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Abstract: Microbial communities play crucial roles in the biogeochemical cycling of many important
soil elements. Pesticides are known to affect non-targeted soil microorganisms. Glyphosate (GP)
and diquat (DQ), two commonly used non-selective herbicides, often co-exist in lateritic paddy
soil rich in iron/aluminum oxides. However, there is limited information on their co-impact on
microbial community structure and diversity in this type of soil. Here, the short-term effects of
combined exposure to GP and DQ on microbial diversity and community structure shifts were
investigated in lateritic paddy soil from a tropical agricultural region (Hainan, China). The combined
utilization dosages of two herbicides were set in three concentrations: low concentration (1 fold
of the recommended dosage), medium concentration (10 fold of the recommended dosage) and
high concentration (100 fold of the recommended dosage). The structure and diversity of microbial
communities were determined via 16S rRNA and ITS gene high-throughput sequencing. The results
revealed that Actinobacteria and Proteobacteria were the most sensitive microbial phyla to the
combined exposure of GP and DQ in lateritic paddy soil. The combined exposure to GP and
DQ increased the abundance of Actinobacteria but significantly inhibited that of Proteobacteria,
especially at low and medium concentrations. Compared with CK, mixed herbicide (GP + DQ) had
no adverse effects on the richness of bacteria and fungi communities as well as on the diversity
of bacteria communities, but it significantly decreased the diversity of fungi communities at high
concentrations within 28 days. However, the effects of combined exposure to GP and DQ on soil
microbial richness and diversity were not significantly different from those of separate exposure of
the two herbicides. In conclusion, the combined application of GP and DQ had no more adverse
effects on soil microorganisms. Therefore, these two herbicides can be used reasonably in actual
agricultural production.

Keywords: herbicides; mixed toxicity; microbial diversity; microbial community structure

1. Introduction

Herbicides are the most widely used class of pesticides in global agriculture [1], with
up to 1.2 million tons in 2018 [2]. Among herbicides, glyphosate (GP) and diquat (DQ), as
two non-selective herbicides, both rank in the top five most commonly used herbicides in
the global market; in particular, GP has the highest use in the global market with 0.86 million
tons used in 2016 [3]. At present, GP was recorded to cause heavy pollution in different
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environmental media [4–6], e.g., water (21.2–32.5 µg/L) [7–9], soil (1200–1502 µg/kg) [10–12]
and sediment (1149 µg/kg) [13], especially in tropical soil (690–40,000 µg/kg) [12,14–17]. So
far, however, there have been few studies on the appearance, persistence, and distribution
of DQ in the environment; the residue of DQ in sediments is obviously larger than that in
soil [18]. Meanwhile, lateritic paddy soil is rich in iron and aluminum, due to its strong
binding with clay particles and organic matter, and DQ is easily retained in the lateritic
paddy soil; even the adsorption of GP in soils increased with iron and aluminum oxides
content [19–21]. In practice, two or more mixed herbicides (e.g., GP and DQ) are often
applied in varied agricultural scenarios, especially in the tropics [6,16,22]. Undoubtedly,
the GP and DQ will inevitably co-occur in lateritic paddy soil. However, there is limited
information on the co-occurrence of GP and DQ on microbial diversity and community
structure shifts in lateritic paddy soil.

Microbial communities in the soil environment play an important role in the bio-
geochemistry cycle of many important soil elements [23,24]. It was found that herbicide
residues changed the soil microflora and had a potentially long-term effect on the functions
of agricultural soils [25–28]. Most studies have shown that GP has no or transient stress
effect on the soil microbial community [29–34], but some studies have shown significant
adverse effects [35–37]. For instance, GP can lead to a decrease in the abundance of Pseu-
domonas fluorescens, Mn-transforming bacteria, and indoleacetic acid-producing bacteria
in soybean rhizosphere soil [38]. The abundance of certain Bacteroidetes, Chloroflexi,
Cyanobacteria, Planctomycetes, and alpha-Proteobacteria members are highly negatively
correlated with GP concentrations [39]. There is also some other literature on the specific
functional or ecological microbial groups in different GP exposure cycles, including the
effects of GP on Acidobacteria, ammonia-oxidizing bacteria, Mycorrhiza, etc. [40–42]. Due
to the strong binding property of DQ with clay particles, it is reasonable to assume that
higher levels of DQ occurred in lateritic paddy soil, which might bring more pressure on
the structure and function of the microbe. Nevertheless, there are few studies on the effects
of combined exposure of GP with other herbicides on microbial populations [43], where
the combined toxicology of GP with other chemicals on microorganisms mainly focuses
on it with heavy metals or polyethylene microplastics [44–49]. GP contains coordination
groups such as carboxyl, amino, and phosphate groups, and has a strong complexing ability
to heavy metal cations and organic cations [46]. Similar to the charge characteristics of
metal ions, DQ has the ability to strongly adsorb on the surface with negative charges and
also has a strong oxidation–reduction cycling ability that can be reduced to generate free
radicals [19]. These similar characteristics coupled with the observed difference (i.e., strong
oxidation–reduction cycling ability) might partly contribute to the combined toxic effects
of GP and DQ differing from that of GP and heavy metal.

