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Abstract: In this paper, an improved firefly algorithm (FA) was proposed for application on photo-
voltaic module arrays (PVMAs) with partial modules under shading so that the maximum power
point tracking (MPPT) could be implemented. Firstly, a new model of high voltage step-up converter
was developed for executing the MPPT of the PVMA. For the energy storage inductor of the devel-
oped converter, the architecture of the coupled inductor was adopted so that the converter switch
did not need to operate under an excessive duty cycle, which could increase the voltage gain and
reduce the ripple of the output voltage at the same time. To prevent shading on the partial modules
within the PVMA and generate more than one peak on the power-voltage (P-V) output characteristic
curve, where the conventional MPPT could only track the local maximum power point (LMPP) and
reduce the output power of the PVMA, the maximum power tracker, based on the improved FA,
was proposed in this paper. Such a tracker could perform an automatic online adjustment on the FA
iteration parameters, according to the slope of the P-V output characteristic curve, for the PVMA and,
at the same time, perform at 0.8 times of the maximum power point (MPP) voltage for the module
array under standard test condition (STC), serving as the initial tracking voltage for implementing
the global maximum power point tracking (GMPPT). Lastly, the actual test results were applied to
verify that the proposed converter indeed contained a high voltage step-up and low-ripple output
voltage. The improved FA could also track GMPP faster and further improve the power-generating
efficiency of the PVMA.

Keywords: firefly algorithm (FA); shading; photovoltaic module arrays (PVMAs); global maximum
power point tracking (GMPPT); high voltage step-up converter; coupled inductor

1. Introduction

Generally, the conventional algorithms more commonly used for maximum power
point tracking (MPPT) of PVMAs include the perturbation and observation (P&O) [1–5]
and incremental conductance (INC) methods [6–8]. Although the two conventional meth-
ods could effectively track the maximum power point (MPP) of PVMAs under normal
working conditions, when shading occurs on the photovoltaic modules, these conventional
methods could only possibly track the local maximum power point (LMPP) instead of the
global maximum power point (GMPP), the power generating efficiency of the PVMA was
therefore reduced.

Regarding multiple peak values generated from the P-V characteristic curve, due to
the shading of certain modules in the PVMA over recent years, many scholars have devoted
their studies to MPPT. The common smart algorithms currently include fuzzy control [9–11],
neural network (NN) [12–14], grey wolf optimization (GWO) [15–17], differential evolution
(DE) [18–21], artificial bee colony (ABC) algorithm [22–24], firefly algorithm (FA) [25–27]
and teaching-learning-based optimization [28]. Among them, the fuzzy control method
consists of fuzzy inference, fuzzy logic, fuzzification, defuzzification, and fuzzy control. The
method is implemented by the fuzzification of the precision values, measured externally

Sustainability 2023, 15, 8550. https://doi.org/10.3390/su15118550 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15118550
https://doi.org/10.3390/su15118550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2440-4977
https://doi.org/10.3390/su15118550
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15118550?type=check_update&version=2


