound critical value at 1% 5.65

Note: ***, * represent the level of significance at 1% and 5%, respectively.

Afterward, it is essential to determine whether nonlinearity exists in the data series.
As a result, we used the BDS nonlinearity test with the null hypothesis that “series are
linearly dependent” recommended by [68]. Table 6 verifies the significance of the series at
each dimension while pointing out the nonlinear dependence of the variables. Hence, we
rejected the null hypothesis “series are linearly dependent”. However, it is essential to use
the nonlinear ARDL test rather than the ARDL test to eliminate the asymmetric analysis,
which provides the individual impact of positive and negative shocks.

Table 6. BDS test.

Dimensions 2 3 4 5 6

EFP 0.141 *** 0.336 *** 0.528 *** 0.512 *** 0.609 ***
GDP 0.165 *** 0.128 *** 0.411 *** 0.738 *** 0.023 ***
FR 0.220 *** 0.453 *** 0.517 *** 0.015 *** 0.511 ***
LR 0.183 *** 0.864 *** 0.253 *** 0.303 *** 0.482 ***
ET 0.148 *** 0.574 *** 0.625 *** 0.526 *** 0.417 ***
REC 0.325 *** 0.234 *** 0.434 *** 0.481 *** 0.213 ***

Notes: *** represents the level of significance at 1%.

4.1. Estimation
4.1.1. Nonlinear ARDL Estimates

We used the nonlinear ARDL approach to check the positive and negative shocks
of independent variables, which are presented in Tables 7 and 8. After the full-sample
analysis, we divided the data into two groups: before and after the implementation of
Saudi Vision 2030, in order to examine the impact of the Vision 2030 policies on reducing
environmental consequences.

Long-run and short-run results of nonlinear ARDL estimation are presented in Table 7.
The long-run results show a positive and significant relationship between economic growth
and ecological footprint. Forest resources and land resource represent the natural resources
of the country, which show that positive shocks of natural resources have a negative
and significant relationship with ecological footprint. These findings are in line with the
previous research, suggesting that natural resources can help to improve environmental
performance, as reported in [69,70]. The negative coefficients of forest and land resources
indicate that the higher green cover is useful to minimize the environmental footprint in
Saudi Arabia, as concluded by [71,72].

The coefficient of environmental technology and renewable energy consumption are
insignificant. These factors ultimately play no role in achieving a green environment in
Saudi Arabia. The results of environmental technology are similar to the results of [73]. The
reason for the insignificant effect of renewable energy consumption could be that Saudi
Arabia is the major oil producer, and mainly using oil for power generation [74].
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Table 7. Nonlinear ARDL estimation.

Long Run Model 1 Model 2

EFP −0.709 *** −0.105
GDP+

t−1 0.003 ** 0.061 *
GDP−

t−1 0.011 0.031
FR+

t−1 −0.036 **
FR−

t−1 0.351
LR+

t−1 −0.046 **
LR−

t−1 0.391
ET+

t−1 −0.042
ET−

t−1 −0.057
REC+

t−1 0.217
REC−

t−1 0.104
Short Run
∆EFPt−1 0.142 −0.296
∆GDP+

t−1 0.239 ** 0.269 **
∆GDP−

t−1 4.162 ** 3.166 **
∆FR+

t−1 0.042
∆FR−

t−1 0.033
∆LR+

t−1 −0.061 *
∆LR−

t−1 0.342
∆ET+

t−1 0.025
∆ET−

t−1 −0.107
∆REC+

t−1 0.091
∆REC−

t−1 0.082
Constant −1.169 7.638 ***

Notes: EFP shows the ecological footprint, GDP is economic growth, FR and LR are forest resource and land
resource, respectively, which are the natural resources. ET and REC represent the environmental technology and
renewable energy consumption, respectively, which reflects the green indicators. ∆ is the difference. ***, **, and
* represent the level of significance at 1%, 5%, and 10%, respectively.

Table 8. Asymmetric and model diagnostics.