Are soil microbial communities and community structures significantly affected by
the combined use of herbicides in lateritic paddy soil in tropical agricultural areas? We
hypothesized that mixed herbicides would have significant adverse effects on the overall
community structure and diversity of soil microorganisms; in addition, the effects of mixed
herbicides on soil microbiota were significantly different from those of single herbicides,
and mixed herbicides can reduce or increase the abundance of certain microbial commu-
nities in the soil. In the context, the short-term exposure (28 days) test was conducted,
wherein the effects of single GP, DQ, and their mixture on the diversity and community
structure of soil bacteria and fungi were investigated in lateritic paddy soil from a tropical
agricultural region (Hainan, China) based on 16S rRNA and Internal Transcribed Spacer
(ITS) high-throughput sequencing technology. We hope the results of the study will provide
a scientific basis for the rational composite application of herbicides in lateritic paddy soil
in agricultural areas.
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2. Materials and Methods
2.1. Experiment Design and Sample Collection

Lateritic paddy soils (0–15 cm) were collected from a village (19◦55′ N, 110◦25′ E) in
the tropical agricultural region of the Nandu River Basin in Hainan Province, China.
The residues of GP and DQ were not found in the soil (the limits of detection were
<0.03 mg kg−1) based on the analytical methods by Delhomme et al. [50] and Pizzutti
et al. [51]. The texture of the soil is a typical sandy loam identified using a method from
USDA [52]. In order to recover soil microorganisms, the soil samples were sieved through
a sieve (2 mm). Then, the deionized water was added to keep the soil at 50% of the max-
imum water holding capacity, lasting 2 weeks for pre-incubation. Analytical grade DQ
and GP (active ingredient >98.5%) were purchased from Beijing Tanmo Quality Inspection
Technology Co., Ltd. (Beijing, China). The recommended field dose of GP was 0.6 mg kg−1,
and meanwhile, the recommended dosage of DQ in the field was 0.4 mg kg−1 [53]. In the
experiment, 10 treatments were set up based on the recommended field dose, containing a
blank only with deionized water and the 9 different experimental treatments of GP, DQ,
and GP + DQ at different concentrations (Table 1). The initial weight of soil in each treat-
ment was 50 g. During the experiment, deionized water was added regularly during the
incubation process to compensate for evaporated water. Overall, 3 g samples were collected
from each treatment on days 1, 7, 14 and 28 after application; then, the soil samples were
stored at −80 ◦C and taken out for testing within 3 days. All experiments were conducted
in triplicates.

Table 1. Trial treatment setting. The low concentration (L) was 1 time the recommended dosage, the
medium concentration (M) was 10 times the recommended dosage, and the high concentration (H)
was 100 times the recommended dosage. The recommended dosages were set as 0.6 and 0.4 mg kg−1

for glyphosate (GP) and diquat (DQ), respectively.

Treatment
Concentration (mg kg−1)

Low (l) Middle (m) High (h)

Blank (CK) 0
Glyphosate (G) 0.6 (Gl) 6 (Gm) 60 (Gh)

Diquat (D) 0.4 (Dl) 4 (Dm) 40 (Dh)
Glyphosate + diquat (GD) 0.6 + 0.4 (GDl) 6 + 4 (GDm) 60 + 40 (GDh)

2.2. DNA Extraction and Database Construction

Microbial DNA was extracted using the HiPure Soil DNA Kits (or HiPure Stool DNA
Kits) (Magen, Guangzhou, China) according to the manufacturer’s protocols. The 16S
rDNA target region of the ribosomal RNA gene was amplified via PCR (95 ◦C for 5 min,
followed by 30 cycles at 95 ◦C for 1 min, 60 ◦C for 1 min, and 72 ◦C for 1 min and a final
extension at 72 ◦C for 7 min) using primers listed in Table S1. PCR reactions were performed
in triplicate using the 50 µL mixture containing 10 µL of 5 × Q5@ Reaction Buffer, 10 µL
of 5 × Q5@ High GC Enhancer, 1.5 µL of 2.5 mM dNTPs, 1.5 µL of each primer (10 µM),
0.2 µL of Q5@ High-Fidelity DNA Polymerase, and 50 ng of template DNA. Related PCR
reagents were from New England Biolabs, Ipswich, MA, USA.

For bacteria, after genomic DNA was extracted from the soil samples, the 16S rDNA
V3 + V4 region was amplified with barcode-specific primers. The primer sequence was:
341F: CCTACGGGNGGCWGCAG; 806R: GGACTACHVGGGTATCTAAT.

