
Citation: Cahigas, M.M.L.; Ong,

A.K.S.; Prasetyo, Y.T. Super Typhoon

Rai’s Impacts on Siargao Tourism:

Deciphering Tourists’ Revisit

Intentions through

Machine-Learning Algorithms.

Sustainability 2023, 15, 8463. https://

doi.org/10.3390/su15118463

Academic Editor: Lóránt

Dénes Dávid

Received: 1 May 2023

Revised: 16 May 2023

Accepted: 17 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Super Typhoon Rai’s Impacts on Siargao Tourism: Deciphering
Tourists’ Revisit Intentions through
Machine-Learning Algorithms
Maela Madel L. Cahigas 1,* , Ardvin Kester S. Ong 1 and Yogi Tri Prasetyo 2,3

1 School of Industrial Engineering and Engineering Management, Mapúa University,
658 Muralla St., Intramuros, Manila 1002, Philippines

2 International Bachelor Program in Engineering, Yuan Ze University, 135 Yuan-Tung Rd.,
Chung-Li, Taoyuan 32003, Taiwan

3 Department of Industrial Engineering and Management, Yuan Ze University, 135 Yuan-Tung Rd.,
Chung-Li, Taoyuan 32003, Taiwan

* Correspondence: mmlcahigas@mapua.edu.ph; Tel.: +63-2-8247-5000 (ext. 6202)

Abstract: Super Typhoon Rai damaged Siargao’s tourism industry. Despite the reconstruction
projects, there was still evidence of limited resources, destructed infrastructures, and destroyed
natural resources. Therefore, this study aimed to examine the significant factors influencing tourists’
intentions to revisit Siargao after Super Typhoon Rai using feature selection, logistic regression (LR),
and an artificial neural network (ANN). It employed three feature-selection techniques, namely, the
filter method’s permutation importance (PI), the wrapper method’s Recursive Feature Elimination
(RFE), and the embedded method’s Least Absolute Shrinkage and Selection Operator (LASSO). Each
feature-selection technique was integrated into LR and the ANN. LASSO-ANN, with a 97.8146%
model accuracy, was found to be the best machine-learning algorithm. The LASSO model performed
at its best with a 0.0007 LASSO alpha value, resulting in 35 subfeatures and 8 primary features.
LASSO subsets underwent the ANN model procedure, and the optimal parameter combination was
70% training size, 30% testing size, 30 hidden-layer nodes, tanh hidden-layer activation, sigmoid
output-layer activation, and Adam optimization. All eight features were found to be significant.
Among them, hedonic motivation and awareness of Typhoon Rai’s impact were considered the top-
tier post-typhoon tourism factors, as they maintained at least 97% prediction accuracy. The findings
could be elaborated by combining feature-selection techniques, utilizing demographic characteristics,
assessing Siargao’s tourism before the typhoon, and expanding the context and participant selection.
Nevertheless, none of the existing studies explored the combination of feature selection, LR, and
ANNs in a post-typhoon tourism context. These unique methods and significant findings represent
the study’s novelty. Furthermore, practical contributions were provided through economic resolutions
focusing on tourism activities and communication revamping by the government, media outlets, and
transportation companies.

Keywords: Siargao; Super Typhoon Rai; feature selection; logistic regression (LR); artificial neural
network (ANN)

1. Introduction

In December 2021, the Philippines recorded the strongest typhoon of 2021 in the coun-
try. Super Typhoon Rai, also known as Odette, transformed from Category 1 to Category 5
within 24 h [1]. It brought heavy rains, winds, floods, landslides, and storms. Approxi-
mately 40.54% of the Philippines’ entire population was affected by the typhoon [2]. Among
the affected regions, Siargao experienced the first landfall and was the hardest-hit area [1,3].
News outlets reported mortality, injuries, missing cases, and health issues [1]. In addition
to human lives, the regions’ livelihoods were also affected. The island’s properties and
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residents’ livelihoods incurred damages of approximately USD 388 million [4]. Moreover,
renowned insurance companies categorized Super Typhoon Rai as the deadliest typhoon
in 2021 [1]. The overall and recent impact of Super Typhoon Rai convinced the researchers
to focus on it out of all the natural disasters in the Philippines. Hence, the research problem
originated from the devastating aftermath of Super Typhoon Rai because tourism is the
primary source of livelihood in Siargao. These post-typhoon tourism causes, impacts, and
resolutions are better explained through the application of machine learning.

Machine learning handles model complexity by transforming data and solving des-
ignated problems [5]. Among all machine-learning concepts, this study addresses the
research problem by utilizing feature selection, logistic regression (LR), and an artificial
neural network (ANN). Feature selection prioritizes critical features over irrelevant fea-
tures [5]. In this study, feature selection was utilized to determine significant features before
they undergo LR and the ANN. The researchers maximized important features in LR and
the ANN to identify the factors affecting Siargao tourists’ revisit intentions after Super
Typhoon Rai hit Siargao. LR is a supervised machine-learning method that applies the
sigmoid function through binary variables [6,7]. Meanwhile, the ANN describes functional
relationships among the model’s features and investigates human behavior in different
contexts [6–9].

Although machine learning is widely used in various contexts, including tourism
and post-disaster regions, there are insufficiently many academic papers focusing on
the application of feature selection, LR, and ANNs to both tourism and post-typhoon
response. For example, Tien Bui et al. [10] modified the LR model to address forest-fire
and park tourism protection. However, only 10 features were utilized, which undermined
the model’s accuracy rate. Moreover, they only considered forest-fire features and no
features for tourism. Next, a typhoon-related study by Chen et al. [11] concentrated on
LR and overlooked the significance of comparing it with other algorithms. While they
generated landslide-susceptibility maps, the past study did1 not discuss landslide impacts
or the course of action after the typhoon triggered multiple landslides. Tsaur et al. [12]
applied both LR and an ANN to assess tourists’ loyalty to hotels. However, they only
utilized typical hotel features, did not employ feature selection, and focused on model
fitting instead. These existing studies failed to provide an in-depth analysis of feature
selection, LR, and ANNs in a post-disaster tourism context. The lack of solidity in the past
studies’ methods stemmed from the absence of a conceptual model. In the present study,
the researchers addressed the gap by utilizing the extended theory of planned behavior
model, as it best described tourist behavior after a super typhoon.

In addition, ANN techniques are frequently used in predicting tourist demands [13–15].
However, the present study argues that ANNs can also be used to investigate factors influ-
encing tourist behavior. The following studies failed to elaborate on tourists’ perceptions.
One study focused on international tourists’ overnight stays in one of Europe’s well-known
tourist destinations [13]. Another study found a connection between Macau’s tourist-
demand factors and arrival volumes [14]. Some researchers forecasted tourist demands a
year after the COVID-19 pandemic surge [15]. Although the tourism context is represented
in these past studies, none of them used various machine-learning techniques to assess
post-typhoon tourism response. Furthermore, they only employed simplified data acquisi-
tion and machine learning. For instance, Law et al. [14] focused on search-engine keywords,
which were prone to bias as they could result in false positives. Unlike the past study, the
current study applies actual responses and employs distinct feature-selection techniques.
Meanwhile, Talwar et al. [16] evaluated Japanese residents’ traveling behavior during and
after the pandemic. They utilized the big-five personality traits as the primary inputs
of an ANN. However, they considered all 25 features and overlooked feature selection.
Similarly, tourist behavior was analyzed through an ANN [8]. However, the researchers
derived features and website reviews, which hindered the application of feature selection.
Although Xu et al. [17] utilized feature engineering to scrutinize landslide deformation
appearances, they only focused on the causal patterns. On the other hand, researchers
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maximized convolutional neural networks (CNNs), one of the classes of ANNs, to locate
earthquake survivors from captured images [18]. Their research was centered on disaster
management, contrary to the current study, which aimed to combine disaster response and
tourism recovery. Based on these past studies, the authors employed ANNs for optimiza-
tion purposes. They overlooked other purposes of ANNs, such as predicting significant
factors. More importantly, they focused on one algorithm (e.g., an ANN) and optimized
ANN parameter settings instead of testing other algorithms that are comparable to ANNs.
Thus, the past studies’ approaches are characterized by subjective analysis. The present
study eliminated bias issues by incorporating three types of feature-selection techniques
and LR.

The preceding research-gap discussion leads to the following research questions:
(1) How can feature selection integrated with LR and an ANN identify Siargao tourists’
behavior after Super Typhoon Rai?; (2) What is the best combination of machine-learning
techniques among feature selection, LR, and ANNs?; (3) What is the optimal parameter of
the best machine-learning algorithm combination?; and (4) What are the significant factors
affecting tourists’ intentions to revisit Siargao after Super Typhoon Rai?

Hence, the researchers aimed to examine the factors influencing Siargao tourists’
revisit intentions with respect to after Super Typhoon Rai using feature selection, LR,
and an ANN. As of this writing, this is the first study that has utilized feature selection,
LR, and an ANN to decipher tourists’ behavior after a super typhoon. These innovative
combinations of machine-learning algorithms and the evaluated context have not yet been
explored by any academicians, as indicated by the research gap. The study’s novelty can
benefit academicians focusing on human behavior, natural-disaster impacts, and machine
learning. The findings of this research can also alleviate the economic problems of the
government sector, Siargao business owners, other tourism-related commercial companies,
and residents.

The remainder of the article is organized as follows. Section 2 discusses relevant
studies on machine-learning algorithms and conceptual features. Section 3 explains the
data collection and processes behind the three machine-learning algorithms. Then, Section 4
presents the results generated from the utilized methods. Next, Section 5 interprets the
present findings by comparing them with those of past studies, determining stakeholders
and academic contributions, and identifying further improvements. Finally, Section 6
concludes with a consideration of the study’s innovative methods, findings, and benefits.