Sustainability 2023, 15, 8550 2 of 28

into fuzzy values, and utilizing the membership function (MF) to reflect the membership
characteristics. However, the control process of such a method is more complicated and
the magnitude of computation is larger and not easy to realize. The neural network
(NN) [10,11] was an information processing technology applied for simplifying the non-
linear and complicated models by imitating the biological NN, which was extensively
utilized in artificial intelligence (AI) and deep learning. However, such methods required
additional illuminometers and the calculation of the correct fill factor (FF) [29] when applied
to conduct the MPPT for the PVMAs, which may easily cause additional expenses and
precision issues. The grey wolf algorithm is a swarm intelligence algorithm inspired by
the hunting behavior of grey wolves and proposed for the maximum power point tracking
of the PVMAs [15–17]. Although the grey wolf algorithm provided advantages, such as a
simple structure and fewer parameters required during the process of search optimization,
the disadvantages included the possibility of being stuck in the local optimum, poor
precision, and slow convergence. The DE [18–21] method was an inspired random search
optimization method based on swarm difference and is similar to the genetic algorithm
(GA). The method adopted real number coding on certain race data, which achieved the
capability of the global search optimum through the process of differential calculation on
a variance and survival strategy from the one-on-one competition. However, a problem
included an individual mutation that required calculations of multiple formulae. This
increased tracking time and inadequate parameter setting may easily cause excessively fast
convergence and the possibility of being stuck in local optimum. Due to the fewer number
of race individuals, the new fitness value generated was worse than the original fitness
value, which caused difficulty in renewal and failure of converging to optimum. The ABC
algorithm [22–24] was a method that mimicked the foraging behavior of bees in nature for
problem-solving. Such an algorithm was bionic with swarm intelligence and this global
optimization algorithm sent out the worker bees to look for food sources, which would
optimize the process of swarm foraging by allowing other bees to learn the location and
orientation via dancing. Since the worker bees adopted random values when looking for
food sources, the searching capability was rather unstable. Moreover, upon searching for
food sources, the quantity of worker bees sent out was directly proportional to the search
time; the more the worker bees spent searching, the longer the time they needed. Therefore,
despite the fact that the ABC algorithm provided advantages, such as high stability and
fewer parameters required, the problem of pre-mature convergence existed. The inspiration
for the FA [25–27] mainly came from the flickering behavior of fireflies. The flashing signal
was used to attract the other fireflies and the level of attraction was directly proportional to
the luminance. The fireflies with higher luminance would generate greater attraction for
fireflies nearby. When the luminance became the same, the fireflies would move randomly
and the brightest firefly would be the function optimum. The advantages included fewer
parameters, a more extensive range of searching, fast convergence, and stable performance,
while the disadvantages included ease of being stuck in the local optimum, which occurred
more easily on a multi-dimensional problem at a higher dimension especially. Teaching-
learning-based optimization [28] can be used to perform continuous and complex searches
and entails the configuration of only a few parameters. Because its principle is easy to
understand, teaching-learning-based optimization has been extensively used in system
optimization. However, because each learner has a variable performance, the limited range
of parameters (i.e., teaching factors) may result in the use of inappropriate parameters,
thereby causing poor learning outcomes and an excessively long tracking response.

Based on the reasons mentioned above, the improved FA was developed in this
paper for the MPPT of the PVMAs when the partial modules experienced shading and
malfunction. With the advantages of fewer setting parameters, a simple structure, and
principles easy to comprehend, if the initial voltage for the MPPT was set to 0.8 times of the
MPPT voltage for the PVMAs, under an STC, and the parameters for the step factor of the
MPPT were adjusted according to the slope of the P-V characteristic curve for the PVMAs,
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the tracking time could be reduced extensively. This could swiftly track the global optimum
without being stuck with the local optimum when the PVMAs experienced partial shading.

In addition, along with the progressive development of power electronics, converters
for such technologies nowadays have been applied in photovoltaic power-generating
systems extensively for MPPT, so the power-generating efficiency of the PVMAs can
be improved. However, for a conventional DC-DC converter [29–32] with the switch
operating within the normal range of the duty cycle, the voltage conversion ratio would be
limited. To generate a greater DC output voltage, the duty cycle for the switch component
should be greater, so the nominal current of the switch would increase relatively. Should
the switch operate under a high-duty cycle over a long term, there would be a risk of
damaging the switch component due to overheating. In view of this, many scholars
had proposed the architecture of a high-voltage step-up converter over the recent years.
Although the turn ratio for the coupled inductor [33–37] could be utilized to obtain a greater
voltage gain, the excessively high turn ratio for the coupled inductor would increase the
ripple of the output voltage. To eliminate the disadvantages of the high-voltage step-up
converter mentioned above, the architecture of an inductor-coupled, high-voltage step-up
converter [33–37] was proposed in this paper, which used a coupled inductor to replace the
general inductor for enhancing the voltage conversion ratio for the converter. At the same
time, the clamp capacitor in the circuit was applied to reduce the output voltage ripple for
the converter, which further enhanced the converter’s performance. In the paper, the actual
test results were applied to verify that the proposed converter indeed provided a better
conversion performance.

