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Abstract: Recently, solar energy has been gaining attention as one of the best promising renewable
energy sources. Accurate PV power prediction models can solve the impact on the power system due
to the non-linearity and randomness of PV power generation and play a crucial role in the operation
and scheduling of power plants. This paper proposes a novel machine learning network framework
to predict short-term PV power in a time-series manner. The combination of nonlinear auto-regressive
neural networks with exogenous input (NARX), long short term memory (LSTM) neural network,
and light gradient boosting machine (LightGBM) prediction model (NARX-LSTM-LightGBM) was
constructed based on the combined modal decomposition. Specifically, this paper uses a dataset that
includes ambient temperature, irradiance, inverter temperature, module temperature, etc. Firstly,
the feature variables with high correlation effects on PV power were selected by Pearson correlation
analysis. Furthermore, the PV power is decomposed into a new feature matrix by (EMD), (EEMD)
and (CEEMDAN), i.e., the combination decomposition (CD), which deeply explores the intrinsic
connection of PV power historical series information and reduces the non-smoothness of PV power.
Finally, preliminary PV power prediction values and error correction vector are obtained by NARX
prediction. Both are embedded into the NARX-LSTM-LightGBM model pair for PV power prediction,
and then the error inverse method is used for weighted optimization to improve the accuracy of
the PV power prediction. The experiments were conducted with the measured data from Andre
Agassi College, USA, and the root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) of the model under different weather conditions were lower than
1.665 kw, 0.892 kw and 0.211, respectively, which are better than the prediction results of other models
and proved the effectiveness of the model.

Keywords: PV power prediction; mode decomposition; NARX; LSTM; LightGBM

1. Introduction

Solar power generation is safe and reliable and will not be affected by the energy
crisis and fuel market instability factors. Photovoltaic power generation is one of the
most important forms of solar power generation among many renewable energy sources
because of its unique cleanliness, low cost, high efficiency, abundant reserves and low
maintenance. Moreover, solar energy is the main renewable distributed energy source used
to generate electricity worldwide. Italy reports that grid-connected electricity generation
through solar PV power generation is 10 GW, the highest in the world. Thus, whether
from the perspective of protecting the Earth’s environment or from the perspective of
the sustainable development of the Earth’s resources, the future of photovoltaic power
generation’s installed capacity will see significant growth. With the advancement of science
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and technology in recent years, PV power generation is growing quickly and accounting for
an increasing share of power generation. PV systems play an important role, particularly in
remote locations with large-scale PV power plants and residential power systems in rural
areas [1–4].

However, solar PV power generation depends on its input, which is essentially stochas-
tic and depends on the solar irradiation intensity. PV electricity output ceases when the
sun sets and the solar panels are not illuminated. Even during the day, the output of photo-
voltaic power can fluctuate greatly due to cloudy and rainy weather. PV grid-connection
has a substantial impact on the power system, therefore, in order to better utilize solar
energy and vigorously develop PV power generation, accurate and reliable PV power
prediction is necessary for power dispatch and allocation [5–9].