For fungi, the amplified region is the ITS2 region of ITS. The primer sequences were
as follows: ITS3: GATGAAGAACGYAGYRAA; ITS4: TCCTCCGCTTATTGATATGC. The
purified amplified products were connected to sequencing linkers to construct sequencing
libraries and sequenced using Illumina.
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2.3. Bioinformatic Analysis of Microbial 16S rRNA and ITS

After the raw data named “Reads” were obtained via sequencing, the low-quality data
in Reads were filtered first; then, the two-terminal Reads were spliced into Tag, and the
Tag was filtered again. The data obtained were called Clean Tag. Next, based on Clean
Tag, Usearch software was used to cluster, remove the chimeric Tag detected during the
clustering process, and obtain the representative sequences and abundance of OTU. The
representative OTU sequences were classified into organisms via a naive Bayesian model
using an RDP classifier [54] (version 2.2) based on SILVA database [55] (version 132) or
UNITE database [56] (version 8.0) or ITS2 database [57] (version update 2015), with the
confidence threshold value of 0.8. Based on the sequence and abundance data of OTU,
species annotation, species composition analysis, indicator species analysis, α diversity
analysis and β diversity analysis were carried out. In α diversity analysis, the Chao1 index
and the Shannon’s evenness index were calculated in QIIME [58] (version 1.9.1). The alpha
index comparison between groups was calculated using the Welch’s t-test and Wilcoxon
rank test in the R project Vegan package [59] (version 2.5.3). The alpha index comparison
among groups was computed using the Tukey’s HSD test and Kruskal–Wallis H test in the
R project Vegan package [60] (version 2.5.3). If there was effective grouping, the differences
between groups were compared and tested statistically.

2.4. Data Analysis and Statistical Analysis

Gene abundance data were analyzed using One-way Analysis of Variance (ANOVA)
by using the SPSS Statistical Package (version 19.0, IBM, Armonk, NY, USA). The Duncan’s
multi-range test and Spearman’s rank statistical analysis were used to calculate the correla-
tion between samples, bacteria and fungi and BDGs/PDGs. All data are mean ± standard
error (SE) of three replicates. The data were considered to be significant when p < 0.05.

3. Results
3.1. Effects of Combined Exposure of GP and DQ on the Composition and Diversity of Soil
Bacterial Community
3.1.1. Bacterial Community Composition

In general, it was observed that GP decreased the relative abundance of Actinobacteria;
nevertheless, DQ had no significant effect on Actinobacteria. Particularly, the combined
pollution of GP and DQ increased the relative abundance of Actinobacteria, as shown
in Figure 1a. Specifically, a low concentration of mixed herbicides caused the relative
abundance of Actinobacteria to increase by 4.91%, 6.78% and 4.25% on the 7th, 14th and
28th day, respectively; a medium concentration of mixed herbicides caused the relative
abundance of Actinobacteria to increase by 3.98% and 5.21% on the 14th and 28th day,
respectively; and a high concentration of mixed herbicides caused the relative abundance
of Actinobacteria to increase by 4.38% and 2.37% on the 7th and 14th day, respectively.
Notably, the mixed herbicides enhanced the inhibitory effect of DQ on Proteobacteria,
although the GP increased the abundance of Proteobacteria and the DQ decreased the
abundance of Proteobacteria, as shown in Figure 1b. Specifically, a low concentration of
mixed herbicides caused the relative abundance of Proteobacteria to decrease by 3.58% and
5.70% on the 7th and 14th day, respectively; a medium concentration of mixed herbicides
caused the relative abundance of Proteobacteria to decrease by 4.93% and 2.76% on the
14th and 28th day, respectively; and a high concentration of mixed herbicides caused the
relative abundance of Proteobacteria to decrease by 4.97%, 2.49% and 0.92% on the 7th, 14th
and 28th day, respectively. Taken together, the results indicated that combined pollution
of GP and DQ could increase the relative abundance of Actinobacteria and decrease the
relative abundance of Proteobacteria compared with a single herbicide.
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Figure 1. The abundance distribution of Actinobacteria (a) and Proteobacteria (b). CK—control,
Gl—low concentration of glyphosate, Gm—medium concentration of glyphosate, Gh—high con-
centration of glyphosate, Dl—low concentration of diquat, Dm—medium concentration of diquat,
Dh—high concentration of diquat, GDl—low concentration of mixed herbicides, GDm—medium
concentration of mixed herbicides, and GDh—high concentration of mixed herbicides.

