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Abstract: Recent years have seen a significant increase in interest across several sectors in the appli-
cation of learning techniques to extract ground object information, such as soil cracks, from remote
sensing high-resolution images. Out of the many technologies, the microbial-induced carbonate
deposition (MICP) technology is used to inject bacteria and cementation liquid containing specific
bacteria into the cracks of soil to be repaired. Calcium carbonate types of cement are produced by
bacterial metabolism so that cracks in the soil could be repaired for disaster management. However,
detection of cracks and taking appropriate decisions for repairing are the most fundamental issues
that researchers’ attention. Machine learning algorithms can be trained to detect and predict cracks in
undisturbed loess using various data sources, such as images captured using the internet of things
(IoT), devices, drones, and/or ground-based sensors. These algorithms can be designed to identify
different types of cracks based on their shapes, sizes, and orientations, and can be trained on large
datasets of labelled crack images to improve their accuracy over time. In this paper, we propose a
decision support system (DSS) that detects and predicts cracks and recommends a suitable crack
repair methodology. Our results show that our system is highly accurate. Our system provides
real-time recommendations to engineers working on crack repair projects in undisturbed loess, guid-
ing them on where and how to apply microbial mineralization treatments based on the predicted
crack locations and treatment effectiveness. We noted that the accuracy of the crack detection and
prediction can be increased significantly (up to 9.57%) when the proposed DSS approach is considered.
Moreover, if PSO is implemented as the optimization model, then we can see that the accuracy can be
significantly improved by as much as 21.67% to no DSS approach and 11.32% to the DSS approach.

Keywords: decision support system; IoT; mineralization reaction; undisturbed loess; uniaxial
compression; particle swarm optimization; machine learning; disaster management

1. Introduction

The collapse of unstable slopes and landslides is a relatively common geological
disaster in Shanxi Province, such as the collapse of Dongyue Temple and Cuiping Mountain
Panshan Highway in Pu County, Linfen City, with a damage range of up to kilometers. The
main reason is that the rainfall enters through the cracks of the soil body, causing the loess
body to lose its sink, and the road surface is overhead until it collapses. Therefore, the main
cause of this disaster is the loess body’s own fissures and structural characteristics leading
to wet subsidence. With the continuous progress of science and technology, the technology
of crack management-related measures is becoming more and more exquisite, and the
current methods for crack repair are the fill method, the plugging method, the grouting
method, etc. However, these treatment methods are based on passive repair after the
formation of large cracks, the operation is inconvenient and ineffective, and the follow-up
safety hazards are large. Based on this phenomenon, domestic and foreign scholars have
introduced microorganisms into this, slowly forming the concept of self-healing.
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Particle self-healing means that microorganisms can carry out biomineralization on
their own when the environment allows so that microfractures in geotechnical bodies
can be repaired in time to prevent expansion leading to damage. The full name of this
technology is MICP (microbiologically induced calcite precipitation), which is microbially
induced calcium carbonate precipitation technology [1–4]. It refers to the metabolism of
bacteria under alkaline conditions to produce CO2 and ammonia. CO2 and ammonia
are further hydrolyzed in the extracellular fluid to obtain H+/OH− anion neutralization
to obtain CO3

2−, and CO3
2− combined with Ca2+ to obtain CaCO3 mineralized deposi-

tion [5]. This technique is currently mostly used in concrete, sandy soil, and chalky soil.
Whiffin et al. [6] conducted indoor tests of microbial cemented sand columns by injection.
Similarly, Harkes et al. [7] and Van et al. [8] used a stepwise grouting method to succes-
sively infuse a bacteriological solution, a low-concentration CaCl2 solution (fixing solution),
and a cementing solution (urea-CaCl2), thus allowing microorganisms to form calcium
carbonate gels.

The MICP is a process in which bacteria are used to precipitate calcium carbonate
in soils. This process has a wide range of engineering applications, including soil stabi-
lization, groundwater remediation, and construction. From an engineering point of view,
various applications of the MICP technology include (i) soil stabilization—the process’s
microbes generate calcium carbonate, a binding substance that helps to stabilize the soil;
(ii) construction —calcium carbonate can precipitate when bacteria are added to the con-
crete mixture, filling up any gaps and enhancing the overall strength of the concrete [9]. In
addition, MICP may also be used for repairing infrastructure in the context of bridges and
tunnels, as well as other existing infrastructure. The soil may be stabilized and the structure
reinforced by adding calcium carbonate and bacteria to the soil around the structure [10].
By stabilizing the soil and reducing the effect of waves, MICP can be used to stop coastal
erosion. In regions vulnerable to hurricanes or other natural catastrophes, this can be
very helpful.

After many scholars at home and abroad have explored the microbial-induced carbon-
ate deposition technology in depth, various influencing factors of microbial mineralization
reaction were found, such as carbon source type [11], bacterial solution concentration,
calcium ion concentration, pH, temperature [12,13], grouting frequency, grouting time, the
grouting method [14], soil particle size [15], calcium source type [16], and bacterial carrier
type. Moreover, all these have been conducting indoor experimental analysis. However,
the inhomogeneity of CaCO3 deposition produced by mineralization is still a difficult
problem to be solved. Perhaps, the reasons include the uneven distribution of colloidal
concentration, the distribution of bacterial solution and the distribution of dissolved oxygen
caused by the uneven distribution. In addition, there is less research on the nature of the
geotechnical body itself, which has its own particle size gradation, permeability, compact-
ness, mineral composition, freeze–thaw properties, etc., on the strength and improvement
effect. The soil itself has an important influence on the strength and improvement effect that
is most important for soil crack detection and repair. However, these methods are passive
and can only take the repairing action once cracks occur. On the other hand, machine
learning-based methods along with decision support systems can help in detecting the
cracks and an automatic decision support system can be designed to look after the entire
process of the above discussed disasters.