At present, there are several techniques for forecasting PV power, which is broadly cat-
egorized as conventional techniques and artificial-intelligence-based algorithms. Physical
prediction techniques and time series prediction techniques are the two main traditional
methodologies. The early stages of PV power prediction have seen the extensive use of
the time series prediction method, but it has lower prediction accuracy [10,11]. Traditional
machine learning models, such as random forest (RF) [12] and support vector machine
(SVM) [13,14], which have higher prediction accuracy, are primarily used in applications of
artificial intelligence algorithms. Neural networks are gradually becoming more popular in
the field of PV prediction as deep learning advances. Numerous studies and experiments
on the prediction of PV power by academics have demonstrated that combined prediction
models typically produce better prediction outcomes than individual models. Additionally,
it can help when an individual prediction model method produces large prediction errors at
specific points. In [15], PV power was predicted with relatively high accuracy by recurrent
neural network (RNN) model training on historical time series data. However, the gradient
disappearance and gradient explosion limit the prediction time range. In addition, the
RNN is under a high computational burden in the training phase as it needs a complete
database for training, and if the quality of the data is poor, it will have a great impact on the
prediction accuracy [16]. It is important to choose a model with strong performance. LSTM
is widely used in processing problems for longer time sequences to overcome information
loss, which is a good solution to the problem of gradient in RNN models [17–19]. In [20], the
authors demonstrate that LSTM improves significantly in prediction accuracy compared
to RNN, with lower error RMSE and MAE than other models. The back propagation (BP)
neural network technique with time-delayed inputs serves as the foundation for the NARX
neural network. The NARX neural network may successfully relate complicated dynamic
interactions and react more swiftly to past state information by enhancing the time-delayed
feedback connection from output to input. NARX has been used to resolve non-linear series
forecasting issues in several disciplines and is appropriate for time series forecasting [21,22].
In [23], the authors proposed an RNN (DA-RNN). The concept of the DA-RNN mechanism
is to use NARX to attend to the input sequence, followed by an LSTM to investigate the
temporal instances. However, NARX may miss the interpretation of parts of the first-level
attention under non-smooth weather conditions. In addition, the continuous computation
of the pre-weighted inputs obtained from the encoder leads to a large computational ef-
fort. Although deep learning models can learn quickly and predict better outcomes, their
structure is typically complex and computationally time-consuming, which results in low
efficiency. An established and popular integrated learning strategy is the gradient boosting
machine (GBM). extreme gradient boosting (XGBoost) is a gradient boosting tool that is
incredibly scalable, adaptable, and versatile. XGBoost employs regularization to control
the overfitting issue to efficiently utilize resources and get around the drawbacks of earlier
gradient boosting algorithms [24]. In [25], the authors convert the weather feature vector
into a Gram matrix, fully exploiting the intrinsic connection of the data, and using the
particle swarm optimization algorithm to find the optimal hyperparameters of XGBoost
to complete the PV power prediction; however, it has been concluded that XGBoost is
time consuming in model training, leading to high memory usage and computational
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cost [26]. In comparison to XGBoost, LightGBM can speed up model training, uses less
memory, allows for parallelized learning, and analyzes massive amounts of data without
compromising accuracy [27–29]. In [26], the authors propose the use of LightGBM to
predict PV power and show that it completes the training in a much shorter time (1.39 s)
compared to 16.83 s for XGboost, with similar accuracy. The accuracy of the combined
model prediction outputs can be increased by giving various models varied weights. Using
different weights for each time point of various forecasting models, also known as variable
weight combination forecasting [30] or weighting the forecasts of two models using the
inverse of error method [31], can both improve accuracy, and the choice of weights is a
crucial issue in these studies. All of the aforementioned literature provide direct predictions
of the starting PV power, but because of the complicated nonlinear and stochastic nature
of the meteorological elements affecting PV power, it is challenging to produce precise
forecasts using the initial PV power.

To increase prediction accuracy, modal decomposition techniques and machine learn-
ing models can delve deeper into the latent hidden information in the data. Wavelet analysis
and empirical mode decomposition are two frequently employed techniques. Both methods
can decompose the original signal and can improve the prediction accuracy; however, they
both have drawbacks. Wavelet analysis is poorly adapted, and EMD has problems, such
as mode aliasing and over-envelope effects [32,33]. In [33], the PV power is decomposed
by EMD, and the LSTM neural network is built for each intrinsic mode function (IMF)
sequence to predict the PV power separately, and finally, the sub-series prediction results
are superimposed to obtain the final prediction results; however, the prediction accuracy is
limited due to the low correlation between the IMF of a part of the modal aliasing problem,
and the sampling frequency of once an hour is not fine-grained enough. The purpose of
EEMD [34] is to effectively improve the modal aliasing problem by introducing Gaussian
white noise of equal amplitude to smooth the distribution of extreme points. However, the
presence of noise signals of a certain amplitude in the decomposition component will affect
the IMF quality leading to the degradation of prediction accuracy. CEEMDAN is created by
enhancing the algorithmic method for EMD, which incorporates the benefits of both EEMD
and EMD while also speeding up the decomposition process [35–37]. In [36], a prediction
framework that combines a gated recurrent unit (GRU) with CEEMADAN is proposed.
All of the above literature demonstrates the effectiveness of modal decomposition in PV
power prediction; however, most studies have used a single machine learning model,
and the generalizability and reliability of these studies remain inadequate. Combinatorial
approaches in machine learning are often used to deal with the shortcomings of individual
machine learning models as well.