2. High Voltage Step-Up Converter

The nominal input voltage (Vin) for the high-voltage step-up converter developed
under this paper was 80 V, the nominal output voltage (Vo) was 400 V, and the circuit
architecture is shown in Figure 1. The working principles of the overall circuit are split
into three operating modes, which operated on the switch waves of each component under
various modes (shown in Figure 2, respectively).
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Figure 1. Circuit architecture of the high voltage step-up developed converter. Figure 1. Circuit architecture of the high voltage step-up developed converter.
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Figure 2. Switch waves for each component of the developed converter under various
operating modes.

To simplify the derivation process, the following two assumptions were made in
advance: All components were ideal, thus, there was no conduction voltage drop and
vLk1 was neglected. In one complete operation period cycle of the converter, the ratio
between the closed duration of the switch and T was defined as the “duty cycle” D, which
is expressed in Equation (1).

D ,
ton

T
(1)

(1) Operating Mode 1 ( t0 ∼ t1)

Upon entry into operating Mode 1, the status of the circuit conduction is shown in
Figure 3. Thus, the main switch (S1) entered from termination into conduction and the
input voltage (Vin) crossed over the primary side of the coupled inductor (N1), where
vLm1 = Vin, while the current of the coupled inductor increased linearly and stored energy.
For the secondary side of the coupled inductor (N2), its current would store energy towards
capacitor C1, due to the voltage polarity of the coil induction, and diode D2 would undergo
forward induction. Such a mode would continue until the main switch (S1) entered
from conduction to termination, thus the conduction time for the main switch (S1) was
ton = t1 − t0. Within the conduction time of DT for the main switch (S1), the ascending
amount of the inductor current can be derived in Equation (2); therefore, the maximum
value (ILm1(max)) and minimum value (ILm1(min)) of the current for the magnetized inductor
can be derived in Equations (3) and (4), respectively.

∆iLm1(closed) =
Vin
Lm1

DT (2)
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ILm1(max) = ILm1 +
∆iLm1

2
= Vin

[
(

1 + N − D
1− D

)
2 1

R
+

D
2Lm1 f

]
(3)

ILm1(min) = ILm1 −
∆iLm1

2
= Vin

[
(

1 + N − D
1− D

)
2 1

R
− D

2Lm1 f

]
(4)
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Figure 3. Status of circuit conduction upon operating Mode 1.

(2) Operating Mode 2 ( t1 ∼ t2)

Upon entry into operating Mode 2, the status of the circuit conduction is shown in
Figure 4, where the main switch (S1) entered from conduction into termination, diode D1
underwent forward conduction, and the primary side of the coupled inductor (N1) released
energy into capacitor C1. Due to the inverse polarity for induction at the secondary side of
the coupled inductor, N2, vLm1 = −N1

N2
vLm2 = N1

N2
vC2; thus, diode D3 underwent forward

conduction and stored energy in capacitor C2. Such a mode would continue until the
primary side of the coupled inductor (N1) released energy to zero.
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(3) Operating Mode 3 ( t2 ∼ t3)

Upon entry into operating Mode 3, the status of the circuit conduction is shown in
Figure 5, where the main switch (S1) was still maintained in the off state. Thus, the energy
of C1, C2 and Lm1 were transferred to the loading end via the diode (D4) to complete the
circuit operating mode of one complete cycle, thus, the off time of the main switch was
to f f = T − ton = (1− D)T.
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Based on the inductor volt-second balance theory, it could therefore be derived that:

VinDT =
N1

N2
vC2(1− D)T (5)

After compiling Equation (5), vC2 could be derived as:

vC2 =
N2

N1
Vin

D
1− D

=
ND

1− D
Vin (6)

Since the output voltage VO could be expressed as:

Vo = Vin + vC1 + vC2 (7)

The voltage conversion ratio for such a circuit could be derived as:

Vo

Vin
=

N1 + N2

N1
+

N2

N1

D
1− D

=
1 + N − D

1− D
(8)

For the high-voltage step-up converter proposed in this paper, the nominal output
power was 300 W, the relevant parameters are shown in Table 1 and the parameter specifi-
cations of the circuit components are shown in Table 2.

Table 1. Parameter specifications of the proposed converter.

Parameter Specification

Input voltage (Vin) 80 V
Output voltage (Vo) 400 V
Output power (Po) 300 W

Switching frequency (f ) 25 kHz
Turns ratio (N = N2/N1) 2

Table 2. Parameter specifications for each component of the proposed converter.