The stacking chart of the distribution of bacterial community composition at the genus
level is shown in Figure 2a–d. Overall, it could be observed that GP increased the relative
abundance of Sphingomonas while DQ decreased the abundance of Sphingomonas, whereas
the inhibition of mixed herbicides on Sphingomonas was stronger than that of DQ, but the
inhibitory effect weakened over time. Specifically, a low concentration of mixed herbicides
caused the relative abundance of Sphingomonas to decrease by 4.36%, 3.39% and 1.40%
on the 7th, 14th and 28th day, respectively; a medium concentration of mixed herbicides
caused the relative abundance of Sphingomonas to decrease by 5.13%, 3.11% and 1.92% on
the 7th, 14th and 28th day, respectively; while the high concentration of mixed herbicides
caused the relative abundance of Sphingomonas to decrease by 4.30%, 1.41% and 0.64% on
the 7th, 14th and 28th day, respectively. Remarkably, the mixed herbicides increased the
relative abundance of Streptomyces, although an inhibiting effect on the Streptomyces by GP
and DQ was observed. Specifically, a low concentration of mixed herbicides caused the
relative abundance of Streptomyces to increase by 0.69%, 0.86% and 0.81% on the 7th, 14th
and 28th day, respectively; while the medium concentration of mixed herbicides caused
the relative abundance of Streptomyces to increase by 0.85%, 0.69% and 1.29% on the 7th,
14th and 28th day, respectively. In addition, it was observed that GP increased the relative
abundance of Phenylobacterium; nevertheless, DQ had little effect on Phenylobacterium.
Particularly, the mixed herbicides decreased the relative abundance of Phenylobacterium to
some extent. On the 7th day, a low concentration of mixed herbicides caused the abundance
of Phenylobacterium to decrease by 0.59%. However, the medium concentration of mixed
herbicide reduced the Phenylobacterium abundance by 0.74% on day 7. The results showed
that the mixed herbicides inhibited the growth of Sphingomonas and Phenylobacterium, and
promoted the growth of Streptomyces at low and high concentrations as compared with a
single herbicide.

3.1.2. Alpha Diversity of the Bacterial Community

The results of bacterial richness and diversity analysis are shown in Table 2. Generally,
the Chao1 index was used to evaluate microbial richness, while the Shannon index was
used to evaluate microbial diversity. The larger the Chao1 index is, the higher the microbial
richness will be. In addition, the larger the Shannon index is, the higher the microbial
diversity will be. On day 1 and day 28, it was observed that the medium concentration
of GP increased bacterial richness (increased by 413.413/146.912) while the same con-
centration of DQ inhibited bacterial richness (reduced by 195.023/48.648). Particularly,
the medium concentration of mixed herbicides promoted bacterial richness (increased by
300.247/63.717). It is noteworthy that medium concentrations of GP and DQ promoted
bacterial diversity on days 7 and 14, but by day 28, the impact of single and mixed herbi-
cides on soil bacterial diversity was not significantly different. In general, the effects of
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mixed herbicides on soil bacterial richness and diversity were not significantly different
from those of a single herbicide.
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3.1.3. Beta Diversity of the Bacterial Community

The principal coordinate analyses based on the Bray–Curtis distance for the bacte-
rial communities at the phylum level and genus level are shown in Figures 3a,b and S1.
The results showed that the difference in community structure between the control and
the composite herbicide was less than that between the control and the single herbicide
(Figure S1). In addition, on day 1 (Figure 3a) and day 14 (Figure 3b), the difference in
community structure between the mixed herbicide treatment and the control treatment was
less than that between the single herbicide treatment and the control treatment (R2 = 0.723,
p = 0.001; R2 = 0.405, p = 0.044). From the above analysis, it can be concluded that the effect
of mixed herbicides on the soil bacterial community structure was less than that of single
herbicides at low concentrations, although there was no significant difference in the effects
between mixed herbicides and single herbicides on the soil bacterial community structure
at medium or high concentrations.
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Table 2. Alpha diversity of bacterial communities under different treatments. Different letters indicate
significant differences at the p < 0.05 level between different treatments at the same time. Mean values
(n = 3) ± S.E.

Index Treatment
Days after Application

1 7 14 28

Shannon

CK 5.918 ± 0.311 ab 7.264 ± 0.027 bc 7.556 ± 0.023 cd 7.315 ± 0.093 abc
Gl 6.390 ± 0.071 a 7.458 ± 0.009 a 7.650 ± 0.017 abc 7.254 ± 0.320 bc

Gm 6.249 ± 0.063 a 7.405 ± 0.032 ab 7.736 ± 0.022 a 7.497 ± 0.090 ab
Gh 6.266 ± 0.161 a 7.145 ± 0.051 c 7.671 ± 0.018 ab 7.453 ± 0.067 abc
Dl 6.131 ± 0.140 a 7.407 ± 0.033 ab 7.583 ± 0.015 bcd 7.416 ± 0.027 abc

Dm 5.382 ± 0.379 b 7.485 ± 0.044 a 7.669 ± 0.030 ab 7.629 ± 0.006 a
Dh 5.770 ± 0.256 ab 7.416 ± 0.038 ab 7.404 ± 0.011 e 7.152 ± 0.014 bc
GDl 6.298 ± 0.046 a 7.381 ± 0.029 ab 7.284 ± 0.078 f 7.100 ± 0.034 c