In response to the above questions, the objective of the paper is to propose a new
short-term prediction approach that is a combinatorial machine learning prediction model
with CD. The performance of the proposed model is proven to be better than other models
under different weather types. The main contributions of this paper can be summarized
as follows:

• The decomposition of PV power by a combination of EMD, EEMD, and CEEMDAN
was integrated with Pearson correlation analysis. The filtered high correlation IMF
features substantially increase the accuracy of the model for PV power prediction;

• Preliminary NARX predictions and error correction vector features with high cor-
relation coefficients are added to the NARX-LSTM-LightGBM. This enhanced the
ability to parse PV data and the predictive performance of the proposed model in
capturing actual PV power trends. Moreover, the models are combined by the in-
verse of error method, which greatly corrects the accuracy in case of large errors in
individual models;

• A novel model for PV power prediction is analyzed in depth. The new approach
is evaluated using a real dataset. A comparative study of the model performance
under six test days (three types of weather) has been performed to reveal the high
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reliability of the proposed CD-NARX-LSTM-LightGBM model as a competitive model
in capturing the time dependence with high accuracy.

The rest of the paper is structured as follows: Section 2 provides the conceptual foun-
dation for constructing the combined prediction model. Section 3 presents the simulation
results and discussion, and Section 4 concludes the paper.

2. PV Power Prediction Model Framework
2.1. Method of the Optimal Weight Determination

Features such as ambient temperature, PV inverter temperature, PV model temper-
ature, solar irradiance, and wind speed influence PV power generation. To avoid the
negative impacts of individual features on PV power prediction, the correlation coefficient
of each feature variable regarding PV power is calculated using the Pearson correlation co-
efficient approach. With the following formula, the Pearson correlation coefficient evaluates
the linear connection between two continuous variables [38–40]:

Pxy =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
(1)

where x is the mean value of the characteristic variable x, and y is the mean value of the
characteristic variable y.

2.2. Modal Decomposition

For the non-stationary nature of PV power signals, it is necessary to construct the
modal decomposition method without a parameter. EMD was recommended by NE.
Huang et al. has a method for dissecting and examining nonlinear or non-stationary
time series data. The advantage is that the signal is decomposed over the initial time
scale of the data, using adaptively created intrinsic modal functions rather than fixed
basis functions. EEMD is based on the EMD algorithm, which adds normally distributed
white noise to the original signal so that the signal is uniformly distributed throughout
the frequency band at the interval of extreme points, which effectively reduces the modal
aliasing problem. CEEMADAN is an optimization algorithm based on EMD as well as the
EEMD algorithm. The CEEMDAN algorithm enhances the speed of signal decomposition
by adding a small amount of adaptive white noise to the EEMD algorithm. This fixes issues
with the EEMD algorithm’s incompleteness and reconstruction error after adding white
noise. The implementation steps of decomposition are listed as follows [41–43]:

1. Adding white noise vi(t) with a standard normal distribution to the raw signal. s(t).
The i-th signal is denoted as si(t) = s(t) + vi(t), i = 1, 2 . . . EMD decomposes the
timing signal to obtain the corresponding sequence IMFi

1 and the residual error
vector r1(t):

IMF1 =
1
I

I

∑
i=1

IMFi
1 (2)

r1(t) = s(t)− IMF1 (3)

2. Adaptive white noise vi(t) is added to the error, and the experiments are performed
i times. Each time, the results are decomposed using EMD ri