Parameter Specification

Coupled inductor (Lm1) 284 µH
Film capacitor (C1) 2 µF/250 V
Film capacitor (C2) 5 µF/630 V

Input capacitor (Cin) 470 µF/400 V
Output capacitor (Co) 470 µF/500 V

Switch (S1) MOSFET-TK49N65W (650 V/49 A)
Fast diode (D1, D2, D3, D4) IQBD30E60A1 (600V/30A)
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From Equation (8), the relationship between the voltage gain and duty cycle for the
proposed high step-up converter can be derived in Figure 6.
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3. PVMA Output Characteristics under Different Shading Conditions

For a PVMA with a different connection in series or parallel, should partial modules
be exposed to different shading conditions, multiple peaks would occur on the P-V out-
put characteristic curve. Therefore, the photovoltaic modules SWM-20W (produced by
MPPTSUN Co., Ltd. (Dongguan, China)) were adopted under this paper to assemble the
PVMA and the parameter specifications for the electrical performance of a single module
are shown in Table 3. In this paper, the Matlab software would be utilized to construct
the model of a single photovoltaic module. The simulation results of the I-V and P-V
characteristic curves, with zero shading and a different shading percentage under STCs
(i.e., solar radiance at 1 kW/m2, a temperature of 25 ◦C, and an air mass (AM) of 1.5), are
shown in Figure 7. Figure 8, on the other hand, displayed the system architecture of the
MPPT control implemented with the proposed FA.

Table 3. Parameter specifications for electrical performance of photovoltaic modules SWM-20W
produced by MPPTSUN.

Parameter Value

Maximum output power (Pmax) 20 W
Current of maximum power point (Impp) 1.10 A
Voltage of maximum power point (Vmpp) 18.18 V

Short-circuit current (Isc) 1.15 A
Open circuit voltage (Voc) 22.32 V

Overall module dimensions 395 mm × 345 mm × 17 mm
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4. Firefly Algorithm (FA)

The FA was a heuristic algorithm. The inspiration mainly came from the flickering
behavior of fireflies. The flashing was a signal to attract other fireflies and the search
process related to the firefly’s characteristics, where the level of attraction connected with
the luminance. The fireflies with a higher luminance would possess the characteristic of
attracting fireflies with a weaker luminance. Higher luminance indicated that the current
position was better, hence the brightest firefly would be the function optimum. The fireflies
with a higher luminance would generate a greater attraction for fireflies nearby, and when
the luminance was the same, the fireflies would move randomly. The advantages of such a
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method included fewer parameters required, a more extensive range of searching, faster
convergence, and good performance in a steady state. However, should the starting point
for searching and step size of the searching process be planned inadequately, the local
optimum would be allocated easily instead of the global optimum, especially in the case of
a multi-dimensional system.

4.1. Conventional FA

The assumptions of the FA were as follows:

(1) All fireflies were assumed as gender-neutral and attracted to each other.
(2) The degree of attraction only related to the luminance and distance, the brighter

fireflies would attract fireflies of less luminance nearby. Along with a greater dis-
tance and the degree of attraction reducing slowly, the brighter fireflies would then
move randomly.

The main steps of acquiring optimum with the FA were as follows:
Step 1: Initialization of firefly number it, total iteration number MaxIt, and step factor α.
Step 2: Calculation of relative luminance between each firefly with Equation (9).

I = I0e−γr2
ji (9)

where I0 was the luminance for each firefly at a distance of rji = 0, which was its self-
luminance. γ was the absorption coefficient of the propagation medium, where the lumi-
nance would gradually decay along with an increase in distance. The absorption coefficient
of the propagation medium γ was often set as a constant.

Step 3: Calculate the distance between fireflies. The distance between firefly i and
firefly j on the d-dimension coordinate is expressed in Equation (10).

rji = ||xj − xi|| =

√√√√ d

∑
k=1

(
xj,d − xi,d

)2
(10)

where xj,d was the d-dimension coordinate for firefly j in the spatial coordinate xj and
Equation (10) was the calculating formula d-dimensional space. For the MPPT of the
PVMAs applied in this paper, two-dimensional space was utilized for the calculation.
Therefore, the distance between firefly i and firefly j in the two-dimensional space is
expressed in Equation (11).

rji =
√(

xj − xi
)2

+
(
yj − yi

)2 (11)

Step 4: Calculation on the degree of attraction between fireflies as shown in Equation (12).

