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Abstract: Intelligent manufacturing is considered among the most important elements of the modern
industrial revolution, which includes digitalization, networking, and the development of the intelli-
gent manufacturing industry. With the progressive development of modern information technology,
particularly the new generation of artificial intelligence (AI) technology, many new opportunities
are coming into existence for intelligent machine tool (IMT) development. Intelligent machine tools
offer diverse advantages, including learning and optimizing machining processes, error compen-
sation, energy savings, and failure prevention. The paper focuses on the machine tool market in
terms of global production, the leading machine tool-producing countries, and the leading countries’
market share in machine tool production. Moreover, the usage of various artificial intelligence tech-
niques in intelligent machining operations is also considered in this comprehensive review, including
machining parameter optimization, tool condition monitoring (TCM), and chatter vibration manage-
ment of intelligent machine tools. Furthermore, future challenges for the machine tool industry are
also highlighted.

Keywords: machine tools; intelligent machining; emerging technologies; artificial intelligence;
machine learning; tool condition monitoring; optimization; chatter

1. Introduction

In recent years, intelligent machining (IM) systems have received the interest of multi-
ple researchers because of their great potential and continuous progress [1]. With the recent
development of “Internet + sensor” technology over the past few decades [2,3], emerging
information technologies, the Internet of Things (IoT), and integration of artificial intelli-
gence (Al) with machine tools, the machine tool’s ability to learn, generate, and accumulate
knowledge is greatly empowered. The emerging technologies have been researched and
implemented in machine tools [4,5] principally by commercial corporations, including
FANUC, DMG MORI, Mazak, Shenyang Machine Tool, and Okuma. The progressive
development of intelligent machine tools is a desired need for the machine tool industry for
the sake of its transformation and upgradation; on the other hand, it is also considered an
essential element for framing a solid manufacturing country [6]. The new era of intelligent
manufacturing is turning into a vital driving force towards the industrial revolution. Sub-
ject to the new generation of IT, intelligent machine tools (IMT) come into existence via the
intense integration of advanced information technology and manufacturing technologies.
The detailed control mechanism of IMT is shown in Figure 1, in which it is demonstrated
how it retrieves information regarding machining, working environment, and conditions
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through smart autonomous sensing mechanisms and connectivity; brings out knowledge
through self-governing learning mechanisms and modeling; performs optimization and
decision-making on the gathered knowledge; and accomplishes control and execution.
Possessing all these qualities, IMT exhibits superior precision, high efficiency, reliability,
safety, and low energy consumption.

Smart machining is far superior to conventional machining due to its ability to adjust
parameters autonomously throughout its machining process for the sake of achieving
certain objectives; it includes machine tools, intelligent sensors [7], controller networks [8],
big data and cloud-based systems [9] and is designed based on simulation and control
algorithms. On the other hand, operation conditions during conventional machining are
not consistently ideal because of the presence of various errors throughout the material
removal processes, such as vibration, geometric error, thermal deformation, and elastic
deformation. Preventive maintenance and corrective action must be taken into consider-
ation for the sake of improving the quality and production ability of a machine tool [10].
There are a considerable number of factors that affect overall machining productivity and
production quality instead of torque and speed of the machine tool, such as tool wear [11],
tool path/process optimization [12], parameter optimization and control [13], energy con-
servation [14], and vibration [15]. Intelligence inclusion in machine tools provides the
potential to get rid of these challenges via analyzing appropriate machining data.
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Figure 1. The control principle of intelligent machine tools (VNC: virtual numerical controller [16].

As intelligent manufacturing is being regarded as a driving force for the new industrial
revolution, it is allowing deep integration of the new generation of emerging technologies
into advanced manufacturing technology. With the emergence of automation, production
process efficiency has increased significantly, which has allowed researchers worldwide
to design advanced and cost-effective machining processes. It was necessary to conduct
a comprehensive review that analyzes intelligent machine tool development trends, the
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perspective of the machine tool industry, current progress in the field of intelligent ma-
chining, and future directions regarding challenges being faced by artificial intelligence
(AI) technology. The review covers a wide range of technologies contributing towards
intelligent machining, the use of artificial intelligence (Al) in machine tool parameter opti-
mization, chatter vibration management, and tool condition monitoring (TCM). This paper
will provide the reader with sound knowledge regarding recent trends in the machine tool
industry and a summary of emerging technologies’ contributions to intelligent machining.

2. Global Machine Tool Industry—Statistics and Facts

In this modern era, machine tools have replaced handwork and greatly improved
efficiency and productivity during the industrial revolution. However, several types of
machine tools have been developed from time to time. The machine tools market strength-
ened its position globally with the increment in its demand in industrial organizations for
the sake of automation and improvement of production processes, resulting in its transfor-
mation and becoming among the most substantial submarkets in industrial production;
for example, during the last decade, the demand for machine tools around the globe has
increased more than double, reaching roughly USD 181 billion in 2019. Machine tools’
global production from 2011-2021 is depicted in Figure 2. It is very clear from the figure
that there is a fluctuating trend in yearly machine tool production. The year 2018 experi-
enced around USD 93 billion, and the year 2021 amounted to USD 83.9 billion towards
the world’s machine tool production value, which represents a 24% increase compared
with the past year when the shock of negative demand across the globe was caused by the
COVID pandemic. Amada, Trumpf, DMTG, and Shenyang were the largest producers of
machine tools in the same year.
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Figure 2. Machine tool global production during 2011-2021 [17].

Several countries specialize in manufacturing intelligent machine tools even though
they have a high demand for their industrial production, including China, Germany, Japan,
the United States, Italy, South Korea, Taiwan, Switzerland, Austria, and Spain. Based on
the production value, the list of leading countries in machine tool production in 2021 is
given in Figure 3. China appeared as a leading producer of machine tools around the globe
in 2021, with an exceptional manufacturing record of EUR 21.8 billion. Germany, compared
to China, amounted to EUR 9 billion less in production volume and became the world’s
second-largest machine tool manufacturer. Japan was in a close race with Germany in
production value and amounted to around EUR 8.9 billion; the US was in fourth place and
amounted to EUR 6.35 billion worth of machine tool production. South Korea, Taiwan,
Switzerland, Austria, and Spain lagged far behind in manufacturing.
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Figure 3. Leading countries in machine tool production in 2021 [18].

Over the last two decades, the annual machine tool trade value has escalated continu-
ously. As of 2020, almost USD 2.5 billion generated in global machine tool exports. The
distinct global machine tools trade evolution is primarily determined by the type of global
economic transformation. As more and more countries experience an industrialization
trend, the demand for advanced facilities for industrial production is increasing in parallel.
The pie chart of the market share of the leading producers of machine tools in the year 2020
is depicted in Figure 4.
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Figure 4. Machine tools leading producers in 2020 [19].

The pie chart represents the leading countries” market share in the production of
machine tools in the year 2020. It can be seen in Figure 4 that China has accounted for the
highest 29 percent of the world’s production of machine tools and ranked first. Following
China, Germany was ranked in second position and accounted for 15 percent of the world’s
production; Japan was ranked third and accounted for 14 percent of production; Italy was
at fourth rank and accounted for 8 percent of production, and the United States lagged
behind its top competitors in the production race and accounted for 7 percent of the
world’s machine tool production and was ranked in fifth position. The other 27 percent of
production includes other countries” contributions to machine tool manufacturing.