In this paper, pseudo-in situ indoor fracture repair tests were conducted on collapsed
loess bodies in Pu County, Linfen City, China. Therefore, the experiment was carried out
on loess bodies with different viscous particle contents and different concentrations of the
cementing solution to explore the crack repair and the best concentration of cementing
solution for different types of soil bodies. Machine learning algorithms can be trained to
detect and predict cracks in undisturbed loess using various data sources, such as images
captured using drones or ground-based sensors. These algorithms can be designed to
identify different types of cracks based on their shapes, sizes, and orientations, and can
be trained on large datasets of labelled crack images to improve their accuracy over time.
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Machine learning can be used to develop a decision support system that integrates crack
detection, prediction, and treatment optimization models. This system can provide real-
time recommendations to engineers and technicians working on crack repair projects in
undisturbed loess, guiding them on where and how to apply microbial mineralization
treatments based on the predicted crack locations and treatment effectiveness. The major
contributions of our work are as follows:

• We design and develop a decision support system (DSS) that integrates crack de-
tection, prediction, and treatment optimization models to manage cracks and take
appropriate decision;

• We use the particle swarm optimization (PSO) method to improve the working mecha-
nism of the treatment optimization module;

• We implement different machine learning methods (CNN, LSTM, and U-Net) to test
the accuracy of the proposed decision support system. We noted that the accuracy of
the crack detection and prediction can be increased significantly (up to 9.57%) when
the proposed DSS approach is considered.

The remaining parts of this paper are structured in the following manner. A brief
overview and summary of the related works are presented in Section 2. In Section 3, we
discuss the test preparation. In Section 4, we propose a machine learning-based decision
support system that can be used to detect cracks and recommend suitable methodology
for repairing cracks. In Section 5, the experimental process and the optimization module
are discussed. Moreover, the particle swarm optimization algorithm is also elaborated in
this section. In Section 6, the attained results are deliberated. Finally, Section 7 concludes
this paper.

2. Related Work

Pei et al. [17] studied the mineralization mechanism and application of Bacillus sp.
and pointed out that the urease microorganisms such as Bacillus sp. hydrolyze urea model
is the easiest and most direct. Furthermore, the authors observed that the suggested model
deals with lower operational difficulty and cost than other mineralization models such
as nitrate reduction model, sulfate model and denitrification model, and the surface of
Bacillus sp. has more negative charge and is easier to be used as. The factors that affect the
mineralization effect are mainly the concentration ratio of the cements, and the factors that
affect the size, morphology and crystallinity of the mineralization products are: pH, calcium
source type and concentration, bacterial concentration and urea concentration. Firstly, this
technique was applied to the repair of concrete cracks as investigated in the work proposed
in [18], where scholars injected microorganisms into concrete cracks through polyurethane
foam wrapping.

Wang et al. [19] mixed the concentrated bacterial solution and the crystalline solution
and nutrient solution with concrete sand-based material and injected them into the cracked
concrete area, which effectively stopped the cracking process and repaired the concrete
from the inside out; however, all the above-mentioned repair methods are based on the
passive type of repair after the material is cracked. However, the repair methods described
above are based on passive repair after the cracking of the material, which is tedious,
labor intensive and costly, so scholars at home and abroad proposed the concept of self-
healing concrete [20], that is, microcracks can be effectively repaired by themselves at
the early stage of formation, and the repair material is calcium carbonate crystals, which
have good compatibility with the original concrete matrix. Zhang et al. [21] compared
Bacillus cereus with the screened aerobic, anaerobic and partly anaerobic by comparing the
mineralization deposition ability of Bacillus cereus with the screened aerobic, anaerobic
and partly anaerobic hybrids, and using expanded perlite as the carrier of the strain.
This was concluded that different mineralized microorganisms have good remediation
ability, but aerobic hybrids present the best remediation effect. This may, probably, because
the carbonate crystals formed by aerobic hybrids are in aragonite crystal form, while
other bacteria form calcite crystal form, and aragonite crystals Ca2+ and CO3

2− follow the
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most closely packed regular repetitive arrangement, structural compactness than calcite
crystal morphology.

Zhou et al. [22] by testing the effect of the restorative agent and the silica fume ad-
mixture of encapsulated expanded perlite (CEP) on the compressive strength of concrete,
it was concluded that the optimal amount of the silica fume admixture is 7%, the CEP
admixture has a greater effect on the concrete, the compressive strength decreases with the
increase in the admixture. Sookis et al. [18] used polyurethane (PU) new material foam
to fix Bacillus cereus whole cells and compared the calcite precipitation and ammonia
production rate produced by free and by PU-fixed Bacillus cereus cells repairing concrete,
and found that the tensile strength of PU-fixed microorganisms increased by 42% after
repairing, indicating that PU both protects the strain and can be used as a nucleation site
for calcite crystals. Recent years have seen a significant increase in interest across several
sectors in the application of learning techniques to extract ground object information, such
as soil cracks, from remote sensing high-resolution images. The mechanisms, materials,
and technical qualities related to each application of MICP, as well as their different en-
gineering applications, have all been covered in-depth by Yuze et al. [9]. Furthermore,
Kuan et al. [10] have also discussed an addressed the principles of MICP technology as it
examines the viability of MICP in several industries including geotechnical, geological, and
environmental engineering.