β = β0e−γr2
ji (12)

where β0 represented the maximum attraction upon rji = 0.
Step 5: The fireflies of less luminance would move towards the brighter fireflies, and

the new solution was produced through iteration with Equation (13).

xt+1
i = xt

i + β0e−γr2
ji
(

xt
j − xt

i

)
+ αεt

i (13)

where xj was the location value of the brighter firefly and xi was the location value for the
firefly with less luminance. α was the step factor and ε was the random value in [0,1].

Step 6: Should the iteration number reach the maximum iteration number that was set,
the iteration stopped and xi was exported. In case of incompliant conditions, the process
returned to Step 3.
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4.2. Proposed Improved FA

For the improved FA proposed in this paper, improvements were made to the conven-
tional FA as follows:

Improvement 1: The upper and lower limits of the step factors were set and such
factors were adjusted along with the iteration number. Fine-tuning was then conducted as
the slope of the P-V characteristic curve in Figure 9, where α was derived with Equation (14)
according to methods of adjusting the iteration numbers. Consequently, fine-tuning the α
value was conducted according to the slope of the P-V characteristic curve. The fine-tuning
is illustrated in Table 4. The step factor of the iteration parameter of α in Table 4 was only
adjusted upon ∆P > 0. ∆P > 0 represented the adjustment of the step factor of α for the
iteration parameter at present, which increased the output power of the PVMA, so the
step factor of the next iteration parameter of α would track towards the MPP direction
upon adjustment.

α = αmax − (αmax − αmin)×
(

t
MaxIt

)
(14)
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Table 4. Status of adjusting step factor between the P-V characteristic curve and iteration parameter.

m ∆
=

P(t+1)−P(t)
V(t+1)−V(t)

∆P =P(t+1) − P(t)
∆P > 0

m > 2 α + 0.02
2 ≥ m > 1.5 α + 0.015
1.5 ≥ m > 1 α − 0.01
1 ≥ m > 0.5 α − 0.015
0.5 ≥ m > 0 α − 0.02

m = 0 α

0 > m ≥ −0.5 α − 0.02
−0.5 > m ≥ −1 α − 0.015
−1 > m ≥ −1.5 α − 0.01
−1.5 > m ≥ −2 α + 0.015

m < −2 α + 0.02

Among them, α was the step factor, and αmax and αmin were the upper and lower
limit of the step factor, respectively; t represented the iteration number and MaxIt was the
maximum iteration number.

Improvement 2: The initial tracking voltage of the MPPT was set as 0.8 times of the
MPP voltage Vmp for the PVMA under an STC.

The flow chart of the proposed improved FA is shown in Figure 10.
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5. Test Results

For the pulse width modulation (PWM) control of the high-voltage step-up converter,
as well as the conventional and improved FA adopted in this paper, a digital signal processor
(DSP), TMS320F2809, served as the controlling core for realization. At the same time, the
62050H-600S [38] programmable DC power supply, produced by Chroma ATE Inc., was
utilized to simulate the output of the PVMAs. The parameters adopted by the conventional
FA are shown in Table 5 and the parameter setting for the two improved FAs is shown in
Table 6. Table 7 listed the six test cases for the PVMAs with four modules in series and
three modules in parallel under different shading conditions. Due to the different shading
conditions, the number of peaks that appeared on the P-V characteristic curves also differed.
In the following sections, the actual tests on the GMPPT were conducted on cases with
single, double, triple, and quadruple peaks appearing on the P-V characteristic curves,
while the global maximum values were on different sides respectively, so the robustness
for the proposed improved FA can be verified.

Table 5. Parameters of the conventional FA.

Parameter Name Parameter Value

Firefly number (it) 4
Total iteration number (MaxIt) 50

Step factor (α) 2

Table 6. Parameters of the proposed improved FA.