3. Emerging Technologies Enabled Smart Machining

For the sake of improving machining quality and production output, preventive
maintenance and corrective action have to be considered. Certain major factors greatly
influence the machine tool performance and productivity, including tool condition (wear
and breakage), chatter vibrations throughout the cutting operation, machining parameters,
energy consumption management for energy savings, and smart sensors. The inclusion of
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modern Al technology in numerically controlled machine tools and machining operations
offers great potential to eliminate the most influential factor via appropriate data collection
and analysis.

3.1. Tool Condition Monitoring (TCM)

The variations in cutting tool wear, cutting force, surface roughness, and a few other
responses during the machining operation result in a great change in dimensional accu-
racy and productivity. The increase in cutting tool wear during the machining leads to
catastrophic outcomes, which may cause tool breakage [20]. The fractional force between
the cutting tool and the workpiece [21], the cutting force [22], chatter vibration [23], and
cutting power [24] increase as a result of increased tool wear. To avoid destructive tool
failure, continuous tracking of the progress in cutting tool wear from the beginning, during
the machining, is necessary [25]. Consequently, there is a need to have an effective and
reliable tool condition monitoring system that can help us detect tool failure for the sake of
avoiding unplanned downtime and avoiding using tools for machining that are not able to
provide desired surface roughness and dimensional accuracy [26].

A method was proposed by Lee et al. [27] that determines the tool condition during
the operation. When the cutting tool wears, it increases the power requirement for the
machine for the continuation of cutting material; he determined the required power for the
cutting process via the measurement of the electric current drawn to the machine’s feed
motor. The cutting tool performance was observed through the current signals obtained
for the unusual patterns; it was possible by relating the amount of current drawn by the
motor during the cutting process to the forecasted cutting forces. The sudden current
signal change signifies the broken tool. This technique was being utilized until direct
monitoring of cutting forces throughout the operation became possible. A recurrent neural
network (RNN) and cutting force are employed in [28] for predicting cutting tool wear.
The RNN technique is adopted for computing flank wear estimates based on sensor data
features, which are sequentially used for the comparison of sensor data representation
methods’ effectiveness. It is indicated that the precision and NN execution time is possible
to improve with fast wavelet transformation (FWT) of the acquired cutting forces. A
tool condition detection method is developed in [29], which can automatically detect the
condition and whether the tool is approaching the end of its useful life. The current drawn
to the feed motor was continuously measured via a current sensor, and the amount of
drawn current was compared to the values in correspondence to wear that appeared on the
cutting tool. The developed method was capable of estimating the wear level generated
on the tool and was also able to detect the rate of tool wear acceleration. He concluded
that the rate of current drawn to the feed motor is proportional to the acceleration in tool
wear generation. Kang [30] has identified the core influential factors affecting cutting
tool condition, cutting force, wear on the tool, tool deflection throughout the material
cutting process, and spindle vibrations. Several experiments were performed for the sake
of monitoring high-speed milling operations. He found that the parameters mentioned
above were sensitive to changing tool loads, tool cutting conditions, tool deflection, and
spindle vibrations. An acoustic emissivity (AE) sensor was attached near the cutting area
by means of a dynamometer, which acquired continuous cutting force signals. AE signals
were generated via a PAC wide-band type AE sensor during the end milling. Subsequently,
AE RMSmean, min extracted from the AE root mean square (RMS) signal to avoid burst
signals appearing during machining, for the sake of monitoring the cutting condition. It
was concluded that tool condition could be monitored through an AE RMS signal. A neural
network (NN)-based multi-sensor model is applied by Ghosh et al. in [31] for monitoring
the tool wear; the spindle current and vibrations, cutting forces, and sound pressure
level were obtained during the face-milling operation for predicting the values of mean
arithmetic flank tool wear. It was found that a measured force application for assessing the
cutting tool wear had the highest accuracy in comparison to current, vibration, and sound
pressure signals. In [32], the orthogonal and unidirectional force components were based
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on two apparent tool condition monitoring strategies. The obtained results demonstrated
that both strategies were characterized by similar TCM accuracy. For both TCM strategies,
the time delay NN was used. An effective system is defined for improving boring tool
accuracy [33] by integrating piezoelectric and laser position sensors in the cutting tool’s
rotary servo component. The defined system was capable of tracking tooltip displacement
during material cutting by validating its position with the help of sensors and resulting in
error reduction. The system was also capable of detecting tool tip breakage. It was found
that the position error could be reduced to smaller than 1 pm by combining high-resolution
sensors and Al-based self-monitoring algorithms. Kong [34] has investigated online tool
wear monitoring methods and techniques by focusing cutting force signals. In order to
select and fuse the sensitive features, he employed the kernel principal component analysis
(KPCA) technique and the correlation coefficient method. A tool wear prediction model
was built by v-support vector regression (v-SVR) and showed that his model has a good
prediction accuracy even if the sample has a small size. Although the online tool wear
monitoring has been investigated by him extensively, but it is necessary that the feature
extraction and selection should be done first for the sake of collecting data.

In [35], a piezo-electric multicomponent dynamometer cell (the combination of piezo-
electric and strain-gauge dynamometer) is integrated into a CNC turning machine for
determining cutting forces, (KISTLER: three-component force sensor Fx, Fy, and Fz, type:
9129A). The stiffness of a piezoelectric dynamometer is the same as that of a high-strength
steel part with the same geometry. The cell size is small enough (24 mm x 24 mm x 10 mm),
which makes it easy to be inserted into a cutting holder. The dynamometer was built from
an SDJCR 2525M-11 standard tool holder, which is able to hold inserts (DCGW 11T304),
as depicted in Figure 5. Cutting force is experienced at the tooltip. The dynamometer
was clamped in the appropriate directions (F., Fs, F) in order to perform sensitivity. A
theoretical value of 9.88 N of force should be determined for the weight of 1007 g.

Figure 5. Cutting forces measurement with dynamometer KISTLER type 9129A dynamometer during
turning operation [36].

During short-term load, an average 9.866 N F. force value is measured; on the other
hand, Frand F, were measured at 9.868 N and —9.89 N, respectively. It is evident from the
results, shown in Figure 6, that the measured forces value differs relatively little from the
theoretical value.
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Figure 6. Dynamometer calibration after determining its sensitivity: (a) The F, force component
values at the load of 1007 g; (b) The Ff force component values at the load of 1007 g; (c) The Fp force
component values at the load of 1007 g (Inderscience) [35].