All of the above works have discussed and proposed various methods for one factor
of the soil cracks and repairing them; however, the other side is left behind and is not well
studied in the existing literature and state-of-the-art articles. It is rarely discussed how
soil cracks can be detected and predicted and, once detected, which methodology should
be adapted to repair the cracks. In fact, a decision support system that is operated by the
machine learning methods and where various IoT devices are used to monitor the entire
environment is essential for efficient disaster management systems. In Table 1, we offer
a comprehensive summary of various approaches and how our work fits well with the
state-of-the-art methods.

Table 1. Summary of the related works and approaches in terms of advantages and disadvantages.

Work Methodology Advantage Disadvantage

[11] Microbial-induced
carbonate deposition Carbon source type Passive only after cracks

occur

[17] Mineralization
mechanism

Lower operational
difficulty and cost

No repair of concrete
cracks

[18] Microorganisms and
polyurethane (PU) Repair of concrete cracks

Approach is based on the
passive type of repair
after the material is

cracked, i.e., tedious,
labor intensive and costly

[19] Concentrated bacterial
and crystalline solution

Effectively stopped the
cracking process and
repaired the concrete

Tedious, labor intensive
and costly

[20] Self-healing concrete

Microcracks can be
effectively repaired by
themselves at the early

stage of formation

No automatic detection
and prediction

[21] Bacillus cereus and
screened aerobic

The aerobic hybrids present
the best remediation effect

No automatic detection
and prediction

This Work

Microbial-induced
carbonate deposition

(MICP), DSS, and
machine learning

Automatic detection and
prediction of cracks and

recommendation for crack
repairing method

Computation intensive
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3. Test Preparation
3.1. Specimen Selection

The in situ soil was selected from the internal soil of a section of collapsed rock and
soil of Dongyemiao Pangshan Highway in Pu County, Linfen City, and the soil of the
leading edge of a landslide in Yuzi Haojiagou, Taiyuan City. The main physical property
indexes are shown in Table 2. The data samples were collected randomly so that a mix of
various characteristics and properties of the soil can be considered for the evaluation and
experimental documentation. Further details about the collection and preprocessing of the
dataset are given in Section 5.1.

Table 2. Physical properties of the soil.

Region
Indicators Depth (m) Weight Capacity Specific Gravity Porosity Porosity

Ratio
Plasticity Index

(%)
Internal Friction
Angle (Degree)

Cohesion
kg/cm3

Linfen 2.0 1.8 2.70 45.4 0.8 13.5 32◦42′ 0.26
Yuzhi 2.0 1.973 2.71 37.7 0.606 12.7 29◦7′ 0.9

3.2. Test Materials
3.2.1. Activation and Culture of Strains

In this experiment, the Bacillus cereus was selected because it is an aerobic bacterium
and can survive under high temperatures, high pressure, and high pollution, which can
meet the complex outdoor soil environment [20,23]. Each medium contains 1.0 g of peptone,
0.6 g of beef extract, 4.0 g of urea, and 200 mL of distilled water, while the pH is adjusted to
7.3 [11]. After the configuration is completed, the medium is sterilized in an autoclave at
121 ◦C for 15 min, cooled, and placed on the bench for UV sterilization for 20 min, the strain
is inoculated into the liquid medium in a sterile environment and placed in an oscillating
incubator (30 ◦C, 150 r/min) for 0–48 h. and incubated for 0–48 h. The growth curve of
microorganisms was obtained by measuring the transmission ratio every 4–12 h [24], as
shown in Figure 1.

Figure 1. Growth curve of microorganism.

According to the growth curve, the microbial growth will enter the decay period after
approximately 35 h, and the growth and metabolism will be slowed down so that the
remediation effect will be reduced. Therefore, the culture microorganism control time is
best at 20–35 h so that it can carry out the growth and metabolism mineralization when
at the strongest vitality, and the concentration of the bacterial solution is controlled at
OD600 = 1.0–2.0.

3.2.2. Caking Solution

Combined with the findings of various scholars, acetic acid and nitric acid have in-
hibitory effects on the mineralization reaction of Bacillus. Therefore, the cementing solution
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used in this experiment was a mixture of calcium chloride (CaCl2) and urea in three groups
of different concentrations. As a result, the concentration gradient of the cementing solution
was set as anhydrous CaCl2/urea: A: 0.5 mol/L/0.5 mol/L, B: 1.0 mol/L/1.0 mol/L, and
C: 1.0 mol/L/2.0 mol/L.

Crystallization process: The growth and metabolism of Bacillus cereus produce urease
to breakdown urea into NH3 and CO2, CO2 dissolves in water under an alkaline envi-
ronment to form CO3

2−, which in turn binds with Ca2+ in the colloid to produce CaCO3
crystals and adheres to the bacterial surface for accumulation. The crystallization principle
is as follows in the following Equations (1).

Ca2+ + Cell → Cell − Ca2+

CO(NH2)2 + H2O→ CO2 + 2NH3
CO2 + OH− + NH3 → NH4+ + CO2−

3
Cell − Ca2+ + CO2−

3 → Cell − CaCO3 ↓

(1)

When calcium carbonate cement (CaCO3) is combined with the soil, then it combines
with water to produce calcium carbonate crystals and calcium silicate hydrates, which
fill the spaces between soil particles. The soil particles are successfully glued together by
these crystals, acting as a binding agent, resulting in a stronger and more cohesive soil
structure. By strengthening the link between soil particles and boosting the soil’s stiffness
and compressive strength, the addition of CaCO3 cement to the filled pores of soil particles
helps to improve strength and displacement.