Parameter Name Parameter Value

Firefly number (it) 4
Total iteration number (MaxIt) 50

Upper limit of step factor (αmax) 2.5
Lower limit of step factor (αmin) 1.5

Table 7. Number of peaks in the P-V characteristic curves for the PVMAs with four modules in series
and three modules in parallel under six different shading statuses.

Case Shading Status with 4 Modules
in Series and 3 Modules in Parallel

Number of Peaks in the
P-V Characteristic Curves

1
(0% shading + 0% shading + 0% shading + 0% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)//

(0% shading + 0% shading + 0% shading + 0% shading)
Single-peak

2
(0% shading + 0% shading + 0% shading + 90% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)//

(0% shading + 0% shading + 0% shading + 0% shading)

Double-peak
(MPP at left)

3
(0% shading + 0% shading + 30% shading + 90% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)//

(0% shading + 0% shading + 0% shading + 0% shading)

Triple-peak
(MPP at middle)

4
(0% shading + 0% shading + 70% shading + 90% shading)//
(0% shading + 0% shading + 70% shading + 90% shading)//

(0% shading + 0% shading + 0% shading + 0% shading)

Triple-peak
(MPP at left end)

5
(0% shading + 20% shading + 40% shading + 90% shading)//

(0% shading + 0% shading + 0% shading + 0% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)

Quadruple-peak
(MPP at the third peak)

6
(0% shading + 10% shading + 80% shading + 90% shading)//
(0% shading + 10% shading + 80% shading + 90% shading)//

(0% shading + 10% shading + 80% shading + 90% shading)

Quadruple-peak
(MPP at the second peak)

Note: The symbol “+” stands for series connection, while the symbol “//” stands for parallel connection.

5.1. Actual Test on the High Voltage Step-Up Converter

Figure 11 displays the waves of the input voltage (vin), input current (iin), and output
voltage (vo) under an actual test when the proposed high-voltage step-up converter was
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operating at a full load of 300 W. From the actual test results, it can be observed that under
the load of 300 W, the developed converter could indeed raise the input voltage from 80 V
to 400 V; hence, the converter provided a characteristic of high-voltage step-up.
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5.2. Actual Test for MPPT

(1) Actual test in Case 1

Figure 12 displays Case 1, where the actual test for the I-V and P-V characteristic
curves of the PVMAs, under an STC with zero shading, was conducted and the MPP was
244.5 W. Figures 13–15 display the actual test results for the MPPT conducted by adopting
the conventional and two types of improved FAs. From the figures, it can be observed that
the tracking speed of the proposed FA, with both the changed iteration parameters and
initial tracking voltage, was distinctively better than the conventional FA and improved FA
with only the changed iteration parameters.
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(2) Actual Test in Case 2

Figure 16 displays Case 2, where the actual test for the I-V and P-V characteristic
curves of the PVMAs, under an STC with 90% shading on a single module, was conducted.
Double peaks were presented and the true MPP was on the left with a value of 195.3 W.
Figures 17–19 display the actual test results for the MPPT conducted by adopting the
conventional and two types of improved FAs. Since the improved FA with, both the
changed iteration parameters and initial tracking voltage, was set to 0.8 times of the MPP
voltage (Vmp), it can be observed, from the figures, that the initial tracking voltage was
extremely close to the true MPP voltage, thus the tracking speed was better than the
conventional FA and improved FA with only the changed iteration parameters.
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voltage (Vmp), the speed of the tracking response from the proposed FA, with both the 
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parameters and initial tracking voltage were changed).

(3) Actual Test in Case 3

Figure 20 displays Case 3, where the actual test for the I-V and P-V characteristic curves
of the PVMAs, under STCs with 30% and 90% shading on two modules, was conducted.
Triple peaks were presented and the true MPP was in the middle with a value of 183.9 W.
Figures 21–23 display the actual test results for the MPPT conducted by adopting the
conventional and two types of improved FAs. Since the improved FA, with both the
changed iteration parameters and initial tracking voltage, was set to 0.8 times of the MPP
voltage (Vmp), the speed of the tracking response from the proposed FA, with both the
changed iteration parameters and initial tracking voltage, was significantly better than the
conventional FA and improved FA with only the changed iteration parameters.
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Figure 23. Actual test results for the MPPT of the improved FA adopted in Case 3 (both the iteration 
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(4) Actual Test in Case 4