An auto-associative neural network-based TCM approach is employed in [37] by Wang
and Cui. A Levenberg-Marquardt (LM) method is also employed for training purposes
to improve the applied neural network’s convergence reliability. An online tool for wear
monitoring is presented based on the developed model. Furthermore, the cutting force
signals were also recorded to control and monitor milling processes. In [38], a neuro-fuzzy
models-based hybrid method for tool condition monitoring was applied, aiming to obtain
synergy in FL and NN use. Four input values were obtained during material cutting,
including cutting force, time, vibration, and acoustic emission (AE). It was concluded that
the transductive neuro-fuzzy model application in turning tests provided better tool wear
accuracy compared to the effects obtained with inductive neuro-fuzzy models. In [39],
flank wear, cutting forces, and surface roughness were estimated during the micro milling,
applying fuzzy logic and regression analysis. The obtained results demonstrated that both
approaches are helpful for reliable estimation. On the other hand, the wear on the tool can
also be monitored using signals of cutting forces and the force Markov model. Hidden
Markov models (HMM) are applied for TCM in [40]. During the machining process, the
values of thrust force and drilling torque were recorded for the sake of estimating tool
wear. It was concluded that HMM is accurate and effective in comparing acquired signals,
signal shape, and amplitude; both of which are variable in tool wear function. In [41],
Huang proposed a method based on the probabilistic neural network (PNN) algorithm
for analyzing cutting tool conditions and the whole cutting process during the milling
operation. Cutting forces were monitored continuously as the process got started. It was
obtained that, with the slightest data for training PNN, the system was able to recognize
the broken tool successfully (with 100% success) just after a few trials. In [42], an artificial
neural network-based online system was developed that was able to predict the cutting
lathe tool life depending on cutting conditions. A database was created to store the collected
data during the whole turning test to correlate cutting tool conditions to measured signals.
In several turning tests, the system was observed to stop cutting operation as the tool
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reached the end of its life at a time when the difference between actual and expected
tool wear was 40 percent in the worst case. In [43], an intelligent adaptive neuro-fuzzy
inference system (ANFIS) was developed by Xu for tool condition monitoring during the
milling operation, and an intelligent learning approach that involved the particle swarm
optimization (PSO) algorithm was described. It was revealed that ANFIS, by learning
via vibration and communication particle swarm optimization (VCPSO) method, had
experienced higher tool wear prediction accuracy in comparison to distinct intelligent
approaches. Liu, in [44], employed a back-propagation neural network (BPNs) with ANFIS
to measure and classify tool wear in real time amid boring operations. The obtained results
showed that both the ANFIS and BPN methods are helpful in the successful monitoring of
cutting tool wear, with a flank wear estimation error of 2%.

The TCM approaches acoustic emission (AE) as an input signal, and artificial intelli-
gence methods mainly include ANN applications, fuzzy logic methods, and support vector
machines (SVM). An application of acoustic emission in turning operation is depicted in
Figure 7. For the sake of monitoring the capability of the AE sensor, the sensor is mounted
on the cutting tool via a tool monitoring system, which keeps the sensor near the cutting
area. This configuration brings the advantages of possible higher sensitivity and also the
natural elimination of noise factors because of its closeness.

Workpiece

""" - | Tool condition

<«—— Cutting tool

AE sensor

\E Amplifier
B d Y
and-pass .
filter Microscope
Oscilloscope

| !

[ Computer ]

Figure 7. Application of acoustic emission (AE) in turning operation.

In [45], an online process condition monitoring (PCM) method was proposed by Zhang
for the turning operation. A type 2 fuzzy basis function network and acoustic emission were
applied to predict tool wear, and the vibration sensors were clamped on the tool holder.
Basing their conclusions on the obtained results, the authors determined that the proposed
approach allows tool wear prediction with a small error, below 7%. In [46], researchers
clamped the acoustic sensor to the workpiece and adopted NN with a self-organization
feature map (SOM) to conduct TCM for the micro-milling operation. The obtained acoustic
signal is represented in the frequency domain through the FFT. The SOM was applied for
feature extraction processing. It was concluded that a reliable tool wear classification could
be acquired by properly selecting the features closely related to cutting tool wear, subjected
to the spectral features frequency resolution.

Figure 8 depicts a typical flank wear time curve involving the initial stage of tool wear
and the unhealthy tool stage. Ta represents the time of the curve change, i.e., from concave
to convex. The tool lifetime is divided into various health stages and health indicator
HI after extraction of the time curve of flank wear cutting, which is considered the tool
degradation trend [47]. The cutting tool life criterion had been predicted by applying
three AE sensors clamped to the workpiece and the feed-forward back-propagation neural
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network (BPNN) in [48]. It was observed that AE sensors’ RMS and arithmetic average
values, in combination with BPNN, could be successfully applied for tool-state reliable
estimation. Ren et al. in [49] compared first and second-order interval type —2 FL (fuzzy
logic) and the efficiency of higher-order FL systems considering acoustic emissions signals.
Based on experimental results, it was concluded that higher-order FL systems were more
advantageous over lower-order FL systems, i.e., first- and second-order FL systems. The
estimation of AE uncertainty in combination with the IT2 FL system could be pretty helpful
in decision-making while investigating cutting tool wear conditions. Zhang conducted
a series of TCM tests during milling operation applying AE signals and sound signals
in [50] considering support vector machine (SVM). SVRs optimization was conducted via
multiple populations of the genetic algorithm (GA). Based on conducted experiments, it
was identified that the proposed method was perhaps successfully applied for effective tool
wear estimation level and tool condition classification. Higher accuracy can be achieved
with the simultaneous application of both sensors. The experimental data obtained from
the force sensor by observing the wear progression of the tool flank were used for the
sake of training the convolutional neural network (CNN) in [51], as the cutting forces
could be related to cutting tool flank wear via a network. The CNN network can be
used for predicting tool wear. While conducting the milling experiments on stainless
steel, the extreme learning machines (ELM) method was adopted to speed up the learning
process and improve accuracy. In [52], Laddada evaluated cutting tool health conditions.
Based on complex continuous wavelet transforms (CCWT) and an improved extreme
learning machine (ILEM), he also estimated the remaining useful life (RUL). Firstly, the
gathered AE signals were decomposed by means of CCWT, and the features were then fed
to the learning algorithms in IELM to establish a suitable data-driven prognostic model
describing cutting tool deterioration behavior for its current health condition evaluation
and RUL prediction. Various cutting tests were conducted via a CNC milling machine
to gather data for tool wear evolution model training. There are also models that have
been developed based on unsupervised learning. Kumar [53] adopted an unsupervised
learning approach for unlabeled data clustering; tool wear propagated gradually during
cutting operation until its failure occurred. The HMM approach was adopted for the sake of
performing modal-based clustering. It was considered that at the beginning of the cutting
process, the tool was healthy and slowly, and gradually it proceeded to its failure. By
using the polynomial regression model, a prognostic model was developed based on the
diagnostic results. Table 1 presents some commonly utilized tool condition monitoring
(TCM) methods and their contributions to intelligent machining. Jang [54] developed a
novel device for estimating tool wear faster and more accurately through infrared (IR)-based
image measurement equipment mounted on the machine tool and deep learning. For tool
wear estimation, a predictive model was proposed using a multi-view convolutional neural
network (CNN) based on reflected IR images using the multi-view CNN algorithm; it was
concluded that machining efficiency can be improved by reducing tool wear measurement
downtime and increasing utilization of tool life. Cheng [55] proposed a novel framework
for prediction and monitoring tool wear based on attention mechanisms, normalization,
and deep learning algorithms. The feature vectors were extracted from the obtained raw
cutting signals and transformed into uniform ranges for improving tool wear monitoring.
Multiple feature patterns were learned by means of a developed parallel CNN structure
with different layers for tool condition monitoring. The short- and long-term tool wear
predictions were obtained via a designed dense residual neural network (ResNetD). Based
on the experimental results, it was found that the prediction accuracy was improved,
and the training time was significantly reduced. Huang [56] proposed an indirect multi-
information fusion-based tool wear measurement method by employing machine learning
technologies in order to increase multi-sensor signal utilization efficiency and improve
tool wear measurement accuracy. Huang [57] investigated the effect of the cutting path
on the vibration signals and the acoustic emission (AE) during micro-milling operation. It
was concluded that the time domain signals generated from straight line cutting, square
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path cornering, and circular pathing are all different, and the effect of cutting path on
AE is lower than vibration signals. Figure 9 depicts a block diagram of the online TCM
system, explaining how the data are extracted from the signals obtained from the machine
tools by means of sensors, processed, and fed to the data-driven prognostic model to train
for the sake of monitoring tool condition and useful life prediction. Figure 9 depicts a
block diagram of the online TCM system, explaining how the data are extracted from the
signals obtained from the machine tools by means of sensors, processed, and fed to the
data-driven prognostic model to train for the sake of monitoring tool condition and useful
life prediction.
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Figure 8. The time curve of flank wear depicting the initial healthy tool wear stage and the unhealthy
tool stage.