Long Run (+) Long Run (−)
Long-Run Asymmetry

(p-Value)
W LR

Short-Run Asymmetry
(p-Value)

W LR

EFP = f (GDP, FR, LR)

GDP 2.135 ** 1.743 * 0.482 0.371
FR −2.042 * 0.971 0.541 0.135
LR 2.034 2.467 0.342 0.196
Cointegration F-Stat 1.645
Portmanteau p-value 0.642
Heteroskedasticity p-value 0.513
Ramsey test p-value 0.158
J–B test p-value 0.661

EFP = f (GDP, ET, REC)

GDP 0.237 * 1.995 0.372 0.427
ET −0.215 0.291 0.835 0.331
REC −2.137 0.732 0.472 0.167
Cointegration F-Stat 2.319
Portmanteau p-value 0.747
Heteroskedasticity p-value 0.161
Ramsey test p-value 0.216
J–B test p-value 0.001

Notes: EFP shows the ecological footprint, GDP is economic growth, FR and LR are forest resource and land
resource, respectively, which are the natural resources. ET and REC represent the environmental technology and
renewable energy consumption, respectively, which reflects the green indicators. **, and * represent the level of
significance at 5%, and 10%, respectively.
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The results concerning the short-run analysis reveal that negative and positive shocks
in economic growth heighten the ecological footprint in model 1 and model 2, as the
coefficients of economic growth are significant and positive. This result is aligned with
the results of [74,75]. While focusing on the resources, forest resource has resulted in an
insignificant coefficient, concluding that forest resources have no impact on ecological
footprint, in the case of Saudi Arabia. The positive shocks of land resources demonstrate
a negative and significant relationship with ecological footprint, confirming that higher-
end resources are useful in controlling the environmental degradation process. While
emphasizing green variables, the results of environmental technology and renewable
energy consumption have reported insignificant coefficients, implying that green variables,
such as environmental technology and renewable energy consumption, have no impact on
reducing the environmental footprint in the short run.

Before Vision 2030 Analysis

Tables 9 and 10 display the findings for the nonlinear ARDL prior to Vision 2030. For
economic growth, positive shocks in the long-run and positive and negative shocks in
short-run estimates show a significant impact on ecological footprint. This means that an
increase in economic growth increases ecological footprint. These results are similar to
previous studies [76,77]. The coefficients of forest resource are insignificant in the short
run and in the long run. These results contradict the results of some previous researchers,
such as [78,79]. The positive shocks in land resource in the short run have a significant and
negative impact on ecological footprint.

Table 9. Nonlinear ARDL estimation (Before Vision 2030).

Long Run Model 1 Model 2

EFPt−1 −0.003 *** −0.004 ***
GDP+

t−1 0.006 *** −0.005
GDP−

t−1 −0.002 0.004 ***
FR+

t−1 −0.013
FR−

t−1 0.042
LR+

t−1 −0.033
LR−

t−1 −0.056
ET+

t−1 −0.054
ET−

t−1 0.032
REC+

t−1 −0.031
REC−

t−1 0.045

Short Run

∆EFPt−1 0.845 *** 0.945 ***
∆GDP+

t−1 0.456 *** 0.024 **
∆GDP−

t−1 0.316 *** 0.006
∆FR+

t−1 0.029
∆FR−

t−1 −0.024
∆LR+

t−1 −0.042 ***
∆LR−

t−1 −0.091
∆ET+

t−1 −0.043 *
∆ET−

t−1 0.051
∆REC+

t−1 0.043
∆REC−

t−1 −0.031
Constant 0.046 *** 0.021 ***

Notes: EFP shows the ecological footprint, GDP is economic growth, FR and LR are forest resource and land
resource, respectively, which are the natural resources. ET and REC represent the environmental technology and
renewable energy consumption, respectively, which reflects the green indicators. ∆ is the difference. ***, **, and
* represent the level of significance at 1%, 5%, and 10%, respectively.