2. Literature Review

This section is subdivided into four parts. The first part discusses the concept of
feature selection and the three feature-selection techniques. The second part explains
logistic regression, its application, and relevant studies. The third part shows related
artificial neural network studies in the context of tourism or typhoons. Meanwhile, Table
S1 in the Supplementary Materials summarizes the journals by showing their significance
with respect to tourism, typhoons, and machine learning. Finally, the fourth part displays
the origin of the model’s 8 features and their 59 subfeatures.

2.1. Feature Selection

Feature selection selects the best set of features, also known as the subset, among
all probable combinations [5]. This technique assures the quality of data by removing
unnecessary features in the study’s context [19]. Caraka et al. [20] utilized feature selection
as a pre-processing technique before applying multivariate analysis in identifying visiting
intentions in Indonesia. Yuan et al. [21] revealed that feature selection assisted in the pattern
identification of tourists’ activities. Meanwhile, Sheykhmousa et al. [22] used feature-
selection results as the primary feed for a designed machine-learning algorithm centered
on the Philippines’ post-disaster recovery plans. The resulting feature subset from the
study of Tien Bui et al. [23] underwent three neural network designs to compare flash-flood
susceptibility factors. However, feature selection with statistical fundamentals produces
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subsets that are more difficult to interpret [24]. Considering the efficiency and accuracy
of data interpretation, the present study employed feature-selection techniques equipped
with machine learning. In particular, the researchers assessed the three feature-selection
categories in machine learning, which are the filter, wrapper, and embedded methods.

The filter method considers highly correlated features with the dependent variable [25].
It is the simplest feature-selection method, which ranks features based on the strength of
their relationships [26]. In this study, features need to have a strong connection with tourist’s
intentions to revisit because weak features are eliminated from the model. Permutation
importance (PI) was the best filter method for researchers aiming to compare one filter
method with another feature-selection technique [27]. It does not assume the model’s
nature and removes biases [28]. Specifically, permutation importance rearranges features
randomly until a high predictive importance score is achieved [29]. The researchers found
these characteristics to be relevant to the study’s objectives. Since the researchers aimed
to integrate permutation importance into the most-suitable machine-learning algorithm,
all types of algorithms could be utilized in the present study. Muñoz et al. [30] trained
eight models by applying permutation importance. They revealed the contributions of nine
factors to the respective models by identifying vital local and international tourism factors
in Southern Norway. Li et al. [31] recalculated model accuracy by employing permutation
importance. They ranked features accordingly and identified important power-interruption
factors induced by the typhoon. Kim et al. [32] investigated landslide features dependent on
the model. They ran the model twice and found 11 important features affecting landslides
in Gangwondo, Korea.

Next, the wrapper method evaluates the most-important features through its built-in
search techniques dependent on the predictor [19]. It is bounded by the evaluation function,
search technique, and predictor. Apart from determining the quality of features, the
wrapper method has a huge memory capacity, as it can be extended for optimization and
forecasting problems [33]. Out of all wrapper techniques, the present study used Recursive
Feature Elimination (RFE). RFE trains the subsets continuously until all unimportant
features are removed from the model [24]. It is a frequently used method and is used every
time researchers compare the wrapper technique with other feature-selection types [25]. In
addition, RFE can be combined with another feature-selection technique to increase the
accuracy result. A study disclosed that RFE produced the lowest error rate among all the
wrapper methods [34]. Since the past studies support RFE’s effectiveness, the current study
analyzed post-typhoon and tourism features using the wrapper method’s RFE. Kołakowska
and Godlewska [35] reduced the number of tourism features by generating a new subset
derived from important RFE predictors. They considered factors that mostly affected tourist
traffic and trip prices. Additionally, Xiao et al. [36] proposed a new algorithm but noted
that RFE defeated the existing machine-learning algorithms as it reduced 21 soil features to
12 important features. The past study wanted to mitigate climate change that could induce
natural-disaster aftermaths through unwanted soil properties.

Lastly, the embedded method ranks the importance of each feature by minimizing
prediction error [19]. It uses regularization techniques that penalize insignificant variables
in the model [26]. The primary advantage of embedded feature selection is the combination
of the characteristics of the filter and wrapper methods [5]. Thus, it can be applied to
different sets of data easily. An example of the embedded method is the Least Absolute
Shrinkage and Selection Operator (LASSO). This removes unimportant features by impos-
ing penalties dependent on the estimated regularization parameters [33,34]. Unimportant
features are penalized by imposing zero coefficients [37]. Hence, features with residual
values are considered part of the important subset. Unlike other embedded methods that
produce feature combinations with overly correlated values, the LASSO approach mini-
mizes overfitting and maintains a high prediction accuracy [33]. The researchers considered
the mentioned advantages of using LASSO instead of other embedded feature-selection
techniques. Through the LASSO method, Kołakowska and Godlewska [35] discovered the
changes in tourists’ perceptions before and after the pandemic. In particular, tourists in
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Poland were perceived to value reimbursements, feedback, assurance, and comparison
features. Chang et al. [38] investigated 13 hotel features that affect tourists’ travel and
revisit intentions. They found that LASSO could reduce the features to 8 and 10, and 10
hotel features had the highest accuracy rate when fed into other machine-learning algo-
rithms. On the other hand, Jones et al. [39] selected preventive and triggering landslide
factors while comparing different typhoons in the Philippines. They accentuated common
landslide-related factors that are all present at four different time points.

2.2. Logistic Regression

Logistic regression (LR) is a type of supervised classification model which can predict
an algorithm’s objectives [34,37]. It is also utilized to find the best overall model fitting
through an accuracy score [40]. A study emphasized that LR is one of the best algorithms
that can compete against ANNs [12]. Therefore, the researchers aimed to determine the
best machine-learning algorithm between LR and ANNs. The purpose of utilizing both
techniques is centered on predicting the intended outcome. In this case, the exploration of
a good algorithm would determine factors affecting tourists’ intentions to revisit Siargao
after a super typhoon. Another advantage of LR is the presence of variables’ unbiased
weights, as this simplifies the model’s condition [11].

Despite the presence of the LR approach in past studies, the established algorithm was
noncomprehensive. For example, Tsaur et al. [12] focused on LR’s importance score and did
not assess accuracy, precision, recall, and F-1 score. Although Chen et al. [11] determined
accuracy, precision, and recall, they only produced approximate values of 71–76% for all
three LR aspects. This percentage range was deemed a low rate, which could be increased
further by enhancing the algorithm. Tien Bui et al. [10] created a hybrid LR approach,
but it was only limited to 10 features. Limited inputs undermine the established accuracy
rate, since the number of features affects model fitting. Furthermore, it was seen from past
studies that none of them combined tourism and post-super typhoons in the context of
combined feature selection, LR, and ANNs. While Li et al. [41] compared logistic regression
and random-forest methods, they only utilized one feature-selection technique centered
on factors affecting flash floods. The objective of Guzzetti et al. [42] was met, as they
established landslide warning systems, but the inputs fed into LR and ANN algorithms
lacked credibility. They used historical data directly without any feature selection or other
pre-processing techniques.

2.3. Artificial Neural Networks

Artificial neural networks (ANNs) are predictive tools for human behavior [43]. They
integrate the human brain and artificial intelligence models to analyze extensive datasets,
which guarantees efficient speed and high accuracy [14]. Hence, the present study utilized
the ANN approach to process complex data from the identified tourism-related features
after a natural disaster. One of the ANN’s advantages is its flexibility to choose activation
functions depending on the effect of the customized features on the overall accuracy [9].
This advantage helps to filter functions and feature combinations that would produce
a better accuracy result. ANNs also ensure extensive results compared to conventional
empirical models [44]. They eliminate traditional model analysis, and data can be used for
prediction, classification, and data-segmentation purposes [40].

Considering ANNs’ purposes, a few studies selected features based on reliable theories.
For instance, Talwar et al. [16] considered the big-five personality traits theoretical model as
its primary features that underwent an ANN procedure. In addition, Leong et al. [45] con-
sidered service-quality features to determine tourists’ loyalty to the airline industry. Mean-
while, some studies modified their ANN features according to historical data. Mikhailov
and Kashevnik [8] considered driving-related features (e.g., distance, duration, speed, and
acceleration) to construct the layers of an ANN model. Likewise, researchers created an
ANN model for areas affected by landslides and utilized environmental features, such as
morphology, drainage, geology, and soil [10]. Apart from identifying significant features,
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an ANN was also utilized to forecast tourist demands. Claveria and Torra [13] employed
an ANN to increase the forecasting accuracy model by maximizing tourist behavioral data
focused on Catalonia, Spain. Law and Au [44] forecasted Japanese tourist demands in
traveling to Hong Kong through an ANN. Moreover, Palmer et al. [6] applied an ANN to
predict tourism expenditure in the Balearic Islands, Spain.

Despite the promising functions of ANNs, the presented studies overlooked the
importance of analyzing both subfeatures and features within the ANN models. This
approach is only possible by integrating feature selection and ANNs, which the current
study proposes. Most studies only applied ANNs to determine tourist loyalty, arrival, and
expenditure [6,13,45]. While a few researchers evaluated other types of crises, such as the
COVID-19 pandemic [16] and landslides [42], they overlooked the tourist behavior after
a super typhoon hit a popular destination. These past studies did not pinpoint a specific
travel destination and crisis variant (e.g., Delta COVID-19 or the Haiyuan landslide). Since
these presented studies failed to consider the sustainability of tourism in times of natural
disaster, the current study aims to close the research gap by integrating feature selection,
LR, and an ANN.

2.4. Features from the Conceptual Model

This study assessed the following features: (1) awareness of Typhoon Rai’s impact, (2)
crisis management, (3) hedonic motivation, (4) perceived travel constraints, (5) perceived
travel risks, (6) attitude, (7) subjective norms, and (8) perceived behavioral control. Their
summarized definition is displayed in Table 1. Moreover, these eight features were adopted
from the study of Cahigas et al. [46] to further elaborate their importance using machine-
learning approaches. Although the past study identified significant factors affecting tourists’
revisit perceptions, it emphasized the significant relationships between features instead. In
the present study, 59 subfeatures were given equal importance to features. Both subfeatures
and features were evaluated individually, which made the analysis more independent and
comprehensive. The comprehensive description of 59 subfeatures is presented in Table S2
in the Supplementary Materials.