Table 1. Contributions of emerging technologies in tool condition monitoring for intelligent machining.

Reference Publication Date Method Machining Process Motive
. Simple recurrent neural . Prediction of tool wear
Kamarthi et al. [26] 1997 network (SRNN) Turning during the turning process
AE measurement, Verification of tool
Kang et al. [30] 2001 cutting forces High speed milling condition via acoustic
measurement emission sensors
Al-based Reduction in position error
Min et al. [33] 2002 self-monitoring Boring via piezoelectric and laser
algorithms position sensors
Tool wear diagnosis via
Neural network spindle vibrations, spindle
Ghosh et al., [31] 2007 (NN)-based Milling current, cutting forces,
multi-sensor model sound pressure
measurements
Back-propagation
Liu et al. [44] 2010 neural network (BPNs) Boring Zﬁgl ‘i\;ea?fmae?sirement
and ANFIS classiieatio
Tool wear diagnosis
Gajate et al. [38] 2012 Neuro-fuzzy (FL, NNs) Turning through cutting forces,
vibrations, acoustic
emission measurements
First-order and Tool wear condition
Ren et al. [49] 2012 second-order type-2 Turning L
. monitoring
fuzzy logic system
Wang et. al. [37] 2013 Levenberg-Marquardt Milling Online tool wear

(LM)

monitoring
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Table 1. Cont.

Reference

Publication Date

Method

Machining Process

Motive

Self-organization Micro Tool condition monitoring
Yenetal. [46] 2013 feature map (SOM) Milling and tool wear classification
. Tool wear diagnosis via
Hidden Markov s s
Ertunc et al. [40] 2014 models (HMM) Drilling thrust force and drilling
torque measurements
Back-propagation End Cutting tool state
Olufayo et al. [48] 2015 neural network (BPNs) Milling estimation
Probabilistic neural
Huang et al. [41] 2015 network (PNN) End Milling Tool condition monitoring
algorithm
Support vector Tool wear estimation level
Zhang et al. [50] 2015 machine (SVM), genetic Milling and tool condition
algorithm (GA) classification
Regression analysis Tool wear, cutting force,
Kuram et al. [39] 2016 and fuzzy logics, force Micro Milling surface roughness
Markov model prediction
Artificial neural . Tool life prediction based
Karam et al. [4] 2016 network (ANN) Turning on cutting conditions
Convolutional neural
network (CNN),
A. Gouarir et al. [51] 2018 extreme learning Milling Tool wear prediction
machines (ELM)
method
Continuous wavelet
transform (CCWT), .\
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Figure 9. Online tool condition monitoring system.

3.2. Chatter Vibration Detection and Management

Chatter or vibration is considered the most frequently occurring problem in today’s
manufacturing industry which induces during machining in various machine tools such
as milling, turning, grinding and boring. These vibrations decrease the machining pro-
cess efficiency, resulting in poor quality of finished products. Moreover, it will not be
wrong to say that the life of a machine tool depends on the degree of induced chatter and
acoustic noise. Consequently, it is required to predict and analyze chatter stability prior
to machining operations for the sake of assessing whether the process will generate the
chatter. Machine tool chatter can be divided into three different classes, i.e., (1) transient
machine tool vibrations induced by the other machines or cutting tool engagement, (2) the
forced vibrations induced in the machine tools associated with the machine tool’s periodic
forces, and (3) the self-excited chatter, which can be demonstrated by several mechanisms
including the regenerative effect (the chip thickness variations while cutting operation
brings up self-excited chatter vibration, which is termed as regenerative chatter), mode
coupling effect, random excitation of machine tool’s natural frequencies which is caused in
a result of plastic deformation of material (workpiece), and the existing friction between
cutting tool and the material to cut. Self-excited machine tool chatter was generated during
the machining operation. At low cutting speeds, the nature of chatter could be a non-linear
demanding process damping inclusion in the models. In Ref. [58], M. Lamraoui devel-
oped a neural network-based data-driven Al model using data as input from piezoelectric
accelerometer signal analysis for the sake of detecting slot milling stability. Multi-band fil-
tering resonance techniques were adopted to process the obtained signals from the sensors.
Afterward, envelope treatment was applied to the signals in order to increase sensitivity
and the signal-to-noise ratio. With the help of the radial basis function and the multi-layer
perceptron-based neural network, the resulting features were individually classified. In [59],
Sen utilized a back-propagation neural network (BPNN) for conducting a comprehensive
influences analysis of random factors during milling operation and proposed a method
for analyzing the reliability of regenerative chatter stability during the milling process. He
established a regenerative milling chatter dynamic model, and a stability lobe diagram was
obtained via the full discretization method (FDM). The approximation of the functional
relationship of limit-axial cutting depth is accomplished using a neural network; later, the
Monto Carlo simulation method (MCSM) and the moment method (MM) were adopted
to compute the reliability. The obtained results were thought-out to be very useful in
improving the machining efficiency and accuracy of high-speed milling processes.

Figure 10 depicts a dynamic model describing the milling processes. The chatter
analysis was made using this model along with the structure dynamics frequency response
function and force modal mechanistic coefficients with teeth number, cut radial depth, and
diameter, where ®j is representing the jth tooth position, (2 is representing spindle speed
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in (r/min), ae is representing the depth of radial cutting, and Fnj and Ftj are representing
the normal and tangential cutting force components for the jth tooth, respectively. The
governing equation for the above-mentioned dynamic milling system in Figure 10 can be
given as [60],

M, (1) + M (1) + Ky (£) = Ke(D)[g(t) —q(t = T)] M

Workpiece

Figure 10. The dynamic model of the milling process.