For environmental technology, the coefficients are significant only in the short run.
Positive shocks in environmental technology reduce the ecological footprint in the short run,
while negative shocks in environmental technology are insignificant. The positive shocks
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and negative shocks in renewable energy consumption show an insignificant relationship
with ecological footprint. This result contradicts the findings of [77].

Table 10. Asymmetric and model diagnostics (Before Vision 2030).

Long Run (+) Long Run (−)
Long-Run Asymmetry

(p-Value)
W LR

Short-Run Asymmetry
(p-Value)

W LR

EFP = f (GDP, FR, LR)

GDP 1.845 *** 0.161 0.000 *** 0.251
FR −0.042 −0.059 * 0.090 * 0.641
LR −0.051 * 0.032 0.021 0.031
Cointegration F-Stat 8.431
Portmanteau p-value 0.642
Heteroskedasticity p-value 0.182
Ramsey test p-value 1.351
J–B test p-value 0.161

EFP = f (GDP, ET, REC)

GDP 0.129 ** 0.161 0.034 ** 0.242
ET −0.031 0.231 0.033 *** 0.216
REC
Cointegration F-Stat 3.241
Portmanteau p-value 0.531
Heteroskedasticity p-value 0.502
Ramsey test p-value 0.441
J–B test p-value 0.861

Notes: EFP shows the ecological footprint, GDP is economic growth, FR and LR are forest resource and land
resource, respectively, which are the natural resources. ET and REC represent the environmental technology and
renewable energy consumption, respectively, which reflects the green indicators. ***, **, and * represent the level
of significance at 1%, 5%, and 10%, respectively.

After Vision 2030 Analysis

Results for nonlinear ARDL estimations reflecting Vision 2030 are shown in
Tables 11 and 12. The positive shocks in economic growth in the long run, whereas positive
and negative shocks in the short run, have a significant impact on ecological footprint.
Forest resources show an insignificant result in the long run and short run, whereas positive
shocks in the long run and short run show a decrease in ecological footprint.

Table 11. Nonlinear ARDL estimation (After Vision 2030).

Long Run Model 1 Model 2

EFPt−1 −0.002 *** −0.004 ***
GDP+

t−1 0.004 *** −0.004
GDP−

t−1 −0.006 0.061 ***
FR+

t−1 −0.017
FR−

t−1 0.032
LR+

t−1 −0.056 *
LR−

t−1 −0.042
ET+

t−1 −0.034 *
ET−

t−1 0.041
REC+

t−1 −0.062 *
REC−

t−1 0.052

Short Run

∆EFPt−1 0.724 *** 0.841 ***
∆GDP+

t−1 0.361 *** 0.022 **
∆GDP−

t−1 0.521 *** 0.0421
∆FR+

t−1 0.027
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Table 11. Cont.

Long Run Model 1 Model 2

∆FR−
t−1 −0.041

∆LR+
t−1 −0.024 **

∆LR−
t−1 −0.639

∆ET+
t−1 −0.056 *

∆ET−
t−1 0.063 *

∆REC+
t−1 −0.712 **

∆REC−
t−1 0.052

Constant 0.036 *** 0.012 ***
Notes: EFP shows the ecological footprint, GDP is economic growth, FR and LR are forest resource and land
resource, respectively, which are the natural resources. ET and REC represent the environmental technology and
renewable energy consumption, respectively, which reflects the green indicators. ∆ is the difference. ***, **, and
* represent the level of significance at 1%, 5%, and 10%, respectively.

Table 12. Asymmetric and model diagnostics (After Vision 2030).