Table 1. Consolidated characteristics of features.

Feature Definition of the Feature Significance of the Feature

Awareness of Typhoon Rai’s impact Tourist’s level of understanding after
Super Typhoon Rai hit the Philippines

It advises individuals about calamity
warnings and post-disaster updates

Crisis management
The government and non-government
programs that assist victims of Super

Typhoon Rai

A distinguished typhoon-related feature
that aids timely actions

Hedonic motivation Influence of tourists’ positive emotions
regarding revisiting Siargao

It triggers emotional stimulators, which
affect the tourists’ behavior

Perceived travel constraints
Existing physical and emotional

limitations that would hinder tourists
visiting Siargao

Constraints comprise human
physiological needs essential for

tourist survival

Perceived travel risks Uncertain barriers that tourists may or
may not experience

Risks cover all important factors affecting
tourists’ behaviors

Attitude Tourists’ personal opinions The resulting behavior brought by an
individual’s perception

Subjective norms Influence of other people’s insights They affect a tourist’s tendency to seek
guidance and companionship

Perceived behavioral control
Tourists’ hypothetical competence or

incapability regarding visiting Siargao
after Super Typhoon Rai hit Siargao

It acts as the decision authority over
tourists’ travel plans
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First, awareness of Typhoon Rai’s impact depicts the tourist’s level of understanding
when the typhoon hit the Philippines. Awareness of the typhoon is an essential feature
because it advises residents about pre-disaster and post-disaster updates [47]. Without
updates, individuals would have difficulty translating calamity warnings and aftermath
issues. Awareness in all forms of communication protects human lives and minimizes
property damage [48]. Tourists acquire knowledge by reading and watching the news [46].
Their awareness also increases by attending seminars facilitated by non-governmental or-
ganizations [49]. Some individuals have adequate knowledge of natural calamities because
of frequent exposure [50]. They tend to learn the risks and adapt to dangerous situations if
they have first-hand experience of calamities [50]. Thus, tourists who had previous typhoon
experience were more aware of the possible dangers caused by the typhoon.

Second, crisis management refers to the governmental and non-governmental pro-
grams to help victims of Super Typhoon Rai. This is a distinguished typhoon-related feature
as it aids timely actions [18]. The government disseminates information, arranges rescue
operations, and provides product supplies [47]. This shows that the government bridges
the gap between the public and typhoon victims. The government also renovates damaged
establishments, builds alternative infrastructures, and provides financial support to tourist
businesspeople. Since most establishments and livelihood sources are centered on Siargao’s
tourist spots, the government holds a greater responsibility to determine tourism-recovery
plans [4]. The presented scenarios show that combined efforts among all concerned groups
are geared to bring success in post-disaster tourism recovery.

Third, hedonic motivation is the influence of tourists’ positive emotions regarding
revisiting Siargao. It primarily consists of emotional stimulators, such as enjoyment,
relaxation, and amazement [51]. This study assessed hedonic motivation because it triggers
the behavior of tourists. Supporting the current study, hedonic motivation had the highest
direct impact on tourists’ intention to travel because of tourists’ eagerness to experience
leisure activities [52]. Hedonic motivation is also an indicator of valued tourist spots
because tourists would only pay attention if satisfaction were guaranteed [53]. These past
studies showed the ripple effects of hedonic motivation on tourists’ behaviors and the
identified tourist spots.

The fourth feature is perceived travel constraints. It describes all the existing physical
and emotional limitations that would hinder tourists visiting Siargao. While there are
positive features affecting tourists’ behaviors, negative features are as important as positive
features because both affect tourist behaviors. For example, tourists would not visit a
tourist spot if there were a lack of credible travel agencies, if they were to feel uncomfort-
able visiting a typhoon-affected region, or if they were to encounter inadequate public
transportation [46]. Apart from convenience, the financial factor is also a well-known travel
constraint [51]. Furthermore, security provides safety for tourists, since there might be
limited infrastructure and basic supplies [6].

The fifth attribute is known as perceived travel risks. Contrary to travel constraints that
are deemed existing limits, travel risks are uncertain barriers for tourists because tourists
may or may not experience them. Perceived travel risks are investigated because they
cover all important factors affecting tourists’ behaviors. Examples of perceived travel risks
are sanitary, environmental, and welfare concerns [51]. They pose a problem for tourists
because devastated regions need time to reconstruct water pipes, public roads, and business
establishments. Additionally, tourists’ emotional stress about the presented situation and
the people around them contribute to perceived travel risks [46]. Psychological risks are
uncertain because individuals respond to situations differently. Some tourists are keen on
visiting a risky tourist spot, but they will organize things meticulously [16,52]. Tourists can
only hypothesize about perceived travel risks while planning a trip, but the risks would be
proven or debunked after visiting Siargao Island. Therefore, perceived travel risks have
two different outcomes as they can urge tourists to support an affected tourist spot or
choose another travel destination [15].



Sustainability 2023, 15, 8463 8 of 29

The sixth attribute is attitude. In the present study, attitude reflects the tourists’
personal opinions. The necessity of scrutinizing attitude stems from the behavior resulting
from an individual’s perception. Interestingly, tourists’ positive attitudes dominated after
the deadliest earthquake in China [54]. However, another study argued that tourists would
avoid tourist spots affected by natural disasters and would choose to visit another place
instead [55]. These relevant studies expressed that tourist attitudes may positively or
negatively affect the intention to visit a destination affected by natural disasters.

The seventh attribute, subjective norms, denotes the degree of influence from other
people’s insights. This study considered subjective norms as one of the features because
tourists tend to seek guidance and companionship. Tourists’ subjective norms encompass
the opinions of family members, friends, and society. Families and friends of typhoon
victims would most likely travel to the affected region [55]. Opinions of other people
who are not personally connected to the victims also matter because society pressures
individuals to help the needy [56]. Although societal pressure has a negative connotation,
it still aims to contribute positively to the travel destination’s post-typhoon recovery [47].
Hence, the effect of subjective norms is dependent on an individual’s environment because
of diversified social phenomena [57].

The eighth attribute, perceived behavioral control, signifies the tourists’ hypothetical
competence or incapability with respect to visiting Siargao after Super Typhoon Rai hit the
island. If tourists have positive behavioral responses, they were deemed capable of visiting
a destructed tourist spot [16]. Furthermore, perceived behavioral control reflects a tourist’s
confidence to persist despite the challenges posed by a natural disaster [56]. However,
tourists who are vulnerable to weaknesses and restrictions would have less intention to
travel [58]. Natural resources also contribute to tourists’ behavioral control [51]. These
resources are products of nature, but humans have limited control over them. Tourists
are primarily concerned about destination safety and alternative courses of behavior [57].
Therefore, tourists have the decision authority over their travel plans.

3. Methodology

The methodology section is comprised of four subsections. First, the data were
collected and pre-processed. Second, the pre-processed data underwent 3 feature-selection
techniques. The third and fourth steps could be performed simultaneously since they were
independent of each other. The third subsection discusses the LR algorithm, while the
fourth explains the ANN process.

3.1. Data Collection and Pre-Processing

All Filipino respondents (n = 502) participated in an online questionnaire voluntarily.
A purposive sampling technique was implemented to determine targeted respondents
effectively. More importantly, the study focused on domestic tourists because they were
of a greater number compared to foreigners before and after the typhoon hit the island
in 2021. Specifically, 73.37% of domestic tourists traveled to Siargao in 2019 [59], and
94% comprised domestic tourists from January to September 2022 [60]. The researchers
utilized digital platforms to engage with potential participants. Specifically, they distributed
the questionnaire through Facebook groups, Instagram pages, and LinkedIn networks.
Moreover, the researchers explained the research context before the respondents answered
the questionnaire. Afterward, the respondents gave their consent in written form.

The present study adopted the questionnaire from the study of Cahigas et al. [46], both
studies being analyses of post-tourism in Siargao, Philippines. The questionnaire asked
about the respondent’s background, as shown in Table 2. It also included 64 questions to be
answered on a 5-point Likert scale dependent on the 8 primary features and 1 dependent
variable. In this study, the 8 primary features referred to awareness of Typhoon Rai’s
impact, crisis management, hedonic motivation, perceived travel constraints, perceived
travel risks, attitude, subjective norms, and perceived behavioral control. These features
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had 59 underlying questions, also known as subfeatures. Meanwhile, the dependent
variable (intention to revisit Siargao) comprised 5 questions.

Table 2. Respondents’ demographic characteristics.

Characteristic Category N Percentage (%)

Gender
Female 415 82.7
Male 87 17.3

Age

≤17 years old 48 9.6
18–24 years old 258 51.4
25–34 years old 148 29.5
35–44 years old 34 6.8
45–54 years old 8 1.6
≥55 years old 6 1.2

Marital Status

Single 420 83.66
Married 78 15.54

Separated 3 0.6
Widowed 1 0.2

Employment Status

Student 222 44.2
Full-time employee 113 22.5
Part-time employee 18 3.6

Self-employed 28 5.6
Unemployed 121 24.1

Highest Educational
Attainment

High-school student 66 13.2
High-school graduate 95 18.9

College student 155 30.9
Associate’s degree 44 8.8
Bachelor’s degree 129 25.7
Master’s degree 12 2.4

Ph.D. 1 0.2

Travel Budget

≤USD 55 134 26.7
USD 55.01 to 110.50 73 14.5

USD 110.51 to 165.75 102 20.3
USD 165.76 to 221 91 18.1
≥USD 221.01 102 20.3

Revisit Frequency

Once every year 312 62.2
Twice every year 107 21.3

Three times every year 28 5.6
At least four times every year 55 11.0

Data normalization was applied to the respondent’s raw responses. This helped the
data restructuring by transforming all values on a similar scale before applying machine-
learning algorithms. It guaranteed uniformly distributed data across all 59 subfeatures
and 5 questions under one dependent variable. After the application of feature-selection
techniques, optimal subsets had to undergo LR and the ANN. For LR, the feature selection’s
optimal subsets were transformed from a scale of 0 to 1. The dependent variable was also
converted into 0 or 1, where 0 referred to a lesser intention and 1 meant a greater intention
to revisit Siargao. On the other hand, the feature selection’s optimal subsets for the ANN
underwent an averaging procedure. Instead of considering subfeatures’ scores (e.g., ATI1,
ATI2, and ATI3) individually, they were grouped according to their corresponding primary
features (e.g., ATI).