In the above-mentioned equation, M, C, and K represent modal mass, damping
matrix, and stiffness matrix, respectively; g(f) is cutter modal vector, and T is time delay,
ie, T = 60 (NQ), where N is representing cutting, K.(t) is denoting cutting coefficient
matrix, which varies periodically concerning time, i.e., K. () = K. (¢ + T). Xiaoli et al. [61]
formulated a dynamic micromilling model and closed loop model system using two
piezoelectric actuators (PZTAs) and an adaptive controller (using Lyapunov—Krasovskii
functionals and NN control technique) for suppressing 2-DOF regenerative micro milling
chatter. PZTAs were applied as active control elements for providing chatter suppression,
a force compensation, and the uncertainties of cutting dynamics were approximated via
neural networks. The simulation results showed that unstable cutting tool vibrations
could be restrained in less than 4 ms using a designed controller and regenerative chatter
could refrain before it starts deteriorating. Davim et al. [62] developed an ANN model
for the prediction of surface roughness during turning operation, considering feed rate,
cutting speed, and cut depth, and it was concluded that feed rate and cutting speed play
a significant role in improving product surface finishing. It was also revealed that the
artificial neural network base model proved quite tending in surface roughness prediction
with absolute accuracy. The data set for ANN training and testing were acquired using a
stability algorithm [63], shown in Figure 10. Data sets were generated considering random
values for pairs (€}, blim) ranging from 1000 rpm to 4000 rpm and Omm to 2.5 mm. Cut was
labeled unstable (chatter) or stable for values set by using the stability limit, and 201 points
were generated in total, which can be seen in Figure 11. In order to train the ANN model,
data were rescaled via the min-max method.

Figure 12 depicts the actual and predicted decision boundaries. As can be seen in the
given figure, a decision boundary between stable and chatter regions is reasonably built
via the ANN model. On the contrary, the predicted boundary is not exhibiting accuracy for
the points near the lobe peaks and a few troughs. It could be expected that predictions may
not be accurate at the time when the data to be input is in the vicinity of these peaks and
troughs. However, prediction accuracy could be expected to be high when data are away
from them, which was confirmed by evaluating the ANN model through a set of tests.
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Figure 11. Data used: (a) to test and (b) to train (top) the NN model [63].
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Figure 12. Decision boundary separating stable and chatter regions: (a) actual boundary; (b) predicted
decision boundary [64].

A vector was developed for chatter detection based on wavelet transforms standard
deviation and the wavelet packet energy of the frequency band in conjunction with a
piezoelectric accelerometer in boring operation [65]. A support vector machine (SVM) with
a radial basis function kernel was produced from a vector and classified via three categories,
i.e, stable, transition, and chatter. A total of 95% of state-recognition accuracy was attained
after training it with experimental data. A convolutional neural network (CNN) was aided
with scalogram inputs for the identification of stable, transitional, and chatter states with
around 99.1% accuracy [66]. Data obtained via force sensors and piezoelectric vibrations,
AE sensors (machine conditions data), and laser displacement sensors (surface conditions
data) were used for training support vector regression (SVR) model in grinding operation.
The acquired data brought up alarms for surface roughness with 85% accuracy [67]. The
obtained dynamometer signals, while machining end milling thin-walled parts, were
unlabeled first and then compressed by means of an auto-encoding process. Afterward,
distance and density matrices-based hybrid clustering was imposed on compressed signals
to detect chatter with 95% accuracy [68]. During the three-axis milling operation, historical
displacement information was collected from laser sensors used to train the Bayesian
network. Afterward, for the mitigation of vibrations, a predictive controller was developed.
On the other hand, work-piece deformation was also taken into account via setting cut
depth [69]. Figure 13 depicts an approach for a 5-axis milling sculptured surface machining
tool path modification to generate a smart tool path. Simulation has been conducted for
the cutting process along with the tool path to identify cutting forces variation. Afterwards,
the potential improvements have been identified by the simulation data analysis.
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Figure 13. The decision approach tool path modification avoiding chatter [70].

In [71], the supervised machine learning is combined with Topological Data Analysis
(TDA) for the sake of obtaining a processor descriptor which could detect chatter vibration.
The approach has been tested by using deterministic and stochastic turning models. Adopt-
ing this approach, 97% successful classification rate obtained on the deterministic model
labeled by the stability diagram by using spectral element method. The three machine
learning methods for predicting operating parameters during high-speed turning were
compared in [72] by Jurkovic, including cutting force Fc, surface roughness Ra, and cutting
tool life T. The comparison is made by adopting polynomial (quadratic) regression, ANN,
and SVR methods. Polynomial regression exhibited well performance in predicting Fc and
Ra, although ANN worked well in predicting T. [73] presented a hybrid model based on a
combination of machine learning and the model based on self-excited vibration theory for
detecting chatter vibrations during machining. A wide range of experiments have been
conducted to train artificial convolutional neural network (CNN). Additionally, the model
was being trained continuously while machining with the help of a physics-based model.
It was shown that physics and ANN parallel execution improve the chatter detection
accuracy up to 94.26% in machining state detection; on the other hand, it showed 98.90%
accuracy in detecting chatter. Min Wan et al. [74] developed a method for suppressing
chatter vibrations during the milling operation of a weakly rigid work piece via a moving
device. A moving fixture was designed to provide instantaneous and continuous stiffness
and damping to the immediate contact position between the workpiece and moving fixture.
It has been shown that the workpiece chatter vibrations will be suppressed as the device
moves without needing any additional hardware. In [75], the chatter suppression system
has been proposed where two spindle speed variation (SSV) parameters were adjusted
simultaneously by means of optimal fractional order proportional integral differential
(FOPID) controller for keeping the chatter indicator near the targeted value. Furthermore,
the JADE algorithm was adopted for FOPID controller tuning. Based on conducted machin-
ing test results, the effectiveness and flexibility of the proposed method towards chatter
vibrations suppression were validated. Table 2 presents some utilized methods and their
contributions for the detection of chatter vibrations and control in intelligent machining.
Ding [76] presented a model-free adaptive sliding mode control (MFA-SMC) algorithm to
adjust the amplitude and frequency of spindle speed variation (SSV) in order to suppress
chatter in turning operation. The model-free adaptive control (MFAC) was integrated with
global sliding mode control (GSMC). Based on experimental results, it was found that
chatter vibration can be mitigated effectively under different cutting conditions employing
the proposed method. A multi-feature recognition system for chatter vibrations detection
proposed by Zheng in [77] is based on the fusion technology of wavelet packet transform
(WPT) and particle swarm optimization support vector machine (PSO-SVM). The k-fold
cross-validation (k-CV) algorithms, particle swarm optimization (PSO), and genetic algo-
rithm (GA) were employed to obtain optimal radial-basis function parameter ¢ and penalty
parameter C of the SVM prediction model. It was indicated that the proposed control
strategy improved chatter recognition accuracy significantly. Self-organizing maps (SOM)
and multi-layer perceptron-back-propagation neural network (MLP-BPNN)-based hybrid
approach was proposed in [78] via sound signals for the sake of monitoring self-induced
tool chatter and metal removal rate (MRR) during the milling operation. SOM technique
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was applied for data mapping and automatic feature selection, and it was observed that the
proposed methodology can be a good fit for automatic feature selection, machining quality
prediction, and MMR with close to 98% accuracy. Sun [79] addressed the beat effect, an
interference pattern that arises due to a slight difference in chatter frequencies that could
lead to serious degradation of the effectiveness of the existing chatter detection methods,
and proposed a novel deep neural network incorporating an inception module, residual
networks (ILR-DNN), and long short-term memory (LSTM) for online chatter vibration
detections considering the beat effect. The proposed ILR-DNN method exhibited much
better performance in comparison with other existing methods and achieved 97.29% chatter
detection accuracy.