Long Run (+) Long Run (−)
Long-Run Asymmetry

(p-Value)
W LR

Short-Run Asymmetry
(p-Value)

W LR

EFP = f (GDP, FR, LR)

GDP 1.713 *** 0.152 0.000 *** 0.361
FR −0.048 −0.059 * 0.050 * 0.641
LR −0.071 * 0.418 0.031 0.022
Cointegration F-Stat 7.421
Portmanteau p-value 0.532
Heteroskedasticity p-value 0.171
Ramsey test p-value 1.427
J–B test p-value 0.135

EFP = f (GDP, ET, REC)

GDP 0.149 ** 0.166 0.044 ** 0.421
ET −0.031 0.371 0.041 *** 0.272
REC
Cointegration F-Stat 3.21
Portmanteau p-value 0.431
Heteroskedasticity p-value 0.423
Ramsey test p-value 0.331
J–B test p-value 0.642

Notes: EFP shows the ecological footprint, GDP is economic growth, FR and LR are forest resource and land
resource, respectively, which are the natural resources. ET and REC represent the environmental technology and
renewable energy consumption, respectively, which reflects the green indicators. ***, **, and * represent the level
of significance at 1%, 5%, and 10%, respectively.

The impact of environmental technology is insignificant overall but shows significant
impact in the short run. This means that an increase in environmental technology decreases
the ecological footprint, which is in line with [77]. In the case of renewable energy consump-
tion, in both short-run and long-run estimates, positive shocks decrease ecological footprint.
This shift can be ascribed to the government’s emphasis on renewable energy initiatives
such as solar farms. Before Vision 2030, the role of renewable energy consumption is
insignificant, whereas the after Vision 2030 results show a significant impact of renewable
energy resources on ecological footprint.

4.1.2. Causality Analysis

Table 13 presents the bidirectional relationship with positive coefficients between
economic growth and ecological footprint, indicating that an increase in economic growth
causes an increase in ecological footprint. Forest resource shows the insignificant negative
coefficient, whereas land resource shows a unidirectional relationship with ecological
footprint. Environmental technology also shows a unidirectional relationship with negative
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coefficients, whereas renewable energy consumption shows a bidirectional relationship,
indicating that an increase in renewable energy consumption decreases ecological footprint.
The impact of environmental footprint on the use of renewable energy is positive and
significant. This positive relationship implies changing the overall energy mix to include
more renewable energy sources instead of nonrenewable ones.

Table 13. VECM Granger causality tests.

Model 1 ∆EFP ∆GDP ∆FR ∆LR ECT-1

∆EFP - 0.238 ** −4.424 4.317
∆GDP 0.341 ** - 0.921 0.840 −0.250 *
∆FR −0.531 0.219 - 0.215 −0.213
∆LR −0.632 * 0.031 0.428 - −0.349 *

Model 2 ∆EFP ∆GDP ∆ET ∆REC ECT-1

∆EFP - 0.928 1.574 1.781 * −0.155
∆GDP 6.223 ** - 1.035 1.126 −0.349 **
∆ET −5.932 * 1.384 - 1.749 −0.501 *
∆REC −6.196 * 0.042 0.096 - 0.037 *

Notes: **, * indicates the significance at 5% and 10%, respectively.

4.2. Discussion

In the discussion section, we address the study’s findings, compare them to the
study’s objectives, and provide justifications. Focusing on the economic growth, the
econometric estimations have confirmed the positive and significant impact of economic
growth on environmental footprint. Since Saudi Arabia is an oil-rich country, it uses a
higher proportion of oil in electricity generation, and most industries rely on nonrenewable
energy for processes, among other things. However, the increase in economic growth
requires higher energy consumption, which leads towards environmental degradation.
Similar findings are presented by [80,81].

In terms of natural resources, forest resources have reported significant and negative
coefficients for the full-sample estimation, while being insignificant before and after Vision
2030. For the empirical estimation of after Vision 2030, land resources are significant and
negative. In concise, while addressing the second objective of the study, it seems clear
that the increase in natural resources is useful to mitigate the environmental externalities.
The reason for this may be the environmental imbalance between ecological footprint
and biocapacity [82]. The findings are justified through the plantation of forest, to surge
the green land, and is useful to inhale the carbon emission from the atmosphere. Forest
resources have a significant impact on the environment, and their depletion increases
environmental pollution, while the findings after distribution of data, according to Vision
2030, show that the coefficients of forest are turning to be insignificant. The reason for our
insignificant results could be the harsh environmental conditions of Saudi Arabia such as
high temperatures, extreme drought, and erratic and low rainfall patterns [78,79]. After
the implementation of Saudi Vision 2030, the Saudi government initiated the green Saudi
campaign, which has boosted the green land. Resultantly, following Vision 2030, land
resources have confirmed their significant role in mitigating environmental impact; similar
results are documented by [83].