4. The Proposed Decision Support System

Machine learning can play a significant role in enhancing the efficiency and effective-
ness of crack repair in undisturbed loess using microbial mineralization technology, by
providing accurate crack detection, prediction, treatment optimization, decision support,
and monitoring capabilities. Machine learning can be used to develop a decision support
system that integrates crack detection, prediction, and treatment optimization models.
This system can provide real-time recommendations to engineers and technicians working
on crack repair projects in undisturbed loess, guiding them on where and how to apply
microbial mineralization treatments based on the predicted crack locations and treatment
effectiveness. By enabling more focused and effective restoration techniques, the combina-
tion of fracture detection, prediction, and treatment optimization models can result in more
efficient crack healing processes in undisturbed loess. The severity of discovered fractures
and the chance that they may widen can both be learned from the crack detection and
prediction modules. The decision-making module may then utilize these data to decide
which cracks need to be repaired first and in what order. For instance, if the prediction
module predicts that a crack is likely to spread quickly and cause structural collapse, the
decision-making module can give that crack priority over less serious cracks when it comes
to repair. The overall framework of the proposed decisions support system is shown in
Figure 2. The decision support system consists of several components, including (i) crack
detection; (ii) crack prediction; (iii) optimization module; (iv) the decision-making module.

1. The Crack Detection Module: This module uses machine learning algorithms to
analyze data from various sources, such as images captured by drones or ground-
based sensors, to detect cracks in undisturbed loess. It can identify different types of
cracks based on their shapes, sizes, and orientations.

2. The Crack Prediction Module: This module utilizes machine learning models trained
on historical data to predict the likelihood of crack formation in undisturbed loess. It
considers environmental and geospatial factors such as weather conditions, soil prop-
erties, and other relevant parameters to estimate the probability of crack occurrence
in different areas. Additionally, the crack detection and prediction modules can offer
continuing monitoring information for managing cracks over time. For instance, if a
crack is found and repaired, the prediction module may keep an eye on it to make
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sure it does not widen further. If the crack does start to reappear, the system may
notify maintenance staff so they can respond appropriately and prevent the crack from
worsening. The system can offer a more thorough approach to crack management
that can ultimately save time and costs by incorporating continual monitoring data
into the decision-making process.

3. The Treatment Optimization Module: This module employs machine learning algo-
rithms in order to optimize the application of microbial mineralization technology
for crack repairing. In fact, it analyzes the collected data on the effectiveness of
microbial mineralization treatments, and based on crack type, soil conditions, and
treatment parameters, it provides recommendations on the most suitable treatment
methods, dosages, and application timings. This module may gather and analyze
information on the pH, organic matter content, and nutrient levels of the soil and
water in the region to be treated. Additionally, characteristics of the concrete fractures,
information on how microbes behave, and information on environmental factors such
as temperature, moisture, and sunlight exposure may all be gathered and studied.

4. The Decision-Making Module: This module integrates the outputs of the crack de-
tection, prediction, and treatment optimization modules to make informed decisions
about the crack detection and repair. Generally speaking, the decision-making module
will utilize the outputs of each of the other modules to help it decide whether to find
and fix cracks. The severity of the fracture, the crack’s anticipated future behavior,
the expense and practicality of mending the crack, and other considerations may all
be taken into consideration throughout this decision-making process. It combines
the crack detection results with the crack prediction probabilities to identify high-risk
areas that require priority attention. It also considers the treatment optimization
recommendations to determine the most appropriate course of action for crack repair.

The crack detection module receives input data and detects cracks in undisturbed
loess. The crack prediction module uses various factors to predict the likelihood of crack
formation. The treatment optimization module provides recommendations on various
treatment methods based on crack type, soil conditions, and treatment parameters. The
decision-making module integrates the outputs of the previous modules to make informed
decisions [25]. For instance, the crack detection module may provide information to the
decision-making module indicating that a crack has been found at a certain point on a
structure. It could then decide based on the output of the prediction module as to whether
the fracture is likely to widen and perhaps cause structural failure. The decision-making
module may use the results of the treatment optimization module to identify the most
affordable and practical approach for patching the crack if the forecast indicates that it is
likely to continue expanding.

The integration of crack detection, prediction, and treatment optimization models can
result in a more efficient crack repair process, as treatment efforts can be targeted to areas
with the highest crack formation likelihood. This can lead to faster and more effective repair
of cracks in undisturbed loess, minimizing further damage to structures and infrastructure
built on such soils. By optimizing treatment strategies and minimizing trial-and-error
approaches, the decision support system can potentially result in cost savings in terms of
materials, labor, and equipment used for crack repair in undisturbed loess. This can lead to
more cost-effective solutions and better allocation of resources.

Here is an example of how the module integrates the findings of crack detection, crack
prediction probabilities, and treatment optimization suggestions to establish the best course
of action for crack repair so that you can better grasp the overall DSS framework. The
prediction module determined a modest chance of crack growth after the crack detection
module identified a crack in a specific region of a structure. Assume that the treatment
optimization module has suggested a variety of treatments, each with unique costs and
advantages. With this knowledge, the decision-making module may assess the costs
and advantages of each treatment method in light of the anticipated likelihood of crack
expansion and other criteria (such as the resources at hand and potential safety hazards). It
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may then decide on the course of treatment that offers the most affordable and practical
way to fix the fracture while lowering the likelihood of a subsequent structural breakdown.

Figure 2. The proposed decision support system for cracks detection and prediction.