3.2. Feature-Selection Techniques

The first feature-selection technique is known as permutation importance. It does
not rely on the model; hence, it uses random feature combinations while considering
training and testing size [32]. In the present study, 59 subfeatures derived from 8 features
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were combined randomly. Their accuracy was evaluated based on the dependent variable
(intention to revisit). Each combination’s permutation importance scores were calculated
as follows:

Permutation Importancej = s− 1
K ∑K

k=1 sk,j (1)

where s is the accuracy of unused subfeatures, sk,j is the accuracy of randomly selected
subfeatures, k is the data repetition using the randomization method, and j is the subfea-
ture’s column.

Permutation importance prioritized less-important combinations for accuracy com-
parison purposes; thus, these combinations incurred lesser accuracy and higher error [28].
However, in permutation importance, an increase in model error would result in a higher
importance score because of its strong association with the dependent variable [30]. The
study compared these model errors and permutation importance scores 5 times. A total of 5
K permutation repetitions were considered based on the study of Ramirez et al. [28]. In the
permutation importance method, more than 5 replicates resulted in overfitting and fewer
than 5 replicates led to premature subfeature selection. Hence, 5 K permutation replicates
was deemed the optimal number. After completing 5 repetitions, the researchers chose
the combination with the lowest number of subfeatures, as this was the primary aim of
the permutation importance filter-selection technique. Therefore, permutation importance
predicted the relationships between 59 subfeatures and the intention to revisit Siargao
after Super Typhoon Rai hit the island. All the aforementioned procedures were processed
through Jupyter Notebook’s SVC and feature_importance_permutation packages.

Second, RFE is a wrapper method that applies a backward or removal technique [36].
Unlike permutation importance, which randomly combines subfeatures, the RFE technique
does not apply randomization in the elimination and selection process. Instead, all 59
subfeatures were directly inputted into the built-in Jupyter Notebook’s RFE package. Its
package comprised n predictors and k− f old Cross Validation. In this model, one subfeature
with the lowest predictor value for each cross-validation was eliminated. All subfeatures
were trained iteratively until the RFE model identified the highest RFE accuracy. These steps
were repeated across all training and testing sizes. Specifically, the researchers assessed the
following training–testing sizes: 50:50, 60:40, 70:30, 80:20, and 90:10. Although training and
testing sizes varied, the same set of 59 subfeatures were analyzed. The RFE model stopped
its iteration for each size once the subfeature combination met the highest RFE accuracy.

However, these produced subsets from each training and testing size might have a
similar number of optimal features. Thus, they were ranked from the lowest to the highest
number of features, where the lowest number was considered a better solution since the
study aimed to reduce the number of features. If there were multiple training and testing
sizes with similar least-optimal subset features, their RFE model accuracies had to be
compared. Ultimately, the optimal combination of subfeatures with the smallest subset and
highest RFE accuracy was selected as the best RFE solution.

The third feature-selection technique is the embedded method’s LASSO. LASSO
applies a probability distribution across all 59 subfeatures dependent on the intention to
revisit. It penalizes the subfeatures’ coefficients, as described by the following equation.

min
{

∑n
i=1

(
yi −∑p

j=0

(
wj

)(
xij

))2
+ λ ∑p

j=0 w2
j

}
(2)

where
(

yi −∑
p
j=0

(
wj

)(
xij

))2
is the residual sum of squares, while λ ∑

p
j=0 w2

j represents
LASSO’s penalty.

LASSO automatically reduces multicollinearity by eliminating overfitted features
because of its integrated regularization characteristics [37]. Following Equation (2), the
subfeatures’ LASSO values would produce coefficients ranging from −1.00 to 1.00. Zero
coefficients were removed from the current subset because they were deemed overfitting
or unimportant [38]. The remaining non-zero coefficients, both positive and negative, were
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retained and considered important predictors of tourists’ intentions to revisit Siargao after
Super Typhoon Rai. At the end of this method, the retained coefficients generated LASSO’s
alpha and accuracy. An alpha closer to 1.0 meant a stronger penalty was imposed, thus
reducing a huge number of features [61]. Meanwhile, the ideal value of accuracy must be
closer to 100%. These statistical formulas were interpreted through Jupyter Notebook’s
RidgeCV, LasssoCV, Ridge, and Lasso packages.

3.3. Logistic Regression

Logistic regression (LR) applies a binary response by categorizing dependent variables
as 0 or 1 [41]. Based on the pre-processed responses, the dataset categorized as 0 included
participants who had less intention to revisit Siargao after Super Typhoon Rai, which
triggered a lower accuracy value. Meanwhile, participants classified as 1 showed interest in
revisiting Siargao after Super Typhoon Rai, which increased LR predictive accuracy. The re-
lationships between one dependent variable (intention to revisit) and multiple independent
variables (optimal subsets from each feature-selection method) were compared. It was also
identified that LR’s results were interpreted through posterior probabilities of the number
of dependent variable classes [37]. The LR’s standard form is displayed in Equation (3):

p =
1

1 + e−z (3)

where p is the probability of intention to revisit occurrence, e represents the Euler number
with a constant value of 2.71828, and z is the linear combination of feature selection’s
optimal subsets. Equation (4) elaborates on the calculation of the z value:

z = ln
(

p
1− p

)
= bo + b1x1 + b2x2 + . . . + bnxn (4)

where bo is the constant intercept value, xn is the regression coefficient for each optimal sub-
set’s subfeatures, and n is the number of optimal subsets from each feature-selection technique.

These formulas were established using the maximum-likelihood approach [11]. This
approach allows positive coefficients to incur a high probability of predictive success. Oth-
erwise, negative coefficients are attributed to low probability. Thus, maximum likelihood
ensures consistency regardless of the number of repetitions. Changes in independent
variables would only affect the dependent variable’s final prediction [12]. Considering the
current study, 3 optimal feature subsets (independent variables) with different optimal
numbers and subfeature combinations were fed into the model based on the feature selec-
tion’s results. These inputs might result in either a strong probability or a weak probability
of intention to revisit Siargao after Super Typhoon Rai. Therefore, tourists’ intentions
were more likely to increase if probability values were higher. Low probability meant that
tourists were unlikely to visit Siargao after Super Typhoon Rai. These LR methods were
formulated using Jupyter Notebook.

3.4. Artificial Neural Network

An artificial neural network (ANN) is capable of processing human-behavior-related
data by applying pseudocode iteratively [43]. Hence, the ANN parameters were identified
beforehand. First, the ANN’s input layers were identified based on the feature selection’s
optimal subsets. Specifically, 7 input layers or features (ATI, CM, HM, PTCs, PTRs, SNs,
and PBC) were determined for permutation importance. Meanwhile, 8 input layers or
features (ATI, CM, HM, PTCs, PTRs, ATT, SNs, and PBC) were discovered through RFE
and LASSO. These input layers contained varying subfeatures dependent on the feature-
selection results. Second, 10, 20, and 30 nodes for the hidden layer were tested [9,43,62].
These nodes can be represented using the following equation:

∅
(
∑n

i=1 wi, xi

)
(5)
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where xi is the input node and wi is the assigned weight dependent on the correspond-
ing n input layers. These weights undergo the identified activation functions and were
calculated as:

∅(X) =
1

1 + e−x (6)

Afterward, the researchers investigated tanh, swish, and relu for the hidden layer’s
activation functions [43,62,63]. Tanh is reflected in Equation (7), swish is illustrated in
Equation (8), and relu is demonstrated based on Equation (9).

tanh(x) =
2

(1 + e−2x)
− 1 (7)

swish(y) = x (sigmoid(x)) =
x

(1− e−x)
(8)

relu(x) = max(0, x) (9)

Next, the output nodes were compared to known values, y1, to calculate the sum
of squared errors between predicted and known values through the following equation
adopted from Ong et al. [64]:

C = ∑n
i=1

1
2
(ŷ1 − y1) (10)

Subsequently, this study analyzed softmax and sigmoid as the output layer’s acti-
vation functions [62,63]. The representations of softmax and sigmoid are displayed in
Equations (11) and (12), respectively.

σ(z)j =
ezj

∑K
k=1 ezk

(11)

sigmoid(x) =
1

(1 + e−x)
(12)

where Equation (11)’s j = 1, 2, 3, . . . K and sigmoid functions under softmax range from 0
to 1. Additionally, the sigmoid function allows the calculation of nonlinear and constricted
ranges [43].

Moreover, Adam and RMSProp were considered as the ANN’s optimizers [9,65].
Adam is presented in Equation (13), and RMSProp is described in Equation (14).

wt = wt−1 −
α√

vt+ ∈

(
g2

t

)
(13)

E[g2]t = βE[g]t−1 + (1− β)

(
δC
δw

)2
(14)

where Equation (13)’s w is the exponential average of the squared gradients, v is the
corresponding weight, α is the initial learning rate, and g is the gradient tree [66]. Mean-
while, Equation (14) applies the moving average of the squared gradients of each weight’s
functions [64].