Figure 24 displays Case 4, where the actual test for the I-V and P-V characteristic curves
of the PVMAs, under STCs with 70% and 90% shading on two modules, was conducted.
Triple peaks were still presented and the true MPP was on the left end with a value of
124.9 W. Figures 25–27 display the actual test results of the MPPT, where the conventional
FA and two types of improved FAs were adopted, respectively. Although the proposed
FA, with both the changed iteration parameters and initial tracking voltage, would still
track the LMPP, it could quickly escape the LMPP and track the GMPP, the tracking speed
was relatively faster than the conventional FA and improved FA with only the changed
iteration parameters.
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(5) Actual Test in Case 5

Figure 28 displays Case 5, where the actual test for the I-V and P-V characteristic
curves of the PVMAs, under STCs with 20%, 40%, and 90% shading on three modules,
was conducted. Quadruple peaks were presented and the true MPP was on the third peak
with a value of 175.3 W. Figures 29–31 display the actual test results of the MPPT, where
the conventional FA and two types of improved FAs were adopted, respectively. Since the
improved FA, with both the changed iteration parameters and initial tracking voltage, was
set to 0.8 times of the MPP voltage (Vmp), the tracking speed was distinctively better than
the conventional FA and improved FA with only the changed iteration parameters.
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Figure 30. Actual test results for the MPPT of the improved FA adopted in Case 5 (only the iteration 
parameters were changed). 
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Figure 31. Actual test results for the MPPT of the improved FA adopted in Case 5 (both the iteration 
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(6) Actual Test in Case 6

Figure 32 displays Case 6, where the actual test for the I-V and P-V characteristic
curves of the PVMAs, under STCs with 70%, 80%, and 90% shading on nine modules, was
conducted. Quadruple peaks were still presented and the true MPP was on the left end
with a value of 61.12 W. Figures 33–35 display the actual test results of the MPPT, where
the conventional FA and two types of improved FAs were adopted, respectively. From the
figures, it can be observed that all three methods could successfully track to the GMPP.
However, even under quadruple peaks, the tracking speed of the improved method, with
both the changed iteration parameters and initial tracking voltage, was still better than the
conventional FA and improved FA with only the changed iteration parameters.
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Figure 34. Actual test results for the MPPT of the improved FA adopted in Case 6 (only the iteration 
parameters were changed). 
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Figure 35. Actual test results for the MPPT of the improved FA adopted in Case 6 (both the iteration
parameters and initial tracking voltage were changed).

For the conventional FA, the improved FA with only the changed iteration parameter,
and the improved FA with both the changed iteration parameters and initial tracking
voltage in this paper, 10 actual tests were conducted on six cases of different shading ratios
(listed in Table 7), where the average tracking time was calculated and then compiled in
Table 8. From Table 8, it can be known that the response of the average tracking speed on
the GMPP, with the improved method with both the changed iteration parameters and
initial tracking voltage, was distinctively better than the other two methods. This was
sufficient to prove the feasibility and robustness of the improved FA with both the changed
iteration parameters and initial tracking voltage.

Table 8. Comparison of the average tracking time between six cases under 10 actual tests.

Case The Number of Peaks in
the P-V Curve

Average Tracking Time

Conventional FA Improved FA
(Iteration Parameter Changed)

Improved FA
(Iteration Parameter and Initial

Tracking Voltage Changed)