5. Experimental Process
5.1. Specimen Preparation and Processing

A cubic in situ soil sample with a side length of 300 mm was taken, wrapped in a black
plastic bag, transported back to the laboratory, and cut by a wire cutter to obtain several
50 mm × 100 mm cylindrical soil samples. The test was divided into two different groups.
The first group was a restoration test of different soils in two regions with different clay
content. Moreover, soil materials were set up as 1, 2, 3, and 4; among them, groups 1 and
2 were brittle soils with less clay content, and groups 3 and 4 were soils with more clay
content. Similarly, the second group was a restoration test of loess soils in the same region
with different colloid concentrations. In this group, the soil materials were set up as 5, 6, 7,
8, 9, and 10. Groups 5, 6, 7, 8, 9, 10, and 8, 9, and 10 were collected from Pu County, Linfen
City, and Yuzi Haojiagou.

The amount of clay present in soil samples can have a big impact on how well micro-
bial remediation techniques work and the results of cleanup. A highly adsorptive substance
with the ability to bond with pollutants and reduce their availability for microbial break-
down is clay. This implies that toxins may be harder to reach and degrade in soils with
a high clay percentage, decreasing the efficacy of microbial remediation techniques. The
treated groups of soils were placed in the lower tray of the indoor universal testing machine
(the soils were coated with petroleum jelly on the top and bottom of each), and the process
was as follows. The strength growth ratio and stress–strain curves of undisturbed loess
are obtained by laboratory restoration and the strength test to compare the overall results
showing that the loess body with less clay content has a better strength foundation and
experimental restoration foundation. The restoration of loess body by microbial mineraliza-
tion basically closed the loess pores and acted as the rock skeleton, improved the integrity
of the soil and increased its mechanical strength fundamentally.

To a certain extent, the medium concentration of cementing fluid is conducive to the
microbial mineralization reaction, resulting in more CaCO3 cementation precipitation. The
application of in situ soil mixing methods is one typical strategy for soil restoration. This
entails enhancing the existing soil’s features and traits by adding additions or amendments.
Depending on the particular requirements of the soil, the additives used in this procedure
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might vary, although they frequently include substances such as cement, lime, or organic
waste. In general, soil restoration may raise the mechanical strength of in situ soil by
enhancing its physical and chemical characteristics using a variety of methods such soil
mixing, soil reinforcement, and soil stabilization. The overall process of the restoration
technique is described below.

- Place the soil in the center of the lower disk of the universal testing machine, operate
the computer software so that the upper disk just touches the upper part of the soil,
and adjust the software parameters and the loading rate of 0.2 mm/min.

- After observing the graph depicted by the software to reach the peak position, continue
to pressurize so that the deformation variable reaches 1/3 of the peak deformation
variable when the pressurization is stopped (after that, each soil body is pressur-
ized according to this over peak deformation variable standard to ensure that the
pressurization factor remains unchanged).

- Finally, control the upper plate of the testing machine through the aforementioned
software to rise slowly and unload slowly to prevent the specimen from breaking due
to sudden unloading, and then the soil is slowly taken out and placed on the table to
wait for the next test.

5.2. The Microbial Remediation Process

The experimental grouting equipment was selected from a peristaltic pump (to control
the injection speed), and the injection ratio was a bacterial solution, i.e., a cementing
solution = 1:2, with an interval of 4 h between each injection [26]. Note that the operation
was repeated every 24 h until the cracks were completely blocked, with each drip injection
lasting for approximately 1 h at minimum. In subsequent discussions, we describe these
results in more detail.

The first group of the test grouting method adopts the step-by-step drip injection
method, in which the bacterium solution and the cementing solution are dripped into
the soil cracks. This is achieved through the drip tube, respectively, i.e., the bacterium
solution is injected once and then two equal amounts of cementing solution are injected,
respectively (the concentration of the cementing solution is selected as group B) so that
they can infiltrate naturally. Similarly, the amount of solution for each drip injection is
shown in the following Table 3, and the interval of each drip injection is approximately
12 h, depending on the degree of soil subsidence. The specific grouting amount is shown
in Table 3. Note that the left side of the table shows the amount of bacterial solution used,
while the right side of the table shows the amount of adhesive solution used. The unit of
liquid usage is mL.

Table 3. Amount of the first group of grouting solution.

Time/h
Group 1 2 3 4 Time/h

Group 1 2 3 4

0 6 6 12 14 0 12 12 24 28
7 5 5 6 6 7 10 10 12 12

19 5 5 6 6 19 10 10 12 12
42.5 4 5 4 6 42.5 8 10 8 12
92.5 6 6 6 8 92.5 12 12 12 16

The second group of the experimental grouting method still adopts the step-by-step
drip injection method, with the difference that the injection time of bacterial liquid and
cementing liquid is separated. Exactly 4 h after the first injection of bacterial liquid, an
equal amount of cementing liquid is injected, and 4 h later, an equal amount of cementing
liquid is injected again. The 24 h is a cycle until the soil pores are blocked. Note that the
whole grouting process lasts for four days, and the specific grouting dosage is shown in
Tables 4 and 5.
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Table 4. Dosage of the second group of grouting bacterial solution.

Time/d
Group

A B C A B C
5 6 7 8 9 10

1 15 14 14.5 13.5 13.5 15.5
2 12.4 14.6 12.55 13.5 13.0 14.5
3 11.4 11.5 10.7 10.3 9.5 10.5
4 11.6 10.75 9.6 10.6 11.0 11.1

Table 5. Dosage of the second group of grouting adhesive solution.