Each parameter combination ran 10 times with 150 epochs [66], resulting in a total
of 2520 runs for the PI-ANN combination and 2880 runs for RFE-ANN and LASSO-ANN.
Within the thousands of runs, epochs supported the learning algorithm of each parameter
combination [64]. Thus, the consistency of accuracy values was guaranteed. In the initial
run, the study considered a 60:40 training–testing split to ensure the uniformity of sizes
based on feature-selection and LR results. Seidu et al. [67] reported that 60:40 is an optimal
split size for a modified ANN, and since the current study integrated multiple machine-
learning algorithms it was deemed especially suitable. Once all these initial runs were
completed, a final run was processed by considering the parameter combination of the
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highest average training accuracy across all features for the combinations of PI-ANN,
RFE-ANN, and LASSO-ANN. In the final run, 60:40, 70:30, 80:20, and 90:10 training–testing
sizes were evaluated to mitigate underfitting and overfitting issues [63]. Lastly, the ANN
algorithm was processed using Spyder’s Python software.

4. Results
4.1. Feature-Selection Results

The illustrated y-axis values in Figure 1 are the importance scores of the corresponding
x-axis features. In permutation importance, positive score values held a significant value
compared to zero and negative values. Hence, zero and negative values were eliminated
from the subset. A total of 14 subfeatures were extracted as part of the important subset
through filter selection’s permutation importance. The importance score for each subfeature
is presented in Table 3. The presented optimal feature subset had an accuracy value of
88.2743%.

Table 3. Optimal feature subset using permutation importance.

Number Feature Score Number Feature Score

1 PBC3 0.01958 8 HM5 0.00998
2 PTC7 0.00998 9 CM7 0.00998
3 CM3 0.00998 10 CM5 0.00998
4 SN6 0.00998 11 PBC6 0.00998
5 SN5 0.00998 12 CM1 0.00998
6 PTR3 0.00998 13 ATI7 0.00998
7 PTC9 0.00998 14 ATI6 0.00998

The RFE approach allowed customization of the training and testing sizes. As can be
seen in Table 4, it produced different optimal feature subsets. Each training–testing split
was ranked based on the number of features; the smallest feature number ranked first,
while the highest feature number ranked last. Since the RFE feature selection’s primary
goal was to reduce the number of features, the best solution was the subset with the lowest
optimal number. Two solution sets (90% training and 70% training) produced at least 28
features, which was deemed high compared to the least number of features. Thus, they
were ranked third and second, respectively. Three solution sizes (80%, 60%, and 50%)
produced 27 optimal feature subsets. Among 59 subfeatures, 27 was the optimal number of
features using LASSO.

The subsets with the lowest numbers of features were then analyzed using the RFE
model’s accuracy. In this step, the highest accuracy was chosen because feature selection
aimed to reduce the number of features by ensuring the highest accuracy rate. Hence,
73.6331% model accuracy from 60% training and 40% testing sizes was the RFE’s best
solution parameter (Table 5). Regardless of the parameters, these 27 subfeatures had similar
results. They all comprised the following subfeatures: ATI1, ATI2, ATI3, ATI6, ATI7, ATI8,
CM3, CM5, CM6, HM1, HM5, HM6, HM7, PTC1, PTC2, PTC5, PTC9, PTR8, ATT1, ATT3,
ATT5, ATT6, SN4, PBC2, PBC3, PBC4, and PBC6. This scenario supported that the identified
27 subfeatures were the optimal subset, although training and testing sizes differed. The
coinciding results helped the consistency of the feature selection’s RFE once the results
were fed into LR and the ANN.
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Table 4. RFE’s optimal subset with varying training and testing sizes.

Training Size Testing Size Optimal Number Optimal Feature Subset Optimal
Number Rank

90% 10% 35

ATI1, ATI2, ATI3, ATI6, ATI7, ATI8, ATI9, CM2, CM3,
CM5, CM6, HM1, HM4, HM5, HM6, HM7, PTC1, PTC2, PTC4,

PTC5, PTC8, PTC9, PTR8, ATT1, ATT2, ATT3, ATT5, ATT6,
SN4, SN5, PBC1, PBC2, PBC3, PBC4, PBC6

3

80% 20% 27
ATI1, ATI2, ATI3, ATI6, ATI7, ATI8, CM3, CM5, CM6,

HM1, HM5, HM6, HM7, PTC1, PTC2, PTC5, PTC9, PTR8,
ATT1, ATT3, ATT5, ATT6, SN4, PBC2, PBC3, PBC4, PBC6

1

70% 30% 28
ATI1, ATI2, ATI3, ATI6, ATI7, ATI8, CM3, CM5, CM6,

HM1, HM4, HM5, HM6, HM7, PTC1, PTC2, PTC5, PTC9,
PTR8, ATT1, ATT3, ATT5, ATT6, SN4, PBC2, PBC3, PBC4, PBC6

2

60% 40% 27
ATI1, ATI2, ATI3, ATI6, ATI7, ATI8, CM3, CM5, CM6,

HM1, HM5, HM6, HM7, PTC1, PTC2, PTC5, PTC9, PTR8,
ATT1, ATT3, ATT5, ATT6, SN4, PBC2, PBC3, PBC4, PBC6

1

50% 50% 27
ATI1, ATI2, ATI3, ATI6, ATI7, ATI8, CM3, CM5, CM6,

HM1, HM5, HM6, HM7, PTC1, PTC2, PTC5, PTC9, PTR8,
ATT1, ATT3, ATT5, ATT6, SN4, PBC2, PBC3, PBC4, PBC6

1
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Table 5. RFE’s top three parameters in finding the optimal subset.

Training Size Testing Size Optimal Feature Subset Model Accuracy

80% 20%
ATI1, ATI2, ATI3, ATI6, ATI7, ATI8, CM3, CM5, CM6,

HM1, HM5, HM6, HM7, PTC1, PTC2, PTC5, PTC9, PTR8,
ATT1, ATT3, ATT5, ATT6, SN4, PBC2, PBC3, PBC4, PBC6

71.7741

60% 40%
ATI1, ATI2, ATI3, ATI6, ATI7, ATI8, CM3, CM5, CM6,

HM1, HM5, HM6, HM7, PTC1, PTC2, PTC5, PTC9, PTR8,
ATT1, ATT3, ATT5, ATT6, SN4, PBC2, PBC3, PBC4, PBC6

73.6331

50% 50%
ATI1, ATI2, ATI3, ATI6, ATI7, ATI8, CM3, CM5, CM6,

HM1, HM5, HM6, HM7, PTC1, PTC2, PTC5, PTC9, PTR8,
ATT1, ATT3, ATT5, ATT6, SN4, PBC2, PBC3, PBC4, PBC6

72.6232

Figure 2 demonstrates the coefficient scores on the x-axis and subfeatures on the
y-axis. In the LASSO approach, important subfeatures are non-zero values [37]. Thus,
the optimal feature subset had positive or negative coefficients. A total of 35 out of 59
subfeatures, approximately 59.32%, were considered important for the LASSO model
(Table 6). Nevertheless, they were not ranked based on coefficient value because the LASSO
subset would undergo another machine-learning algorithm. The remaining 24 features
were eliminated and found unimportant since they were penalized to have zero coefficients.
Moreover, LASSO’s alpha value was 0.0007, and LASSO’s accuracy was 76.5950%.
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Table 6. Optimal feature subset using LASSO.

Number Feature Number Feature Number Feature Number Feature

1 PBC2 11 PTC9 21 SN6 31 PTC4
2 PBC3 12 HM7 22 CM3 32 PTC8
3 ATT6 13 ATI1 23 ATI3 33 PTR8
4 PBC6 14 PTC1 24 ATI2 34 PTC5
5 PBC4 15 PBC5 25 ATI6 35 HM6
6 SN4 16 ATI9 26 ATT1
7 HM5 17 SN3 27 PTR3
8 ATI8 18 SN5 28 PTR7
9 ATT3 19 CM2 29 ATI5

10 ATT5 20 CM6 30 PTC2

4.2. Application of Logistic Regression

The optimal subset results from three feature-selection techniques were fed into the LR
model. First, the permutation importance’s subset was integrated into LR. Table 7 displays
all possible training–testing splits with corresponding accuracy, precision, recall, and F1
scores. Based on the results, the researchers determined that 50:50 training and testing sizes
produced the highest accuracy of 92.0318%. While 0.91 precision did not have the superior
value among all comparisons, 92.0318% accuracy, 0.92 recall, and 0.91 F1 score ranked first
compared to the other four splits. It could also be seen that the accuracy value of 50:50
training and testing sizes had an increase of 0.5% to 2.6% compared to the remaining sizes.
This separation was deemed relatively small.

Table 7. Application of logistic regression after permutation importance.

Training–Testing Split Accuracy Precision Recall F1 Score

90:10 90.1961 0.91 0.90 0.87
80:20 91.0891 0.92 0.91 0.88
70:30 89.4040 0.88 0.89 0.87
60:40 91.5422 0.91 0.92 0.90
50:50 92.0318 0.91 0.92 0.91

Optimal features from RFE underwent LR, and the results are shown in Table 8. The
60:40 split generated the highest accuracy (94.0299%), precision (0.94), recall (0.94), and
F1 score (0.93). Although it had a similarity to the 50:50 split, decimal points revealed
that 60:40 corresponding parameters produced a slightly higher value. More importantly,
accuracy held a greater weight compared to precision, recall, and F1 score. Specifically,
the accuracy proximity value ranged from 1.95% to 0.006% when the 60:40 model was
compared to other training–testing splits. Among the three feature-selection techniques,
only RFE had an optimal data size of a 60:40 training–testing split.

Table 8. Application of logistic regression after RFE.