GDm 6.409 ± 0.001 a 7.414 ± 0.090 ab 7.505 ± 0.015 d 7.090 ± 0.023 c
GDh 6.092 ± 0.104 a 7.370 ± 0.106 ab 7.499 ± 0.038 de 7.238 ± 0.039 bc

Chao1

CK 2188.649 ± 150.191 bcd 2263.584 ± 36.558 ab 2369.947 ± 39.031 a 2303.254 ± 45.996 ab
Gl 2536.324 ± 75.475 ab 2377.208 ± 3.108 a 2352.648 ± 36.608 a 2219.027 ± 135.281 b

Gm 2602.062 ± 60.436 a 2338.966 ± 56.674 a 2386.601 ± 49.563 a 2450.166 ± 44.036 aA
Gh 2508.073 ± 91.128 abc 2184.617 ± 30.267 b 2417.438 ± 28.661 a 2285.848 ± 30.396 ab
Dl 2229.911 ± 153.341 bcd 2406.547 ± 28.774 a 2334.005 ± 44.040 a 2352.122 ± 40.203 ab

Dm 1993.626 ± 203.891 d 2417.230 ± 8.741 a 2351.966 ± 34.642 a 2254.606 ± 47.180 b
Dh 2154.460 ± 98.706 cd 2329.326 ± 48.987 ab 2249.354 ± 70.180 a 2297.709 ± 26.360 ab
GDl 2372.901 ± 44.448 abc 2332.078 ± 103.682 ab 2305.535 ± 69.564 a 2309.014 ± 8.035 ab

GDm 2488.896 ± 9.119 abc 2363.224 ± 52.350 a 2358.002 ± 63.922 a 2366.971 ± 23.944 ab
GDh 2250.869 ± 64.077 abcd 2380.824 ± 14.352 a 2332.714 ± 39.074 a 2250.471 ± 9.346 b
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3.1.4. LEfSe Analysis of the Bacterial Community

Linear discriminant analysis (LDA ≥ 2) of the bacterial community is shown in
Figures 4a and S2a–h. It can be observed that at the phylum level, Cyanobacteria were the
significantly different biomarker taxa between GP treatment and other herbicide treatments
on day 1 (p ≤ 0.038). On the 14th day, the significantly different biomarker taxa between
GP treatment and other herbicide treatments became Bacteroides (p ≤ 0.040) instead of
Cyanobacteria. It is important to note that Chloroflexi is sensitive to various herbicides
treatments on day 14. Meanwhile, at the genus level, Streptomyces showed a significant
difference between mixed herbicide treatments and other herbicides treatments on day
14 (p ≤ 0.034). However, on day 28, the significantly different biomarker taxa between
GP treatment and other herbicide treatments became Rickettsia (p ≤ 0.013) rather than
Streptomyces. In particular, Streptomyces was sensitive to mixed herbicide responses on
day 14, while Rickettsia was sensitive to GP responses on days 14 and 28. From the above
analysis, it can be concluded that the relative abundance of Cyanobacteria, Bacteroides,
and Rickettsia is suppressed after adding DQ to the GP. In particular, compared to a single
herbicide, mixed herbicides significantly increased the abundance of Streptomyces (p < 0.05).
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Figure 4. Cladograms of line discriminant analysis effect size (LEfSe) analyses based on microbial
community composition in different treats (The line discriminant analysis (LDA) scores above the
preset value of 2.0 were considered to be significant. From the center outward, the circles represent the
different taxonomic levels of the bacteria and fungi from the phylum to the genus levels. The yellow
circles denote the taxa without significant differences among the different soil layers). (a) bacteria,
(b) fungi.

3.2. Effects of Combined Exposure of GP and DQ on the Composition and Diversity of the Soil
Fungal Community
3.2.1. Fungal Community Composition