Time/d
Group

A B C A B C
5 6 7 8 9 10

1 30 28 29 27 27 31
2 26.5 21.8 22.5 21.4 22.5 23.6
3 20.9 22.8 19.1 20.8 20.75 21.3
4 21.6 22.75 22.45 22.65 21.5 22.4

It should be noted that: 1© priority drip injection cracks and pores, followed by drip
injection of the part with the tendency of fragmentation; 2© drip speed should be slow,
accurate, as close as possible to the crack or pore mouth, slow drip injection, to avoid
too fast blowing the soil particles lead to poor bonding conditions; 3© in principle, each
addition should be consistent, but the soil is different from the concrete, soil particles are
more loose, unstable, so take into account the problem of saturation of the soil particle
gap, to the actual as the standard. (Avoid too many drops of the solution, so that the soil
wet sink is too large or the pore structure collapses, leading to early destruction of the
soil structure.)

5.3. The Strength Test

After the slurry is completely injected, it should be left for more than 7 days to wait
for the mineralization reaction to complete and the calcium carbonate crystallization to
harden [27], then the moisture content of each soil sample is adjusted to the same moisture
content as the original soil sample by drying method and water spraying method, and then
the soil is tested for strength. The strength test was conducted using a universal testing
machine, and the process is as follows: 1© transfer the diameter size of the specimen into
the corresponding parameters of the software of the universal testing machine; 2© coat the
upper and lower surface of the soil sample with the appropriate amount of petroleum jelly,
place it vertically in the lower compression disk of the universal testing machine, adjust
it just within the center circle of the lower disk, and adjust the upper disk to just touch
the top surface of the soil sample; 3© set the test compression rate to 0.2 mm/min in the
software, start the equipment, and observe the stress–strain curve in the software at the
same time., when the curve decreases after the peak, the strength of the specimen can be
judged to be decreasing, continue to apply pressure until the specimen is destroyed, and
get the uniaxial compression soil stress–strain curve.

The repair process mentioned in this experiment is the grouting process in the indoor
repair experiment. When the bacterial solution is dripped into the soil cracks together with
the cementing solution, the microorganisms will carry out metabolic activities to precipitate
the calcium ions in the cementing solution to produce calcium carbonate cement, which acts
as a cement to bond the unstable particles of the soil together to maintain stability in the
early stage, and acts as the soil skeleton to enhance the overall strength after solidification
in the later stage. The process, the change in calcium carbonate in the internal soil particles,
can not observe the specific changes, only the results of the strength of the change to assess.

5.4. The Optimization Algorithm

The proposed particle swarm-based optimization algorithm is presented in Algorithm
1. The algorithm takes a set of outcomes from crack detection and prediction modules and
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finds an optimal position in the form of the repairing decision. In the first step, we initialize
all particle dimensions, positions, and modules. In the second step, we try to balance all the
particle position using the prediction technique. From step 3 to step 9, the particle positions
are updated according to a particular fitness function. The fitness function here ensures
a balance decision, i.e., the one that has more efficiency in terms of resource utilization
and prediction durations. Each particle in the suggested PSO algorithm (Algorithm 1)
represents a potential crack repair solution, and its location in the search space reflects a
collection of possible fracture repair options. Each particle’s position in the search space is
assessed using the fitness function, and a fitness score is given depending on how well the
particle meets the requirements laid out in the fitness function. When the process iterates,
particles with higher fitness ratings are more likely to be kept while those with lower scores
are destroyed. The fitness function is computed according to the following Equation (2).

Fv =
cost

Averageutilization
× Pdetection (2)

Throughout the development phase, the velocity and location of the jth particle on
dimension D are updated using the following Equations (3) and (4), respectively:

vj(k + 1) = w × vj (k) + c1 × rand1 × (pbestj (k) − xj (k)) + c2 × rand2 × (gbestj (k) − xj (k) (3)

xj (k + 1) = xj (k) + vj (k + 1) (4)

The scaling factor w, one of the key factors, regulates how the prior velocity affects
the current one. Additionally, c1 and c2 are the respective cognitive and social acceleration
coefficients, while rand1 and rand2 are two uniformly distributed random values drawn
from the range [0, 1]. Note that Pbestj and Gbestj are representations of the best solution
recognized by particle jth, known as pbest, and the best solution discovered by the whole
swarm, known as gbest. The process is shown in Algorithm 1.

In order to guarantee that the most effective and efficient technique is chosen for each
unique crack repair scenario, the fitness function can be a useful tool for balancing the
decision-making process in fracture repair. Accuracy, efficiency, and cost-effectiveness are
all factors that must be balanced for the system to be efficient in maximizing resource use
and reducing the time and expense needed for crack repair. For instance, the accuracy
of crack detection, the propensity for crack prediction, the effectiveness of treatment
optimization, and the cost and viability of repair procedures are just a few examples of
factors that may be used to construct the fitness function. The decision-making module
may then evaluate various combinations of crack detection, prediction, and treatment
optimization models using this fitness function and choose the best course of action for
fixing a specific crack.

Algorithm 1: PSO-based optimization technique

Begin Input: Set of outcomes from crack detection and prediction modules
Output: Find the optimal position
1. Initialize particle dimensions, particle positions, and velocities.
2. For each particle, balance the particle position using the prediction algorithm.
3. For all particles,
4. Compute the fitness value using Equation (2): Fv = cost

Averageutilization
× Pdetection

5. If Fv <= pbest, update pbest with the obtained value.
6. Select the particle position as gbest.
7. Choose the best particle as gbest.
8. Calculate velocity and update particle positions using Equations (3) and (4).
9. Repeat these steps until the maximum iteration criteria is satisfied.
10. Return the best position
End
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6. Results and Analysis

The system is implemented on a Windows 10 Home 64-bit computer using the Python
programming language and the Keras package. An Intel Core i7 7700HQ running at
2.8 GHz and 16 GB of RAM make up the gear. In different ratios, we split the soil data
into training (70%) and testing (30%) halves. We selected 10 different samples. In order
to verify the detection and prediction accuracy using the RMSE and MAPE evaluation
metrics, various machine learning methods were applied. Different soil samples were
repaired by soil samples with different moisture contents and concentrations of cementing
solution. Their strength curves were obtained after uniaxial compression strength tests
on the repaired soil. The stress–strain curve was observed and decreased when the curve
reached the peak strength when the soil sample was crushed, and the complete comparative
strength data and stress–strain curve of the soil sample were obtained. This relationship is
shown in Table 6 and Figures 3 and 4 below.