1 Single-peak 2.8 s 1.5 s 0.7 s

2 Double-peak
(MPP at left) 3.4 s 1.7 s 0.9 s

3 Triple-peak
(MPP at middle) 3.8 s 2.1 s 1.3 s

4 Triple-peak
(MPP at left end) 4.0 s 2.5 s 1.4 s

5 Quadruple-peak
(MPP at the third peak) 4.2 s 2.7 s 1.6 s

6 Quadruple-peak
(MPP at the second peak) 4.7 s 3.2 s 2.0 s

5.3. Actual Test Discussion

In this paper, six test cases under different shading ratios were selected. The conven-
tional firefly algorithm and two improved firefly algorithms were chosen and subjected
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to ten tests of maximum power point tracking in different time frames. The results of
the tests are shown in Table 8. The table shows that the two improved firefly algorithms
exhibit superior tracking performances compared to the conventional firefly algorithm, this
demonstrates the stability and robustness of the proposed method in long-term tracking.
The test results confirmed that the developed converter has a high step-up ratio and can re-
duce output voltage ripples. Furthermore, the effectiveness and robustness of the proposed
improved firefly algorithm can be demonstrated using test results of the maximum power
point tracking of the photovoltaic module arrays under six different shading conditions.
The advantages and disadvantages of the existing commonly used smart algorithms are
elaborated in Section 1. Despite the fact that these algorithms demonstrate the ability to
search for global optimums, the tracking response speed is insufficient.

The main contribution of this paper is to use the firefly algorithm to improve the
speed and efficiency of maximum power point tracking. It entails improving the traditional
firefly algorithm so that the step factor can be automatically adjusted online based on the
number of iterations and the slope of the photovoltaic module array’s P-V characteristic
curve. When multiple peak values are generated from the P-V characteristic curve, as
a result of shading and the malfunction of certain modules, in the photovoltaic module
array, this can lead to the capability of a fast escape from the LMPP, as well as accurately
and quickly tracking the global GMPP. In order to improve the maximum power point
tracking speed response, the initial tracking voltage is set to 0.8 times the maximum
power point voltage of the photovoltaic module arrays under standard test conditions.
The six test cases were tested for global maximum power point tracking performance
when different P-V characteristic curve peak values were tested under different shading
conditions, and the global maximum power point appeared in different positions. It should
be representative and sufficient in terms of producing the contribution. Additionally, to
confirm that the tracking performance is superior to the existing smart algorithms [26–28],
the P-V characteristic curves will produce different peak values under four different shading
conditions. Furthermore, when the global maximum power points appear in different
positions, the average tracking time obtained from ten tests is compiled for comparison
in Table 9. Table 9 shows that the tracking response of the proposed improved firefly
algorithm MPPT should be faster than the other smart MPPT methods [15,22,28].

Table 9. Comparison of actual test results for four cases.

Case Number of Peak(s)
of the P-V Curve

Method Proposed
in Reference [15]

Method Proposed
in Reference [22]

Method Proposed
in Reference [28]

Proposed in
this Study

Average Tracking
Time

Average Tracking
Time

Average Tracking
Time

Average Tracking
Time

1 Single-peak 2.3 s 0.8 s 4.5 s 0.7 s
2 Double-peak 2.4 s 1.22 s 4.5 s 0.9 s
3 Triple-peak 3.5 s 1.89 s 5 s 1.3 s
4 Quadruple-peak 4.2 s None * 6.5 s 1.6 s

Note: The symbol “None *” indicates that this reference does not provide the test results of this case.

6. Conclusions

In this paper, the improved FA was proposed to conduct the MPPT of the PVMAs
under different shading conditions, and the proposed high-voltage step-up converter was
utilized for such an MPPT. The converter provided the advantage of the high-voltage step-
up, which raised the input voltage of 80 V to 400 V at a smaller duty cycle but is capable
of reducing the circuit cost and enhancing the conversion efficiency further. In addition,
to boost the tracking speed and efficiency with an FA on MPP, the conventional FA was
improved, so the online automatic adjustment for the step factor in the iteration formula,
along with the slope of the P-V characteristic curve and iteration number of the PVMAs,
could be implemented. With multiple peaks appearing on the P-V characteristic curves,
where shading occurred on partial modules in the PVMAs, this can lead to the capability of



Sustainability 2023, 15, 8550 27 of 28

a fast escape from the LMPP, followed by precise and fast-tracking to the GMPP. Moreover,
to improve the speed response on the MPPT further, the initial tracking voltage was set to
0.8 times of MPP voltage (Vmp) for the PVMAs under STCs. From the actual test results,
it was verified that the developed converter indeed provided a high-voltage step-up and
could reduce the ripple from the output voltage. In addition, through the actual test results
from the MPPT of the PVMA under six different shading conditions, the effectiveness and
robustness of the proposed improved FA for the MPPT were proved.
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