The stacking chart of the species distribution of fungi at the phylum level is shown in
Figure 5. Notably, at the phylum level, the low concentration of mixed herbicides inhibited
the abundance of Basidomycota but promoted the abundance of Ascomycota on the 7th
and 28th day compared with a single herbicide. Specifically, on day 7, a low concentration
of mixed herbicide reduced the abundance of Basidomycota by 3.3%, while increased the
Ascomycota abundance by 4.86%; in addition, the abundance of Basidomycota decreased
by 3.21% and that of Ascomycota increased by 2.33% on day 14. Taken together, the results
showed that Basidomycota and Ascomycota were sensitive to exposure to mixed herbicides
at certain exposure times, especially on days 7 and 14.
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Figure 2e–h shows a stacked distribution of fungi at the genus level. In general, it was
observed that GP inhibited the abundance of Talaromyces at low and middle concentrations
on the 7th and 28th day; nevertheless the same concentrations of DQ promoted the abun-
dance of Talaromyces at the same time. Notably, the addition of GP enhanced the effect of
DQ on the abundance of Talaromyces. Specifically, a low concentration of mixed herbicides
increased the abundance of Talaromyces by 1.16% and 1.43%, respectively, on the 7th and
28th day; while the medium concentration of mixed herbicides increased the abundance of
Talaromyces by 4.91% and 2.95%, respectively, on the 7th and 28th day. However, on the 7th
and 14th day, the mixed herbicides promoted the abundance of Curvularia, although the
single herbicide inhibited the abundance of Curvularia. Specifically, the low concentration
of mixed herbicides increased the abundance of Curvularia by 2.60% on the 7th and 14th
day; the medium concentration of mixed herbicides increased the abundance of Curvularia
by 5.85% and 0.86% on the 7th and 14th day, respectively; while the medium concentration
of mixed herbicides increased the abundance of Curvularia by 0.30% and 0.97% on the 7th
and 14th day, respectively. Particularly, on the 7th, 14th and 28th days, the mixed herbicides
inhibited the abundance of Conlarium significantly compared with single herbicides at low
and medium concentrations, and the inhibitory effect became more significant over time.
Specifically, the low concentration of mixed herbicides, respectively, reduced the abundance
of Conlarium by 0.42%, 1.32% and 5.01% on the 7th, 14th and 28th day, while the medium
concentration of mixed herbicides reduced the abundance of Conlarium by 1.26%, 1.60%
and 2.97% on the 7th, 14th and 28th day, respectively. The results showed that, compared
with single herbicides, the mixed herbicides promoted the abundance of Talaromyces and
Curvularia at low and medium concentrations, but inhibited the abundance of Conlarium.

3.2.2. Alpha Diversity of Fungal Community

The fungal richness and diversity data are presented in Table 3. It is observed that
the diversity of fungal communities increased with time, but the richness decreased over
time. On the first day, the fungal diversity of low and medium concentration GP treatments
was significantly higher than that of mixed herbicide treatments at the same concentration
(p < 0.05). Particularly, on the 14th day, low concentrations of single herbicides had little
impact on fungal diversity, while low concentrations of mixed herbicides significantly
inhibited fungal diversity (p < 0.05). The high concentration of mixed herbicides has little
impact on fungal diversity; nevertheless, at the same concentration, the fungal diversity
of GP treatment is significantly lower than that of the control treatment (p < 0.05), while
the fungal diversity of DQ treatment is significantly higher than that of control treatment
(p < 0.05). It is noteworthy that on day 28, high concentrations of mixed herbicides signifi-
cantly inhibited fungal diversity (p < 0.05), while single herbicides at the same concentration
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had no significant impact on fungal diversity. It can be observed that compared to the
single herbicides, mixed herbicides inhibit the diversity of fungal communities in soil, but
have no significant impacts on the richness of fungal.

Table 3. Alpha diversity of fungal communities under different treatments. Different letters indicate
significant differences at the p < 0.05 level between different treatments at the same time. Mean values
(n = 3) ± S.E.

Index Treatment
Days after Application

1 7 14 28

Shannon

CK 4.780 ± 0.083 abc 4.368 ± 0.046 cd 4.614 ± 0.015 a 4.727 ± 0.044 abc
Gl 4.882 ± 0.054 a 4.634 ± 0.023 ab 4.363 ± 0.029 ab 4.783 ± 0.039 ab

Gm 4.765 ± 0.011 ab 4.635 ± 0.086 bc 4.259 ± 0.135 ab 4.980 ± 0.057 a
Gh 4.544 ± 0.129 d 4.231 ± 0.043 d 4.388 ± 0.121 ab 4.684 ± 0.023 cd
Dl 4.686 ± 0.072 bcd 4.371 ± 0.020 cd 4.259 ± 0.076 ab 4.708 ± 0.007 bcd

Dm 4.683 ± 0.018 abc 4.652 ± 0.044 ab 4.516 ± 0.052 ab 4.661 ± 0.028 bcd
Dh 4.509 ± 0.014 cd 4.800 ± 0.053 a 4.488 ± 0.043 ab 4.598 ± 0.053 cd
GDl 4.688 ± 0.033 abc 4.405 ± 0.049 cd 4.128 ± 0.111 b 4.867 ± 0.076 bcd

GDm 4.452 ± 0.014 d 4.325 ± 0.028 cd 4.376 ± 0.097 ab 4.821 ± 0.134 abcd
GDh 4.763 ± 0.060 abc 4.490 ± 0.069 cd 4.369 ± 0.010 ab 4.547 ± 0.053 d

Chao1

CK 673.214 ± 21.296 ab 543.470 ± 18.721 bc 462.809 ± 3.810 b 455.377 ± 60.937 a
Gl 773.434 ± 39.275 ab 579.153 ± 19.726 abc 464.205 ± 2.574 b 479.181 ± 56.792 a