Table 6. Comparison of the strength of each group of soil samples before and after restoration.

Soil Sample
Number

In Situ Soil Strength
σ/kPa

Repair Soil Strength
σ/kPa

Intensity Growth Rate
p/%

1 619.66 1129.83 82.33
2 579.73 1102.35 90.15
3 523.38 827.63 58.13
4 553.35 971.33 75.54

5-A 482.61 1021.07 111.57
6-B 518.83 1364.08 162.91
7-C 589.37 1496.17 153.86
8-A 789.75 1261.80 59.77
9-B 865.71 1849.66 113.66

10-C 1082.07 1989.66 83.88

Figure 3. The first group of strength curves of the soil before and after restoration.
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Figure 4. The second group of strength curves of the soil before and after restoration.

From the strength and growth rate of each group of soil samples before and after
remediation in Table 4, it can be seen that this microbial mineralization and sedimenta-
tion technology has a good effect on the remediation of the soil at this site. From the
experimental data of the first group (the first four groups of soil samples), we can see that
all four groups of soil samples have obvious restoration growth, but the strong growth
rate of soil samples 1 and 2 after restoration is greater than that of soil samples 3 and 4,
p2 > p1 > p4 > p3; while soil samples 1 and 2 are soils with fewer clay particles, soil
samples 3 and 4 soil with more clay particles, so it is inferred that the soil with more clay
particles has more free water between the clay particles and less permeability so that the
bacterial solution has fewer attachment points between the particles and the mineralization
reaction of microorganisms lacks attachment points and thus the aggregation site of CaCO3
is reduced. As such, the reduction in the produced cement directly affects the restoration
effect; therefore, it is considered that this technology is more suitable for soils with fewer
clay particles. The strength growth ratio data in Table 5 and the changes in the strength
curves in Figure 3 show that the strength growth rate of the soil specimens with more
clay particles is obviously not as large as that of the soil with fewer clay particles after the
microbial mineralization treatment, and the difference in strength growth rate due to the
difference in clay particle content can only be compared from a macroscopic point of view;
due to the limited test conditions, transmission and irradiation tests in microscopic aspects
could not be conducted, and the specific restoration effect of the particles inside the soil
could not be observed.

From the experimental data of the second group (the last six groups of soil samples), it
can be seen that the restoration effect of the six groups of soil samples is greater compared
with the first four groups. The possible reason is that the time point of grouting is different,
and it is inferred that microorganisms need a period of time to adapt to the environment
when they enter the soil, and then the nutrient solution is added for microorganisms
to metabolize, which can make the activity of microorganisms and the mineralization
restoration effect better. Comparing the strong growth rate of soil samples from groups 5, 6
and, 7 or 8, 9 and, 10, it can be seen that the strong growth rate B > C > A. This indicates
that the concentration of cementing solution should not be too low or too high, and
1 mol/L + 1 mol/L is the most suitable, and the lower concentration of group C compared
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to group B may be due to the high urea content which affects the pH value and thus the
microbial activity, and this factor needs to be further explored.

From the point of view of restorability, it can be seen from any of the graphs in
Figures 2 and 3 that the mechanical strength of the in situ soil is greatly increased after
restoration, and the curve characteristics are also changed; from the soil samples of groups
1 and 2 in Figure 2, it can be seen that the peak strength displacement of the in situ soil
is smaller and the ductility is lower, and after restoration, not only the strength is greatly
increased, but also the displacement is greatly increased, probably because there are filled
pores of soil particles CaCO3 cement, on the one hand, acts as a skeleton and on the other
hand, it can increase the adhesion between the particles; Figure 3, the peak of the original
soil samples of groups 3 and 4 are not obvious and the ductility is obviously stronger than
groups 1 and 2. However, the peak strength increase is not as big as the growth of groups 1
and 2, and the peak strength displacement does not increase obviously.

This probably happens because the clay content of the soil samples is greater, which
leads to the generation of carbonic acid cement to play a cementing role. It is possible that
because of the high clay content in the soil samples, the carbonic acid cement produced did
not play a big role in cementing, and the cement only played the role of a skeleton after
solidification; this indicates that the amount of clay content is applicable to this microbial
remediation method, but the remediation effect of soil samples with more clay content
is not as good as that of brittle soil samples. The double-peak phenomenon in Figure 4
(Group 5 and 6) is normal and is due to the soil body being under pressure. This is due to
the uneven treatment of the top of the soil specimen, the upper pressure plate and the top
of the soil body in contact with the phenomenon of uneven stress. So when the stress curve
reaches the peak and continues to press until the raised side of the small pieces of soil fall
off, and the stress curve reaches the stage of destruction. The upper plate continues to press,
the remaining flat part of the top of the soil specimen and the upper plate in full contact,
the stress curve starts to rise again until it reaches the peak, at which time the double-peak
phenomenon of the stress curve occurs; however, it is also obvious that the test force and
displacement of the strength curve have increased in all six figures.