Training–Testing Split Accuracy Precision Recall F1 Score

90:10 92.1569 0.93 0.92 0.90
80:20 92.0792 0.93 0.92 0.90
70:30 92.0530 0.92 0.92 0.91
60:40 94.0299 0.94 0.94 0.93
50:50 94.0239 0.94 0.94 0.93

LASSO’s optimal subset was integrated into the study’s LR model. It can be seen in
Table 9 that 50:50 training–testing sizes had the best parameters, similar to the optimal
data size of permutation importance. It yielded the highest accuracy of 94.8207% and the
highest precision of 0.95. Although its recall (0.95) and F1 score (0.94) values were on a par



Sustainability 2023, 15, 8463 17 of 29

with the 60:40 split corresponding values, the accuracy rate was appreciated first, before
other parameters. Unfortunately, 60:40 produced 94.5274% accuracy, while 50:50 produced
94.8207, which meant a 0.2933 difference. This inference supported that the LR model
must maintain good accuracy to ensure appropriate model fitting. Despite the presence
of equivalent values of precision, recall, and F1 score, accuracy held superiority in the
predictive model.

Table 9. Application of logistic regression after LASSO.

Training–Testing Split Accuracy Precision Recall F1 Score

90:10 90.1961 0.91 0.90 0.87
80:20 92.0792 0.93 0.92 0.90
70:30 92.7152 0.93 0.93 0.92
60:40 94.5274 0.94 0.95 0.94
50:50 94.8207 0.95 0.95 0.94

4.3. Application of the Artificial Neural Network

Similar to LR, all feature-selection techniques (PI, RFE, and LASSO) underwent the
ANN procedure. Based on the results of permutation importance, seven out of eight
features were considered in the optimal subset. These seven features were fed into all ANN
parameter combinations. The underlying permutation importance feature that generated
the highest average testing accuracy was deemed the best parameter combination, as
displayed in Table 10. Among all the presented combinations, the hedonic motivation
(HM) feature had the highest average testing accuracy of 97.76%. It also had the lowest
standard deviation (0.0118), which described the clustered values of testing accuracy.
Hence, the combined permutation importance and the ANN’s optimal parameters entailed
20 hidden-layer nodes, tanh hidden-layer activation, softmax output-layer activation, and
Adam optimization.

Table 10. The best parameters for the combined permutation importance and ANN.

Feature
Nodes

(Hidden
Layer)

Activation
(Hidden
Layer)

Activation
(Output
Layer)

Optimizer
Average
Testing

Accuracy

Average
Standard
Deviation

ATI 30 Swish Sigmoid Adam 96.97% 0.0185
CM 30 Swish Sigmoid Adam 96.17% 0.0211
HM 20 Tanh Softmax Adam 97.76% 0.0118

PTCs 30 Swish Sigmoid Adam 95.77% 0.0222
PTRs 30 Swish Sigmoid RMSProp 96.97% 0.0160
SNs 30 Swish Softmax Adam 96.52% 0.0186
PBC 30 Swish Sigmoid Adam 96.62% 0.0167

Next, RFE’s optimal subsets were integrated into the ANN algorithm. A total of eight
features were compared since they were important subsets of RFE. HM was found to have
the highest average testing accuracy of 97.06% (Table 11). Although its standard deviation
was not the lowest value compared to the other features, 0.0142 was considered low. This
indicated proximity among the generated testing accuracy values. Furthermore, the optimal
RFE-ANN parameters were 30 hidden-layer nodes, tanh hidden-layer activation, softmax
output-layer activation, and Adam optimization.
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Table 11. The best parameters for the combined RFE and ANN.

Feature
Nodes

(Hidden
Layer)

Activation
(Hidden
Layer)

Activation
(Output
Layer)

Optimizer
Average
Testing

Accuracy

Average
Standard
Deviation

ATI 30 Swish Softmax Adam 96.42% 0.0136
CM 30 Swish Sigmoid Adam 96.27% 0.0171
HM 30 Tanh Softmax Adam 97.06% 0.0142

PTCs 30 Tanh Sigmoid Adam 96.32% 0.0168
PTRs 30 Swish Sigmoid Adam 96.22% 0.0131
ATT 30 Swish Sigmoid Adam 96.02% 0.0133
SNs 30 Tanh Sigmoid RMSProp 95.37% 0.0161
PBC 30 Tanh Softmax RMSProp 96.92% 0.0138

Finally, LASSO’s optimal subsets comprised eight features. The accuracy value ranged
from 95.42% to 97.52%. Among the evaluated eight features, HM had the highest average
testing accuracy (97.51%) when the subset underwent the ANN algorithm (Table 12). It
was deemed superior by having an increase of 0.35 to 2.9 compared to the seven remaining
features. Meanwhile, the average standard deviation ranged from 0.0128 to 0.0216. The
HM accuracy’s average standard deviation was 0.0146, indicating consistency. Thus, the
best LASSO-ANN parameters were 30 hidden-layer nodes, tanh hidden-layer activation,
sigmoid output-layer activation, and Adam optimization.

Table 12. The best parameters for the combined LASSO and ANN.

Feature
Nodes

(Hidden
Layer)

Activation
(Hidden
Layer)

Activation
(Output
Layer)

Optimizer
Average
Testing

Accuracy

Average
Standard
Deviation

ATI 30 Tanh Softmax Adam 97.16% 0.0193
CM 30 Swish Sigmoid Adam 96.22% 0.0183
HM 30 Tanh Sigmoid Adam 97.51% 0.0146

PTCs 30 Swish Softmax RMSProp 96.57% 0.0194
PTRs 30 Swish Sigmoid Adam 95.42% 0.0216
ATT 30 Swish Softmax RMSProp 96.62% 0.0128
SNs 20 Swish Sigmoid Adam 96.07% 0.0184
PBC 30 Swish Softmax Adam 96.87% 0.0133

5. Discussion
5.1. Feature Selection, Logistic Regression, and ANN Results

The researchers started analyzing machine-learning algorithms by comparing three
feature-selection techniques. The summarized findings are displayed in Figure 3. The
filter method’s permutation importance garnered the highest accuracy (88.2743%), with
14 subfeatures. It was followed by the embedded method’s LASSO (76.5950%), with
27 underlying subfeatures. Lastly, the wrapper method’s RFE (73.6331%) encompassed
35 subfeatures.

Along the same lines, Bommert et al. [27] discovered that permutation importance
was the best filter-method technique. The past study generated the highest accuracy while
trying different datasets. Hence, this finding supported that the post-disaster Siargao
tourism context was not the sole data source that guaranteed permutation importance’s
supremacy. Although Li et al. [31] did not present permutation importance’s accuracy, this
method generated the least predicted Mean Absolute Error (MAE), Mean Square Error
(MSE), and Root Mean Square Error (RMSE) among all compared techniques. Generally,
the model error was associated with accuracy values. Accurate findings would produce
a lesser error, while inaccurate findings would produce a greater error. Kim et al. [32]
performed permutation importance twice, and 51.7% was the highest training accuracy.
This percentage value was deemed extremely low, which indicated that permutation
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importance was not the best feature-selection technique for the past study. Kim et al. [32]
only considered permutation importance and failed to assess other techniques. The current
study provided alternatives by comparing three techniques, which eliminated feature-
selection biases.

Sustainability 2023, 15, x FOR PEER REVIEW 20 of 30 
 

 
Figure 3. Summarized feature-selection results. 

Along the same lines, Bommert et al. [27] discovered that permutation importance 
was the best filter-method technique. The past study generated the highest accuracy while 
trying different datasets. Hence, this finding supported that the post-disaster Siargao tour-
ism context was not the sole data source that guaranteed permutation importance’s su-
premacy. Although Li et al. [31] did not present permutation importance’s accuracy, this 
method generated the least predicted Mean Absolute Error (MAE), Mean Square Error 
(MSE), and Root Mean Square Error (RMSE) among all compared techniques. Generally, 
the model error was associated with accuracy values. Accurate findings would produce a 
lesser error, while inaccurate findings would produce a greater error. Kim et al. [32] per-
formed permutation importance twice, and 51.7% was the highest training accuracy. This 
percentage value was deemed extremely low, which indicated that permutation im-
portance was not the best feature-selection technique for the past study. Kim et al. [32] 

Figure 3. Summarized feature-selection results.

However, feature selection’s optimal subsets underwent LR and the ANN procedure.
The accuracy values changed as the subsets were fed into advanced machine-learning
algorithms. As displayed in Table 13, the combination LASSO-LR produced the highest
accuracy (94.8207%), next was RFE-LR (94.0299%), and last was PI-LR (92.0318%). It could
be determined that feature selection with lower accuracy values showed an immense
improvement because the accuracy values of LASSO and RFE increased by 18.2257% and
20.3968%, respectively. Unlike permutation importance with 88.2743% feature-selection
accuracy, its PI-LR accuracy only increased by 3.7575%. Similarly, permutation importance
produced a very small increase of 2.4% when the model was run twice [32]. Therefore,
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permutation importance could produce good accuracy values in the beginning, but their
significance diminished as the researchers tried to tune the machine-learning parameters.

Table 13. The best accuracy percentages for each feature selection combined with LR.