Gm 772.912 ± 28.255 a 626.580 ± 29.634 a 465.700 ± 4.486 b 469.934 ± 53.990 a
Gh 717.335 ± 44.500 ab 510.983 ± 12.810 c 452.857 ± 1.069 b 438.914 ± 55.892 a
Dl 733.530 ± 38.877 ab 546.209 ± 15.359 bc 461.212 ± 6.469 b 438.962 ± 53.068 a

Dm 706.838 ± 26.245 ab 595.042 ± 19.484 ab 477.764 ± 9.637 b 425.494 ± 44.871 a
Dh 641.645 ± 17.447 b 578.217 ± 19.415 ab 468.624 ± 8.868 b 437.094 ± 48.999 a
GDl 697.382 ± 28.165 ab 540.641 ± 15.796 bc 452.803 ± 0.858 b 455.715 ± 39.099 a

GDm 666.482 ± 30.530 b 500.521 ± 2.086 bc 496.728 ± 3.212 a 491.149 ± 35.763 a
GDh 679.040 ± 27.961 ab 541.952 ± 8.107 abc 499.915 ± 16.673 b 426.687 ± 6.304 a

3.2.3. Beta Diversity of the Fungal Community

The principal coordinate analysis based on the Bray–Curtis distance for the fungal
communities at the genus level is shown in Figure 6a–d. It can be observed that the
differences in fungal community structure among different treatments increase over time
(R2 ≥ 0.847, p = 0.001). It is worth noting that under low and high concentrations, the
difference in community structure between the control treatment and the mixed herbicide
treatment is smaller than the difference between the single herbicide treatment and the
control (R2 ≥ 0.534, p = 0.001). From the above analysis, it can be concluded that the
impact of mixed herbicides on the structure of soil fungal communities is less than that of
single herbicides.

3.2.4. LEfSe Analysis of the Fungal Community

Linear discriminant analysis (LDA ≥ 2) of the fungi is shown in Figures 4b and S3.
In particular, at the phylum level, Ascomycota was extremely sensitive to the response
of each herbicide treatment on day 28. It is worth noting that at the genus level, Thielavia
had a sensitive response to GP on day 28, which was a significantly different species
between GP treatment and other herbicides treatments. It can be concluded that GP
significantly promoted the abundance of Thielavia, while there was no definite significant
difference in species from mixed herbicide treatments when compared with the single
herbicide treatments.
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4. Discussion

Pesticide use has a harmful impact on soil biological activity, such as microbial abun-
dance, diversity, and activities, all of which influence nutrient transformation and therefore,
the health and quality of the soil [61]. This study found that the effect of combined pollution
of GP and DQ on bacterial community structure at low concentrations was less than that
of single herbicides. However, that was no difference at medium and high concentrations
between mixed herbicides and single herbicides. In addition, the effect of mixed herbicides
on the fungal community structure was less than that of single herbicide treatment. Most
studies showed that herbicides have little or no short-term effect on the microbial commu-
nity structure [29–31]. Previous studies have revealed that the continuous application of
GP allows soil microorganisms to adapt to GP and that GP can select microbial populations
capable of using it as a nutrient source, and the microbial community in the soil with long-
term application of GP revealed a higher diversity index than that without the application
of GP [62]. Studies on corn and soybean roots showed no effect of GP on the relative abun-
dance of microbial organisms [63]. There is also literature that the microbial communities
were negatively affected by GP [64] and the activity of total microbial community was
also affected by GP [65]. In contrast, the ester-linked fatty acid methyl ester extraction
(EL-FAME) analysis of agricultural soil exposed to repetitive application of GP displayed no
significant changes in the structure of the soil microbial community [66]. In this study, the
short-term effect of combined pollution of GP and DQ on microbial community structure
was less than that of a single herbicide. Further research will be needed on the long-term
effects of combined pollution of GP and DQ on soil microbial community structure.