Table 2. Contributions of emerging technologies in chatter vibrations control for intelligent machining.

Reference Publication Method Machining

Date Process Motive

Artificial neural network Surface roughness
Davim et al. [62] 2008 Turning prediction, surface

(ANN) finishing

Chatter vibrations
prediction and
identification, feature
extraction

Piezoelectric accelerometer,
Yao et al. [65] 2010 support vector machine Boring
(SVM)

Support vector machine

(SVM) theory, interpolation Online precision optics

Zhang et al. [67] 2015 factor support vector Grinding grmc.hng. process .
. monitoring, surface quality
regression
Data-driven Al model,
M. Lamraoui et al. multilayer 1 Chatter vibration detection,
[58] 2015 perceptron-based neural Milling machining efficiency
network (NN)
Back-propagation neural
network (BPNN), full
discretization method Stability and reliability of
(FDM), neural network s regenerative chatter,
Sen Huetal. [59] 2016 (NN), Monto Carlo Milling machining efficiency and
simulation method accuracy
(MCSM), moment method
(MM)
Laser sensors, spare Machining process
Yuan et al. [69] 2017 Bayesian learning-based Milling identification, surface
network quality improvement
Piezoelectric actuators
(PZTAs), .
Xiao liu et al. [61] 2018 Lyapunov—Krasovskii Micro milling i{sge?:;;gze chatter
functionals, and NN PP
control technique
Harish et al. [63] 2019 ANN. training, stability Turning Chat‘ter' vibration
algorithm prediction
Deep convolutional neural
MQ Tran et al. [66] 2020 network (CNN), Milling Chatter vibration

continuous wavelet
transform (CWT)

prediction, milling stability
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Reference

Publication

Method Machining

Date Process Motive

Longyang et al. [75]

Optimal fractional order
proportional integral
differential (FOPID)
2020 controller, JADE algorithm, Turning
spindle speed variation
(SSV) parameters
adjustment

Active chatter suppression,
flexibility achievement,
stability improvement

M. Hossein et al. [73]

Machine learning,
2021 self-excitation vibration Milling
theory, CNN

Chatter detection accuracy
improvement

Ding et al. [76]

Model-free adaptive

sliding mode control

(MFA-SMC) algorithm, Regenerative chatter
2022 spindle speed variation Turning suppression, cutting

(SSV) technique, global process

sliding mode control

(GSMC)

Zheng et al. [77]

Wavelet packet transform
(WPT), particle swarm
2022 optimization support
vector machine (PSO-SVM),
genetic algorithm (GA)

End milling Chatter vibration detection

Mishra et al. [78]

Self-organizing Paps
(SOM), multi-layer
2023 perceptron—back- Milling
propagation neural
network (MLP-BPNN)

Automatic feature
selection, machining
quality prediction, metal
removal rate

Sun et al. [79]

Neural network with

inception module, long Online chatter detection,

2023 short-term memory Turning chatter vibration detection,
(LSTM), residual networks beat effect
(ILR-DNN)

3.3. Machining Parameters Optimization

In recent intelligent machining operations, the proper selection of machining parame-
ters plays a significant role in maximizing production efficiency and minimizing machining
time, surface roughness, production cost, and energy consumption of the workpiece to be
processed. Moreover, the cutting tool life and its generated wear can also be minimized
with reasonable parameter selection. Therefore, it is necessary to calculate optimized
machining parameters for the sake of increasing the part production process. In order to
calculate the suitable optimized parameter for the machining process, there are several
optimization techniques have been adopted and are being adopted, including the Taguchi
method, artificial intelligence (Al), fuzzy logic (FL) algorithms, artificial neural networks
(ANN), genetic algorithms (GA), particle swarm optimization (PSO), colony optimization
and harmony search algorithm.

A multi-objective optimization approach had been proposed in [80] for sculptured
parts machining, aiming to minimize machining time, consumed energy, and surface rough-
ness, and a mathematical model based on spindle speed, path spacing, and depth of cut,
was also formulated. For the cutting parameters optimization, a back-propagation neural
network (BPNN) was developed; a comparison was made between the traditional and
proposed approach, and it was found that the proposed method exhibited better perfor-
mance and results against the traditional method when adopting the requirements while
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machining sculptured parts. An artificial intelligent technique (ANN) has been adopted
for developing predictive models and parameter optimization. Since accurate predictive
model development is crucial for optimizing machining parameters, a dynamic-based
model via the friction model has been created. The cutting speed, cut depth, feed per
tooth, and flank wear were inputs as machining parameters to the proposed model, and
the surface roughness was predicted by its output. Afterward, the machining parameters
were optimized with a predictive model via a genetic algorithm (GA) to achieve minimum
surface roughness [81]. For the sake of improving energy efficiency and productivity (with
high surface quality), milling process optimization and planning have been made [82].
The researchers presented a two-stage approach, i.e., 1) ANNs-based machining parame-
ters optimization, 2) pattern searched, genetic algorithm (GA), and simulated annealing
algorithm-based process sequence, set up, and schedule optimization. ANNs had also been
set up for the roller burnishing process to map nonlinear relationships between burnishing
force, feed rate, the radius of roller contour, surface roughness, and strain hardening. On
the other hand, a genetic algorithm was adopted by the trained model for finding the fastest
feed rate even while maintaining the desired quality of the surface [83].

An investigation was made regarding feed rate impact, tool approach angle, tempera-
tures, cutting speed on surface roughness, and the cutting forces while machining titanium
grade 2 alloy [84], and parameters of statistical impact were examined utilizing ANOVA
(analysis of variance). While investigating, it was found that cutting speed had the greatest
impact, followed by feed rate and cooling conditions. Bacteria foraging optimization (BFO)
and particle swarm optimization (PSO) algorithms were adopted for machining parameters
optimization. A comparison between optimization methods and the desirability function
method had been made, and the results obtained via the optimization method exhibited
superiority. An experimental analysis has been made in order to investigate machining
parameters influence on the chatter vibrations and surface roughness while performing
cylindrical grinding of stainless steel workpiece [85]. The proposed optimization technique
(RSM, MOGA) has been found to be useful to analyze and optimize manufacturing process,
where two or more input parameters influence more than one important output responses.