In full-sample estimation, the insignificance of environmental technology might be
possible due to the fact that Saudi Arabia has not yet achieved the technology level that
can assist to overcome the environmental issues [84]. This suggests that green factors in
Saudi Arabia are not mature enough to reduce ecological footprint, as reported by previous
studies, such as [85,86]. Moreover, the emphasis on renewable energy sources is uncertain,
and changing the energy mix to fulfill energy demand is complicated. Similar findings
have been proposed in other studies, such as [72,87]. In the case of after Vision 2030, while
addressing the green indicators, environmental technology has confirmed the significant
and negative relationship with environmental footprint. The results of environmental
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technology indicate the Saudi government’s efforts to enact policies that will enhance
economic growth and bring Saudi Arabia closer to achieving the Vision 2030 objectives,
while renewable energy has a significant and negative coefficient, in the case of after Vision
2030. The results of green indicators address the third objective of the study, confirming the
role of green indicators in reducing environmental footprint. The results can be justified
through a variety of channels, such as the promotion of environmental technology, which
encourages the use of energy-efficient and green equipment and household products,
thereby reducing energy consumption and the environmental footprint. In view of the
fourth objective, the findings of natural resources and green indicators are turning positive
for the environment, which depicts the significance of Saudi Vision 2030 towards the
sustainable environment.

5. Conclusions

The study investigates the impact of economic growth, natural resources, and green
factors on the environmental quality. For econometric estimations, we have employed the
data of studied variables over the period of 1980 to 2019. For missing observations, we use
the Markov Chain Monte Carlo (MCMC) algorithm, which is well known for simulating the
data. Furthermore, we used the nonlinear ARDL approach, which produces asymmetric
results; positive and negative shocks. Considering the ecological footprint as dependent on
a variable, the results indicate the direct long-run relationship between economic growth
and ecological footprint before Vision 2030 and after Vision 2030. The forest resource
has shown an insignificant impact on ecological footprint, whereas land resource has
confirmed the significant and negative relationship with the ecological footprint. This
significant relationship after Vision 2030 can be due to the focus of policymakers towards
better management of land resource to achieve sustainable environmental goals. While
emphasizing the environmental technology, the coefficient is significant and negative for
after Vision 2030. The second green factor in this study, renewable energy consumption,
has an inverse relationship with the ecological footprint following Vision 2030, which
shows the Saudi government’s efforts to reduce environmental externalities. The study
also found a bidirectional relationship between economic growth and ecological footprint,
and renewable energy resources and ecological footprint. A unidirectional relationship was
found among land resource to ecological footprint, environmental technology to ecological
footprint, and renewable energy consumption to ecological footprint.

Since there is a large inverse link between natural resources and ecological footprint,
effective utilization of natural resources enhances environmental quality. Therefore, the
Saudi government should divert the attention to increase the forest and land resources.
For this purpose, the local and provincial authorities should initiate the advertisements
and campaigns, such as Saudi green campaigns. Furthermore, communities should plant
trees and implement the green roof concept to increase green shade and manage the envi-
ronmental degradation process. While diverting the attention towards green variable, the
Saudi government should promote the advanced and green equipment, home appliances,
transport means, etc., that are considered as environmental technology. These environmen-
tal technologies are effective to increase the energy efficiency, leading to the reduction in
environmental footprint. As far as the renewable energy is concerned, the Saudi govern-
ment should modify the energy mix by increasing the proportion of renewable energy, thus
helping to limit the energy-based emissions.
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