The present study found that, compared with a single herbicide, the combined pollu-
tion of GP and DQ has a certain promoting effect on Actinobacteria and a certain inhibiting
effect on Proteobacteria at the phylum level. Microbiological tests and cell metabolic re-
sponse studies by Mara Grube et al. [66] showed that molasses can be used as a substrate
to promote the growth of Actinobacteria in the presence of elevated concentrations of
Gly; Actinobacteria was therefore considered resistant to elevated concentrations of Gly in
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the growth environment and exhibited the potential for Gly degradation [62]. This may
account for the increased abundance of Actinobacteria. It is well known that Actinobac-
teria and Proteobacteria are common bacteria taxa in soil [67], which may be sensitive to
herbicide contamination; these taxa can have a variety of effects on soil and vegetation
health, including beneficial and pathogenic effects [68,69]. At the genus level, the single
herbicide decreased the relative abundance of Streptomyces. However, the combined pollu-
tion of GP and DQ has a certain promoting effect on Streptomyces. It was found that the
combination of GP and Cu could reduce the toxicity of heavy metals to photoluminescent
bacteria [46]; it may be that DQ and Cu combine with GP in a similar way to reduce
the stress of some bacteria. Although GP promoted the abundance of Sphingomonas, the
addition of GP enhanced the inhibitory effect of DQ on the abundance of Sphingomonas. In
addition, single herbicides promoted or had no effect on the abundance of Phenylobacterium,
while mixed herbicides had an inhibitory effect on the abundance of Phenylobacterium.
Some researchers have suggested that the combined use of GP and Cd may aggravate the
effects on E. coli [44]; perhaps, Phenylobacterium is as sensitive as E. coli to the stress of GP
combined contamination. For fungi, although GP inhibited the abundance of Talaromyces at
low and medium concentrations, the addition of GP enhanced the promotion of DQ on the
abundance of Talaromyces. The single herbicide inhibited the abundance of Curvularia, while
the mixed herbicides promoted the abundance of Curvularia. In addition, the abundance of
Conlarium was significantly inhibited by mixed herbicides compared with single herbicides.
Some studies have shown that fungal diversity and abundance respond strongly to high
concentrations of GP, and herbicide combined pollution may make the stress response of
different fungi more obvious.

The effects of combined pollution of GP and DQ on bacterial community richness and
diversity were not significantly different from those of single herbicides. It was found that
a single herbicide had a transient promoting or inhibiting effect on bacterial population
abundance and community diversity in soil. Previous studies had also found that GP has an
adverse effect on the interactions of manganese redox bacteria, Pseudomonas fluorescens, ace-
togenic rhizosphere bacteria and Fusarium in the rhizosphere soil of soybean, resulting in an
increase in the number of Fusarium species, while the abundance of Pseudomonas fluorescens,
manganese redox bacteria and acetogenic rhizosphere bacteria decreased [38]. However,
the combined application of the two herbicides did not affect the richness and diversity of
soil bacteria. This may be because some bacteria produce free radical scavenging molecules
when they coexist with GP, and eliminate the free radicals produced by DQ, which makes
the stress response of bacteria to GP and DQ reduced or unchanged [70]. Compared with
single herbicides, mixed herbicides had no significant effect on the richness of soil fungal
communities, but could inhibit the diversity of the fungal community. Some scholars had
shown that GP can stimulate the soil fungal biomass in the early and short-term, and it has
an adverse effect on both fungal community diversity and species richness after long-term
application of GP [71]. In fact, the impact of GP on soil microbial communities and micro-
biota are highly variable and dependent upon specific experimental parameters such as the
dose of GP applied, the time of incubation, and soil characteristics. In addition, the soil pH
appears to regulate the balance between GP-induced toxicity and GP-induced microbial
growth, with a lower pH favoring stimulation over suppression. In addition, there is a
sensitivity spectrum in microbial population, such that less resilient species are inhibited by
increasing GP concentrations, whilst a resistant degrader population compensates at higher
concentrations [26]. Thus, mixed herbicides aggravated the adverse effects on soil fungal
community diversity, but owing to the short period of this study, the effects of various
herbicides on fungal population abundance were not significant.

Along with the persistence, concentration, toxicity, and bioavailability of the sprayed
pesticide, a variety of environmental factors influence the toxic impact of pesticides on
microbial diversity [72,73]. Here, we focused on the relative abundances and diversity
of soil microbial community diversity only considering the concentration of herbicides.



Sustainability 2023, 15, 8497 13 of 16

Future studies should focus on the effects of combined pollution of GP and DQ in different
soil environments considering the microbial community composition and diversity

5. Conclusions

This study examined the effects of the combined exposure of GP and DQ on the
structure and diversity of microbial communities in lateritic paddy soil at the relative field
application doses. Actinobacteria and Proteobacteria were the most sensitive microbial
phyla with the application of mixed herbicides, which increased the abundance of Acti-
nobacteria but significantly inhibited that of Proteobacteria, especially at low and medium
concentrations. Compared with single herbicides, the mixed herbicide (GP + DQ) had
no significant impacts on the richness and diversity of bacterial and fungal communities
in the lateritic paddy soil. In general, the combined application of GP and DQ had no
more adverse effects on soil microorganisms. Therefore, these two herbicides can be used
reasonably in actual agricultural production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su15118497/s1, Figure S1: Principal coordinate analysis for the
bacterial communities at the phylum level; Figure S2: Cladograms of line discriminant analysis
effect size (LEfSe) analyses of bacteria; Figure S3: Cladograms of line discriminant analysis effect
size (LEfSe) analyses of fungus; Table S1: Primer information. References [74–81] are cited in the
supplementary materials.
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