Figure 14 depicts data-driven predictive modeling involving online prediction and
offline model training. The researchers proposed a bat algorithm (BA) utilizing PSO and
firefly algorithms (FA) for minimizing surface roughness during titanium alloy machin-
ing [86]. In order to minimize the generated surface roughness, the feed rate, cutting speed,
cut depth, and vibrations, the tool flank wear was optimized. The results acquired from
all three algorithms were then compared. BA had been found to present the most optimal
results. In [87], the NSGA-II method with RSM was employed for minimizing power
consumption and cutting tool wear and maximizing the surface quality during machining
Ti-6Al-4V alloy. The machining parameters that went under optimization are feed rate,
cutting speed, and nano-additives percentage, and they were optimized via the NSGA-II
technique. In [88], an integrated optimization approach was presented, considering the
cutting tool and parameters as machining parameters to be optimized during the face-
milling process for minimizing energy footprint and production time. The cuckoo search
optimization (CSO) algorithm was employed to solve the proposed optimization model.
It was suggested that higher energy savings are possible to achieve through cutting tool
integration and cutting parameters optimization. An ANN-based controller is used to
control cutting parameters [89]. Desired surface roughness was achieved with the help of
an Al controller via its integration with a predictive model of surface roughness from MLP
(multi-layer perception). Rule-based FL controllers accompanying the proportional-integral
(PI) sub-controller were also employed for the sake of improving part surface roughness
in the closed-loop control algorithm. A multiobjective optimization investigation was
carried out by the researchers in [90] during the machining AISI-1064 steel part, aiming to
maximize MRR and minimize machining cost at the time of the multipass roughing process
and single-pass machining operation. While performing the multipass roughing operation,
feed rate, cut depth, and cutting speed were optimized; the same parameters were also
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optimized while performing the single-pass finishing operation, adding tool nose radius.
The obtained results were then compared among the three methods, i.e., MOGA, GA, and
iterative search method, and the iterative search method was found to be providing the
most optimal results.
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Figure 14. A data-driven Ra prediction approach: (a) offline; (b) online.

Tool path optimization has to be considered an important factor for productivity and
machining accuracy. The researchers proposed an artificial immune system (AIS) focus-
ing on the problem of tool path generation for non-uniform rational B-spline (NURBS)
surfaces. Due to having several points and NURBS-equation variables, the possible local
optima were avoided, and the desired solution, in iteration, was obtained using the AIS
algorithm. AIS approach was applied on both parametric directions, i.e., u and v, for the
sake of computing tool path intervals during ball-end milling [91]. A machining parameter
optimizer, a physical process model, and a genetic simulator were proposed for end milling
and were integrated via ACIS (commercial solid modeler) and artificial neural network
(ANN) technique. ACIS-based geometric models are able to simulate milling operations in
order to extract in-cut critical geometric information between the tool and workpiece [92].
For machining parameters optimization and physical model development, a radial basis
function (RBF) NN was equipped to achieve minimum cost, maximum production, and
maximum surface finishing. Afterward, the rescheduling of the NC code was made using
optimized parameters [93]. The researchers adopted the NN algorithm for the prediction of
the milling path strategy or milling process sequence. Using input data, NN was trained by
these models for the sake of predicting the milling path strategy. An ant colony optimiza-
tion (ACO) algorithm was employed in TSP (traveling salesman problem) for hole-making
operation optimization to reduce machining time and improve manufacturing productiv-
ity. An experimental investigation has been made in [94] to study the effect of various
machining parameters including cutting depth, size and density of grit on metal removal
rate, table feed and surface roughness. A deep NN algorithm was developed for creating
smooth, discontinuous cutting tool paths to achieve higher efficiency, which provided
outputs to servo commands; the algorithm was trained via reinforcement learning [95].
The influence of machining parameters optimization was investigated for Inconel 718
super-alloy during the end-milling process by the researchers with multi-response criteria,
based on Taguchi orthogonal array via grey relational analysis. The feed rate, cutting
speed, and cutting depth were optimized considering multiple performance characteristics,
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specifically surface roughness, and material removal rate. The gray relational analysis
was found to be an effective tool for parameter optimization while machining Inconel 718
alloy during the end-milling operation. The optimal cutting parameters were found to
be 75 m/min for cutting velocity, 0.06 mm/tooth for feed rate, and 0.4 mm for cut depth.
Moreover, a 64.8% increase was observed in material removal rate and simultaneously a
9.52% surface roughness decrement [96]. Taguchi’s signal-to-noise ratio technique was
employed for optimizing tool wear, cutting forces, and surface roughness measured during
the micro-milling process [97]. Additionally, it was concluded that tool wear, cutting forces,
and surface roughness could be predicted by employing the established regression model
during the micro-milling of Ti6A14V alloy and Inconel 718 materials. Machining parame-
ters were optimized for enhancing the efficiency of the part production process, including
feed rate, cutting speed, and depth of cut, implementing a scatter search algorithm [98].
For the sake of increasing the accuracy and efficiency of the production process, process
parameters optimization was performed using the surface response technique combined
with a fuzzy inference framework [99]. An application of a fuzzy-embedded harmony
search algorithm was presented for the sake of obtaining optimized machining parame-
ters, including drill speed, drill diameter, and feed while drilling CFRP composites [100].
A digital twin-driven process parameter adaptive optimization and surface roughness
prediction method is proposed in [101]. A digital twin is built incorporating machining
elements for monitoring the real-time machining process and served as a source of data
for optimizing process parameters; an improved particle swarm optimization-generalized
regression neural networks (IPSO-GRNN) prediction model fabricated in order to realize
data-based tool wear and surface roughness prediction, and concluded that organic combi-
nation of real-time monitoring, optimization decision-making, and accurate prediction in
machining process solves the inconsistency problem between the quality and machining
process efficiency. An investigation has been conducted in [102] aiming at the influence of
machining parameters optimization, including spindle speed, feed rate, and cutting depth,
on machined component surface roughness, and the optimized machining parameters have
been found utilizing the Taguchi technique. It is concluded that feed rate influence on
turned component surface roughness is notably high in comparison with other machining
parameters. The optimum machining parameters were estimated for minimizing both the
power consumption and surface roughness during turning operation in [103] and it was
concluded that feed rate is responsible for the increase in surface roughness, sound level,
and the values of power consumption, and feed rate is the most effective parameter during
machine operation affecting power consumption and surface roughness. An experimental
investigation has been made for obtaining the lowest possible roughness on the workpiece
surface during high-speed machining (HSM) cooperatively the highest feasible MRR [104].
The machining variables that have been investigated in experimental research include
cutting speed (mm/min), feed rate (mm/min), and depth of cut (um), and it has been
illustrated that lowering the surface roughness by only 0.1 pm will increase the MRR
(50.83%). Table 3 presents the methods utilized for machining parameters optimization in
intelligent machining.

Table 3. Contributions of emerging technologies in machining parameters optimization for intelligent
machining.