Algorithm Training–Testing Split Accuracy Precision Recall F1 Score

PI-LR 50:50 92.0318% 0.91 0.92 0.91
RFE-LR 60:40 94.0299% 0.94 0.94 0.93

LASSO-LR 50:50 94.8207% 0.95 0.95 0.94

A study produced a flash-flood susceptibility accuracy of 86.34% with the Embedded-
LR combination for China [41]. This past study used a higher training set (70%), but the
generated result was lower than in the present study, with only a 50% training set that
produced the highest accuracy. Based on the current results, the 70% training size for the
LASSO-LR combination yielded 92% accuracy. Still, the value was higher than the findings
of Li et al. [41]. Thus, the present study produced better optimal features supporting other
LR parameters, such as precision, recall, and F1 score. Next, Peng et al. [7] combined RFE
and LR and only produced a 0.554 F1 score. F1 score summarizes the predictive aspect
of the LR model by ensuring the balance between the mean of precision and recall [34].
Unfortunately, the study of Peng et al. [7] yielded a significantly lower F1 score (0.554)
compared to the present study (0.940). The past study utilized travelers’ insights from
websites, which led to unsystematic data. Meanwhile, the present study utilized actual
survey responses from people who were aware of Siargao’s tourism after Super Typhoon
Rai. Although the PI-LR combination had the lowest accuracy value in the present study,
92.0318% was considered high and close to other accuracy values (94%). Regrettably, LR
was not a good combination for any filter method, such as PI, due to the constricted number
of features [27]. Consequently, the dataset was essential to ensure its fit with a machine-
learning algorithm. Another study combined PI and LR and found an accuracy value
range of 72.6% to 90.7% [68]. This study produced a lower accuracy range because it set a
pre-determined number of features (the top five features for each health model) instead of
considering all the accepted features based on PI’s standard parameters.

The ANN’s final run and the best accuracy for each integrated feature-selection tech-
nique are presented in Table 14. The similarities among all three algorithms were in terms
of the training–testing size, the hidden layer’s activation function, the optimizer, and the
most-important feature. They were itemized as 70:30, tanh, Adam, and hedonic motivation,
respectively. Meanwhile, the ANN parameters varied for hidden-layer nodes and the
output layer’s activation function. Specifically, PI-ANN had the optimal accuracy with
20 nodes and softmax output activation. Meanwhile, RFE-ANN generated the highest
accuracy through 30 nodes with softmax output activation. Lastly, LASSO-ANN’s highest
accuracy was achieved with 30 nodes and the sigmoid output layer.

Table 14. Optimal parameters for each feature selection combined with ANN.

Algorithm Training–
Testing Split

Nodes
(Hidden
Layer)

Activation
(Hidden
Layer)

Activation
(Output
Layer)

Optimizer
Most-

Important
Feature

Average
Testing

Accuracy

Average
Standard
Deviation

PI-ANN 70:30 20 Tanh Softmax Adam HM 97.7483% 0.009469
RFE-ANN 70:30 30 Tanh Softmax Adam HM 97.6821% 0.019308

LASSO-ANN 70:30 30 Tanh Sigmoid Adam HM 97.8146% 0.011278

Specifically, the 70% training set coupled with the 30% testing set was the optimal
size for all algorithms (PI-ANN, RFE-ANN, and LASSO-ANN)—almost similar to the
findings of Palmer et al. [6], who found that a 73.3% training set and a 26.7% testing set
forecasted their tourism series data in Spain accurately. Another study noted that the 70:30
size validated the data fit to ANN parameters [28]. These identical instances implied that
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lower training sets would lead to premature convergence and higher training sets could
instigate overfitting.

For hidden-layer nodes, PI-ANN had a different optimal parameter (20 nodes) com-
pared to RFE-ANN and LASSO-ANN with 30 nodes. This result implied that PI-ANN could
find a better model with fewer nodes, while RFE-ANN and LASSO-ANN needed a higher
number of neurons in the hidden layer. Any values greater than 20 nodes for PI-ANN and
more than 30 nodes for RFE-ANN and LASSO-ANN could result in overfitting. Moreover,
values below the optimal number of nodes could lead to underfitting. Tsaur et al. [12] used
20 hidden nodes and produced 94.3% accuracy as they investigated eight features affecting
tourists’ loyalty to hotels. Furthermore, another study reported that 30 nodes assisted in
producing a 97.32% predictive model [62]. Although the past and current studies have
similarities in terms of the number of hidden nodes, the utilized features are dissimilar. In
addition, these past studies did not incorporate any feature-selection techniques, resulting
in lesser accuracy values [12] and premature convergence [62]. Researchers had to perform
a trial-and-error process to find the optimal nodes because there was a lack of standards [23].
Hence, the effectivity of nodes was maintained by integrating 150 epochs in the current
study. Likewise, 150 epochs assisted in categorizing travel-trip behavior in Russia [8].

Among tanh, swish, and relu, the best hidden-layer activation function was tanh
across all types of algorithms. Supporting the current study, Yuduang et al. [9] and
German et al. [63] utilized the same hidden-layer activation function that yielded the best
result. In a similar context, tanh and relu were utilized to predict earthquake frequency
and magnitude [65]. The past study failed to separate the evaluation between tanh and
relu. Nevertheless, these parameters were considered the optimal activation functions.
However, the current study argued that relu lost to tanh because relu only produced an
average range from 81.99% to 93.23% compared to the corresponding tanh accuracy within
97% values. In another study, relu was chosen as the hidden-layer activation and only
produced 79.7% travel-trip accuracy [8]. This value was significantly smaller than the
current study’s findings. In addition, Ong et al. [62] concluded that swish was the best
hidden-layer activation. The current study contented that swish produced a lesser average
accuracy than tanh. Swish’s average accuracy rates ranged from 94.28% to 96.97%.

Furthermore, the softmax and sigmoid output-layer activation functions were assessed.
This study concluded that softmax was the best function for PI-ANN and RFE-ANN, while
sigmoid better fit LASSO-ANN. Studies focusing on natural-disaster impacts and disaster-
response activities found that softmax was the best output-layer activation function [18,65].
On the other hand, researchers who investigated tourism demand revealed the importance
of the sigmoid function in the ANN model [6,44]. The researchers assessed tourists’ inten-
tions to revisit Siargao after it was affected by a super typhoon, which was associated with
post-natural-disaster and tourism recovery. Since the present study considered both the
softmax and sigmoid functions, the results coincided with the mixed results of past studies.

Between the Adam and RMSProp optimizers, Adam dominated the optimal ANN
parameter settings regardless of the algorithm type. Several researchers agreed that Adam
was the best optimizer, and their studies yielded accuracy values of 89.21%, 98.56%, and
98.15%, respectively [9,43,63]. However, one study noted that RMSProp was the optimal
optimizer to predict earthquakes with high magnitudes [65]. Differences in results occurred
due to the context, as the past study was more focused on natural-disaster preparation.

Overall, the ANN outperformed LR, as reflected in Table 15. All combined feature-
selection and ANN algorithms had greater accuracy rates than the integrated feature
selection and LR. Supporting these findings, Tsaur et al. [12] found that the ANN was
better than LR because the ANN consisted of multiple layers that could process non-linear
functions in the tourist loyalty accuracy prediction. However, when researchers located
landslide-prone areas in Iran, Nhu et al. [69] revealed that LR’s validation accuracy was
better than the ANN due to LR’s flexible dataset type and distribution. Nevertheless, this
study has argued that the ANN bested LR because the researchers did not only focus
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on data fitting, but also on predicting significant post-disaster tourism-recovery features
affecting Siargao tourists.

Table 15. Comparison of machine-learning algorithms’ accuracy values.

Algorithm Accuracy Algorithm Accuracy

PI-LR 92.0318% PI-ANN 97.7483%
RFE-LR 94.0299% RFE-ANN 97.6821%

LASSO-LR 94.8207% LASSO-ANN 97.8146%

Therefore, the best algorithm was the LASSO-ANN combination, since it had the
highest testing accuracy value of 97.8146%. Through this combination, ANN curve fitting
generated an inverted yield. This curve style implied a decrease in error and an increase in
accuracy percentage.

Unfortunately, past studies overlooked the combination of LASSO and ANNs. For
instance, Aronsson et al. [70] evaluated LASSO and ANNs individually and only incurred
80% to 82% accuracy. If the past study combined LASSO and an ANN, they could generate
higher accuracy values. Thus, the LASSO-ANN algorithm’s underlying features and
parameters best described the predictive model of tourists’ intention to revisit Siargao
after Super Typhoon Rai. Specifically, 8 features (ATI, CM, HM, PTCs, PTRs, ATT, SNs,
and PBC) which comprised 35 subfeatures (ATI1, ATI2, ATI3, ATI5, ATI6, ATI8, ATI9,
CM2, CM3, CM6, HM5, HM6, HM7, PTC1, PTC2, PTC4, PTC5, PTC8, PTC9, PTR3, PTR7,
PTR8, ATT1, ATT3, ATT5, ATT6, SN4, SN3, SN5, SN6, PBC2, PBC3, PBC4, and PBC6)
were found to be significant. Among all feature-selection techniques, LASSO performed
well when combined with either LR or the ANN. Its optimal subset generated the highest
testing accuracy for both algorithms. Meanwhile, RFE was the next-best feature-selection
technique integrated into LR, followed by PI. For the ANN algorithm, PI ranked second,
while RFE was the weakest performer.

5.2. The Most-Significant Factors and Practical Implications

Since LASSO-ANN produced the highest accuracy among all the algorithms, its
underlying subset was considered the most-important feature or factor. The following
factors were arranged from the most significant to the least significant: HM, ATI, PBC, ATT,
PTCs, CM, SNs, and PTRs. For practical implications, the top two factors (HM and ATI)
were chosen for further practical interpretation because they held at least 97% accuracy
compared to the other factors.