To further investigate the performance of the proposed decision support system (DSS),
we implemented the model shown in Figure 1. We used MATLAB and the experiments
were conducted on the same machine with a 2.6 GHz CPU and 8 GB of RAM. Different
algorithms such as CNN, LSTM, and U-Net were implemented and the model accuracy
in terms of RMSE and MAPE values was observed. The outcome demonstrates that the
effect will be better the longer the repair time. The cracked sandstone’s porosity falls by
29.69%, its impermeability rises by 89.98%, and its compressive strength rises by 22.87%
after 35 days of repair. As shown in Figure 5, the accuracy of the U-Net model is higher than
that of the CNN and LSTM models, but the RMSE and MAPE values are not in line with
the attained outcome. The CNN and U-Net models [28] are almost of comparable accuracy
but considering the RMSE and MAPE indexes, the CNN is better than the other two.

Figure 5. The RMSE and MAPE values along with accuracy using CNN, LSTM, and U-Net.
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In Figure 6, an evaluation was performed for the proposed decision support systems
(DSS) in terms of the RMSE and MAPE indexes for various machine learning algorithms.
Note that the machine leaning techniques are used in two different modules of the DSS and
we assume that both are the same to keep consistency in the outcomes. We observed the
efficiency of the U-Net model which was significantly increased with the DSS systems both
in terms of RMSE and MAPE values. It should be noted that lower values for the RMSE
show more efficiency while higher values for the MAPE characterize more efficiency and
vice versa. The training and prediction times are shown in Figure 7. The model training
times look comparable as these are the averages, and the same argument is also true for the
prediction times when the algorithm accuracy is considered. However, we noted variations
that sometimes were significant amongst the training and prediction times and the machine
learning technique, the complexity of the datasets, and the accuracy of the approach. On
average, we noted that the CNN approach is better in terms of execution time than the
other two approaches, with a slight decrease in the accuracy.

Figure 6. The accuracy of the proposed DSS system using different algorithms.

Figure 7. Model training and prediction times versus accuracy [the training and prediction times are
shown in seconds].

Finally, we compared the proposed DSS and its integration with the PSO-based op-
timization model and the attained results are deliberated in Figure 8. We noted that the
accuracy of the crack detection and prediction can be increased significantly (up to 9.57%)
when the proposed DSS approach is considered. Moreover, we also noted that the accuracy
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of the DSS is dependent of the mechanism used in the treatment optimization modules.
For example, if PSO is implemented as the optimization model, then we can see that the
accuracy can be significantly improved by as much as 21.67% to no DSS approach and
11.32% to the DSS approach.

Figure 8. Overall accuracy of the proposed DSS and optimization method.

By enabling more focused, economical, and continuing crack management techniques,
the combination of fracture detection, prediction, and treatment optimization models can
result in more successful crack healing procedures in undisturbed loess. The integration
may lead to cost reductions in terms of the supplies, labor, and crack repair tools employed.
Maintenance staff may avoid using unneeded or ineffective repair materials, make repairs
faster, and do so with less manpower and equipment by utilizing more focused and effective
repair procedures. For instance, maintenance staff can concentrate their efforts on fixing
the crack first, using the most appropriate and efficient repair method suggested by the
treatment optimization module, if the system detects and forecasts that it will continue to
expand. By doing this, they can steer clear of using less efficient or more expensive repair
techniques that might not deal with the issue’s underlying causes.

7. Conclusions and Future Work

Loess bodies with different clay grain contents have different large strength character-
istics, which depend on the instability and wetting of the loess body itself; it was found
that the strength, as well as the integrity of the loess bodies with less clay grain contents,
were significantly improved after microbial mineralization restoration. The restoration of
the loess body by microbial mineralization basically closed the loess pores and acted as the
rock skeleton. Comparing the strength curves of loess bodies before and after restoration,
the characteristics of both curves change from ordinary soil strength curves to hard rock
strength curves, which also indicates that microbial mineralization restoration of loess
bodies fundamentally closes the loess porosity and acts as a rock skeleton, which funda-
mentally increases the mechanical strength. In the same loess body group, the greatest
growth rate ratio after soil restoration was 162.91% and 113.66% for the combination o
1 mol/L of the cementing solution, 111.57% and 59.77% for 0.5 mol/L of the cementing
solution, and 153.86% and 83.88% for the combination of 1 mol/L + 2 mol/L of cementing
solution. Therefore, it can be seen that medium concentration of the cementing solution is
beneficial to the microbial mineralization reaction to a certain extent, and too low or too
high a concentration will affect the efficiency of the cementing reaction.

The reason for this is that there are many factors to be considered in the application of
loess slopes, such as temperature, humidity, pH, acidity, and alkalinity, as well as various
complex microbiota in the environment. Therefore, further experiments and research are
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needed to explore the application of MICP technology to better and more comprehensively
apply it to loess slopes and road foundation laying. In the future, we will consider other
deep learning approaches to study the generalizability of our obtained results. Furthermore,
the accuracy of the approach is dependent on the dataset size; therefore, we aim to propose
an aggregation mechanism for the dataset than can reduce the amount of trained data in
such a way that the accuracy is not affected. In addition, the PSO technique can also be
modified so that the error of receiving inappropriate decisions can be improved. In the
future, we will take formal approaches into consideration for the verification of AI-based
solutions [29]. In the creation and validation of AI-based solutions, formal methods, which
utilize mathematical models and logic to study and verify the correctness of systems, have
grown in importance [30]. Researchers may make sure that their methods are dependable,
resilient, and devoid of mistakes or biases by using formal approaches.
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