Reference

Publication Date Method Machining Process Motive

J. Balic et al. [93]

Achieve minimum cost,
. . . maximal production,
2002 g{a];j;?l basic function Milling surface finishing via
machining parameters
optimization
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Machining Process
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E. Ulker et al. [91] 2009 Artificial immune system
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(AIS) machining productivity
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H. El-Mounayri Neural networ.k (NN), - Milling path .stFategzy,
etal. [92] 2010 ant colony optimization End milling reduce machining time,
’ (ACO) improve productivity
. Reduce surface roughness,
Lohithaksha M. 2013 Taguchi method End milling improve material removal

Maiyar et al. [96]

rate

Response surface
methodology (RSM),
Peng et al. [99] 2014 fuzzy inference system
(FIS), process parameter
optimization, GA

Jet machining

Increase in accuracy and
production process
efficiency

Minimize machining time,

Li et al. [80] 2015 Back-propagation neural CNC engraving and consumed energy and the
' network (BPNN) milling surface roughness, cutting
parameters optimization
Artificial neural network Mafi}.ur}mg pa;ameters
G Kant et al. [81] 2015 (ANN), genetic algorithm Milling predictionand
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Reference Publication Date Method Machining Process Motive
Sohinoglu et al. Full f?Ctonal . . Surface roughness and
[103] 2020 experimental design Turning ower consumption

method p P
Digital twin, improved
particle swarm Process parameter

Liu et al. [101] 2022 optimization- Plain milling optimization, surface
generalized regression roughness

neural networks

Machining parameters
optimization, surface

Kittali et al. [102] 2022 Taguchi method Turning .
roughness, material
removal rate (MRR)

Response surface Tool wear morphology,

Tanvir et al. [104] 2023 methodology (RSM) and Milling surface roughness, material

genetic algorithm (GA) removal rate

4. Future Directions

Recently, self-aware intelligent machine tools have been in high demand due to their
ability to perceive the state of their own and their surroundings, and also because they are
capable of making decisions concerning ongoing machining processes. Intelligent machine
tools should support most of the advanced industrial technologies besides data science for
artificial intelligence, including high-speed communication, low-cost advanced sensors,
hyper-connected cloud services, and edge computing techniques. Real-time Al-based
extensive data volume processing improves machining productivity and efficiency. The
integration of 5G and 6G technology into machine tools will significantly increase data
communication speed in the near future. By implementing these advanced technologies, the
machine tools will be able to get rid of intermittent monitoring and deviation detection for
a few targets, allowing them to analyze the machining process and parts production in real
time. The improved high-speed communication will be capable of increasing the amount
of data transfer between machine tools and sensors, sensors, and computers, computers
and clouds, and clouds and machine tools again. The big data generated in real time will
be stored and then processed via a hyper-connected cloud platform.

Advanced sensors also play a vital role in smart machining. Because they are expen-
sive, their use is limited in manufacturing. Moreover, the current high-performance sensors
are very sensitive during harsh machining operations, which is why they sometimes pro-
vide unreliable data and also false alarms. In recent years, low-cost MEMS and in situ
industrial IoT-based sensors have been developed regularly. By implementing multisensors
in machine tools at a lower cost, MT will be able to provide large amounts of machining
data from the sensors and will also frame a robust system for smart machining operations
via bilateral complementarity among various sensor signals in order to increase accuracy
and the frequency bandwidths.

Furthermore, there will be a possibility for making comprehensive real-time decisions
via linking vast data supplies by means of the above-mentioned advanced low-cost sensors
and high-speed communication; this way, we could achieve automated optimal machining
control [16]. Recently, extended reality XR has attracted great attention, including virtual
reality VR and augmented reality AR, in numerous fields. When we talk about self-learning
intelligent machine tools, we cannot ignore another important factor during any machining
process, i.e., guaranteeing safety, especially during human involvement.

The safety issue of machine tools is notably considered serious when adopting a
reinforcement learning approach, which encourages the machine or tool to improve its
performance and decision-making quality; the machine may encounter unsafe situations. In
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order to deal with the issue, several safety learning techniques have been suggested recently,
employing constrained optimization [105], reachability [106], and Lyapunov stability [107].
It is essential to develop machining domain knowledge-based machining processes-specific
safe learning algorithms in the near future.

Security is also considered a critical issue during smart machining processes. As
machine tools are connected to communication networks, they are constantly exposed to
external malicious attacks; the whole machining process can be compromised by hackers
injecting false sensor data. In recent years, it has been shown that most machine learning
methods are vulnerable to input data negligible modification, like deep learning, which
attackers may conduct [108,109]. For the sake of addressing this issue, proper countermea-
sures have to be taken vigilantly in smart manufacturing systems, i.e., the need to conduct
advanced research on the cyber-physical systems community in the near future [110].
Secure machine learning approaches at the algorithmic level are desirable to essentially
alleviate the manipulated impact of input data during intelligent machining processes [111].

5. Conclusions

This comprehensive review provides in-depth knowledge regarding recent develop-
ments, significant contributions, and future perspectives in intelligent machining. This
work has addressed the recent global machine tool industry statistics, including global
production regarding production value, the countries that are leading in machine tool
production, and the market share of machine tool producers via a pie chart. It has been
found that the demand for machine tools is increasing to a greater extent, and China has
emerged as the leading global machine tool industry concerning demand and production.
Furthermore, a wide range of emerging technologies and their contributions towards de-
veloping intelligent machine tools, including artificial intelligence and machine learning
in tool condition monitoring (TCM), chatter vibration detection and suppression, and
machining parameter optimization, are covered in detail. Future directions and research
gaps are also provided. The motive behind conducting this broad review is to provide
readers with in-depth knowledge about the global machine tool industry and significant
contributions in the field of intelligent machining.
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Nomenclature

IMT International machine tool
HSM High speed machining

TCM Tool condition monitoring
PCM Process condition monitoring
MRR Material removal rate

Al Artificial intelligence

IoT Internet of Thing

VNC Virtual numerical controller
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FWT Fast wavelet transformation

FFT Fast Fourier transform

FOPID Fractional order proportional integral differential
CCWT Complex continuous wavelet transform

ANN Artificial neural network

AIS Artificial immune system

NN Neural network

FL Fuzzy logic

FIS Fuzzy inference system

LM Levenberg-Marquardt

HMM Hidden Markov model

PNN Probabilistic neural network
CNN Convolutional neural network
SRNN Simple recurrent neural network
BPN Back-propagation neural network
PSO Particle swarm optimization

GA Genetic algorithm

BA Bat algorithm

FA Firefly algorithm

BFO Bacteria forging optimization
ACO Ant colony optimization

CSO Cuckoo search optimization
VCPSO  Vibration and communication particle swarm optimization
SVM Space vector machines

SOM Self-organization feature map
ANFIS Adaptive neural fuzzy inference system
ELM Extreme learning machines

IELM Improved extreme learning machines
RUL Remaining useful life

FDM Full discretization

MCSM Monto Carlo simulation method
RSM Response surface methodology
MM Moment method

AE Acoustic emission

PZTA Piezoelectric actuators

MLP Multi-layer perception

ANOVA  Analysis of variance

RBF Radial basis function

NURBS  Non-uniform rational B-spline
CFRP Carbon fiber reinforced plastic

MEMS Micro-electromechanical systems
VR Virtual reality
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