It could be seen that hedonic motivation (HM) was the greatest factor influencing
tourists’ intentions to revisit Siargao after Super Typhoon Rai. Tourists sought happiness
from traveling since this emotion ignited their motivation. They were also eager to try
a new lifestyle because of Siargao’s isolation from urban life, the residents’ culture, and
the destination’s unique activities. Moreover, they wanted to travel to Siargao to relax
physically and mentally. Similarly, Cahigas et al. [52] noticed that HM was the most-
significant tourism-related factor affecting destination visits affected by the natural crisis.
This implied that tourists were motivated despite the negative effects of natural phenomena,
whether these were related to the COVID-19 pandemic or the super typhoon. Tourists’ HM
was greater than the fear of experiencing the natural crisis’s aftermath, as they believed
that adequate knowledge of safety protocols was more essential. Moreover, Rodriguez–
Sanchez et al. [51] revealed that HM outperformed other factors in influencing hotel tourists’
support of their destination’s natural-crisis advocacy. Tourists were more motivated to visit
destinations affected by natural disasters because traveling could benefit them personally
and at the same time support the affected economies. These findings were consistent
with the study of Lee et al. [71], where HM was described as the best exogenous variable
affecting other connected variables. This factor not only supported tourism activities, it
also promoted pro-environmental behavior coinciding with the present study’s context.
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Therefore, the researchers suggested that businesses (e.g., travel agencies, restaurants,
and accommodations) in Siargao should prioritize mild-to-moderate activities. For example,
travel agencies could offer relaxing city tours and beach hopping. These activities would
guarantee full exploration of Siargao Island. Restaurants could entertain their customers
by organizing events (e.g., fire dancing, music festivals, and themed photoshoots). This
would produce a win–win situation because events not only help businesses increase
tourist traffic but also keep tourists’ engagement intact. Accommodation places could have
built-in massage, spa, and yoga areas for their guests. They could also provide them with
bundle prices or free services to stimulate their interests. Extreme activities (e.g., diving,
surfing, and snorkeling) could still be offered to tourists, since some tourists might seek
novelty. Nevertheless, it is advised to focus on gentle activities because these were directly
associated with the tourists’ HM.

Furthermore, the awareness of Typhoon Rai’s impact (ATI) factor was the second
most-significant factor affecting Siargao tourists’ intentions to visit the island after it was
destructed by Super Typhoon Rai. Tourists were willing to face hypothetical consequences
and aftermaths if they were aware of the typhoon’s severe impacts on human lives, Siar-
gao’s infrastructures, and the differences between the old and new Siargao. They must also
be equipped with credible and sufficient information surrounding Siargao reconstruction
projects and weather forecasts. Awareness among tourists held great value because they
used it to gauge the risk and safety levels of destination places [72]. Tourists who were
equipped with natural-disaster and tourism knowledge felt more confident in visiting a
tourist spot such as Siargao. Likewise, the study of Ong et al. [64] disclosed that under-
standing the effects of natural disasters was an essential factor because it helps individuals
analyze their psychological emotions and social needs. Thus, awareness could help tourists
to decide reasonably whether to revisit Siargao. As long as the typhoon impacts were
manageable and tourists were aware of safety precautions, tourists would most likely
visit Siargao Island. Cahigas et al. [73] also revealed that the most-important factor in
the quadrant analysis was understanding the effects of natural disasters on organizations,
regular citizens, and the government. The presented studies implied that tourism recovery
after natural disasters was possible by receiving the utmost support from tourists.

Given the ATI’s significance, the researchers recommended that the government work
alongside media outlets, airline companies, maritime companies, Siargao businesspeople,
and residents. While Siargao has a couple of local media outlets, tourists were unaware
of them, since they were not considered residents. The government must bridge the com-
munication gap between nationwide and local media outlets by creating a comprehensive
government website. This official website should focus on Siargao’s weather updates,
reconstruction projects for all municipalities, the timelines of reconstruction projects, and
the severity of hypothetical aftermaths for each area. The website must be updated in
real time and regularly by identifying actual updates from locals of Siargao. This would
eliminate the presence of unreliable data and ensure that tourists could access consistent
and adequate information using one platform. Since all tourists can only visit Siargao Island
by taking airplanes or ships, the researchers recommend partnering with the transportation
companies. The companies could offer Siargao updates, safety levels, and precautions
through infographics shown via LCDs or with voice-overs by crew members. Tourists’
travel times would be meaningful, as they could prepare themselves ahead of their arrival
in Siargao. Overall, the synchronized relationship between the government and these
stakeholders would allow a wide array of credible and accessible data.

5.3. Academic Contributions

The integration of various feature-selection techniques into LR and ANNs has not yet
been explored by other researchers. As of this writing, this is the first study to analyze the
combination of the filter method’s permutation importance, the wrapper method’s RFE,
and the embedded method’s LASSO alongside multiple-parameter combinations under
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LR and the ANN. Hence, the findings could be used as a benchmark for human-behavior
practitioners, natural-disaster investigators, and machine-learning academicians.

First, the researchers discovered that LASSO was the best feature-selection technique,
as it performed well in both LR and the ANN. Moreover, a 0.0007 alpha value could be
identified as a standard parameter to tune the LASSO model’s penalty. Higher and lower
alpha values could lead to unbalanced penalization because they would lead to unideal
subset extraction. An example of a substandard result is the usage of a 0.1 alpha value
by Waldmann et al. [61]. They concluded that 0.1 was an optimal LASSO alpha without
trying other values or considering other studies’ findings, which resulted in an uneven
subset. Therefore, it was necessary to build a standard LASSO alpha to generate the
most-important features.

Second, the ANN outperformed LR in all machine-learning combinations. It was
previously discussed that the ANN model applied a more calibrated, non-linear approach
to features [12]. LR was restrained in processing a certain dataset distribution and did not
contain hidden layers, unlike the ANN. Through the ANN, the model was able to increase
the accuracy rate further because it also investigated the underlying relationships among
all features. Moreover, the ANN could process all types of datasets, such as the Likert scale,
the semantic scale, and the ranking. The present study utilized supervised learning and a
five-point Likert scale, which was fed into the ANN model successfully.

Lastly, LASSO-ANN was the recommended combination for identifying factors in-
fluencing Siargao’s tourism recovery after Super Typhoon Rai. It was suggested to use a
70:30 training–testing size, 30 hidden-layer nodes, tanh hidden-layer activation, sigmoid
output-layer activation, Adam optimization, and HM as the most-important feature. The
findings supported that appropriate parameters of machine-learning algorithms could
predict human behavior and analyze natural disasters’ impacts comprehensively. It was
not suggested to perform the ANN procedure directly. For instance, the ANN was out-
performed by more than half of the evaluated algorithms when they forecasted tourist
arrivals and overnight stays [13]. Thus, the researchers introduced the importance of
employing feature-selection techniques before the application of the ANN to generate an
effective model.

5.4. Limitations and Future Research

While the researchers utilized an innovative methodology and produced essential
findings, they admit to the limitations of the study. First, the researchers only chose one
feature-selection approach for the filter, wrapper, and embedded methods. Past studies
revealed that the filter method’s permutation importance, the wrapper method’s RFE, and
the embedded method’s LASSO could best assist machine-learning models in increasing
accuracy values. However, datasets varied from one study to another, which opened
the possibility of using a different optimal feature-selection technique. Hence, future
researchers are encouraged to compare at least three approaches for each feature-selection
method. Second, the demographic characteristics of respondents were not utilized in the
prediction model, since the present study focused on features or factors. The demographic
data could be transformed into pre-processed quantitative data before integrating them
into machine-learning algorithms. Third, future studies could compare two time periods
because the present research focused on tourist’s intentions after a typhoon. If other
researchers could expound on tourists’ perceptions before the typhoon hit Siargao Island,
more comprehensive findings could be obtained. Finally, future scholars could identify the
similarities or differences between domestic and foreign tourists. They could also improve
the state of research by investigating and comparing multiple crises (e.g., typhoons, the
Ukraine war, and COVID-19). Despite the presence of these limitations, the researchers
performed the methodology completely and achieved the intended objectives. The data
were gathered properly and analyzed extensively using different types of algorithms.
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6. Conclusions

Super Typhoon Rai had severe impacts on Siargao’s tourism facilities. Since the
island’s primary livelihood stems from tourism, it was critical to assess the factors affecting
tourists’ intentions to revisit the island. A total of 502 valid participants cooperated in this
research voluntarily. Four research questions were formally presented, and the researchers
revealed the corresponding findings.

First, the integrated machine-learning algorithms determined Siargao tourists’ be-
havior after Super Typhoon Rai by identifying the best feature-selection parameters and
connecting each parameter to LR and an ANN. Moreover, LR and the ANN had underlying
parameters that were explored until the highest model accuracy was achieved. Second, the
best machine-learning algorithm combination was LASSO-ANN because it generated the
highest accuracy rate (97.8146%). Third, the optimal parameter for the LASSO combination
was the inclusion of 35 subfeatures, 8 primary features, and a 0.0007 alpha value. Mean-
while, the ANN performed at its best with a 70:30 training–testing size, 30 hidden-layer
nodes, tanh hidden-layer activation, sigmoid as the output layer’s activation, Adam as an
optimizer, and hedonic motivation (HM) as the most-important feature. Fourth, all eight
features were considered significant. These features were arranged from the most impor-
tant to the least important as follows: hedonic motivation (HM), awareness of Typhoon
Rai’s impact (ATI), perceived behavioral control (PBC), attitude (ATT), perceived travel
constraints (PTCs), crisis management (CM), subjective norms (SNs), and perceived travel
risks (PTRs). The top-tier feature that produced a high prediction rate was HM, followed
by ATI. Both HM and ATI sustained at least 97% accuracy rates in the initial and final runs
compared to the other features.

Following the presented findings, the researchers expounded on the study’s man-
agerial applications to improve Siargao’s economy. It was recommended to offer mild-
to-moderate activities to increase tourists’ HM. Instead of extreme activities, tourism
businesses should focus on relaxing itineraries, enjoyable events, solemn social interaction,
and wellness-center services. Additionally, the provision of a new government website was
suggested to guarantee the presence of credible and consistent information because these
aspects enhance tourists’ ATI. This approach could alleviate miscommunication issues
between tourists and locals, since the new website would provide Siargao tourism data
(e.g., reconstruction updates, activities, and safety levels) systematically. To support this
recommendation, the researchers also encouraged partnerships with media outlets, airline
companies, and maritime companies to distribute information digitally and physically.
Furthermore, the researchers contributed novel machine-learning algorithm results. As
of this writing, none of the past studies explored the importance of LASSO-ANN in a
post-disaster tourism-recovery context. Future scholars could utilize the findings to expand
the study’s research questions and methods.
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