1(t) = x(t) + vi(t) to
obtain its first-order component IMF1. An error of the 2nd sequence r2(t) removed
from the 2nd sequence IMF2 for CEEMDAN decomposition:

IMF2 =
1
I

I

∑
i=1

IMF1 (4)
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r2(t) = s(t)− IMF2 (5)

3. To acquire the components that satisfy the conditions and the corresponding errors,
the decomposition procedure is repeated. The repetition comes to an end if the error
is a monotonic function and cannot be broken down by EMD. The original signal s(t)
can be expressed as:

s(t) = IMFi + rn(t) (6)

2.3. NARX Neural Network

NARX is a recurrent dynamic neural network. It has feedback connections that enclose
several layers of the network, and it incorporates two time-delay structures from the signals
at the input and output to describe the model of a nonlinear discrete system. The parametric
formulas for the NARX neural network are as follows [44,45]:

y(n) = f [x(n); u(n); y(n− 1)] (7)

y(n) = f [x(n), . . . x(n− dE);
Λ
x(n), . . . ,

Λ
x(n− dy + 1)] (8)

where x(n) and y(n) denote the input and output values of the NARX neural network at
the discrete moment n, respectively, and dE and dy, when greater than or equal to 0, are the
maximum delay order of the input and output, respectively.

NARX’s feedback loop and delay mechanism improve the ability to retain historical
time series data, which enables better exploration of the non-linear sequence relationships
of time series data. The construction of the NARX neural network is shown in Figure 1.
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The NARX neural network has two layers of feedforward networks with a linear
transfer function in the output layer and the hidden layer having a sigmoid function σ(x),
calculated as:

σ(x) =
1

1 + exp(−σ)
(9)

The network has a time-delay structure to store sequential prior values of u(n) and
y(n), and the output y(n) is fed back to the input of the network. The input vectors are
inserted through two-time delay structures of the input and output signals that demon-
strate over-jump connections in the time-expanded network, increasing the capacity of the
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gradient descent to propagate back with shorter paths. This increases the NARX neural
network’s capacity for historical data analysis [46].

2.4. Long Short-Term Memory

One of the major disadvantages of traditional neural networks is that they are not
able to relate the current prediction results to historical time series data well in modeling.
RNN introduces the concept of time series and improves this problem by iterating through
the cycle, but it is difficult to train when the data is large because there is no forgetting
mechanism that causes the gradient to explode or disappear. For the gradient problem,
LSTM can be a useful solution. Through its special gate control and memory system, the
LSTM neural network can fully use time series data [47,48]. The structure of the LSTM
neural network is shown in Figure 2.
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Figure 2. LSTM neural network structure.

The LSTM mitigates the gradient explosion and gradient disappearance problems of
the RNN through three gating structures, including the input gate It, forget gate ft, and
output gate Ot. These gates are responsible for managing the interaction between memory
cells implemented through tanh functions, sigmoid functions, and matrix multiplication.
In addition, the forgetting gate has the ability to remove irrelevant states that mislead the
prediction process, keeping only the important information to be forwarded to the hidden
layer. The value of the forgetting gate ranges from 0 to 1, where a higher value means
that the information is the most important to select for retention, and a result of 0 requires
complete discard [49].

Here, contrary to the input gate, the output gate checks its effect on the state of other
memory cells. The LSTM gates, hidden outputs, and cell states are given as follows [50]:

It = σ(W1xt + Uiht−1 + bI) (10)

ft = σ(W f xt + U f ht−1 + b f ) (11)

Ot = σ(Woxt + Uoht−1 + b0) (12)

∼
C = ft · Ct−1 (13)

ht = Ot · tanh(Ct) (14)

where xt and Ct denote the input and storage units at time t, respectively. b, W, and U are
the deviation, cycle weight, and input weight of each gate, respectively. ht−1 is the hidden
layer of each gate x at the moment of t− 1. The flow of the LSTM neural network operation
is shown in Figure 2. Firstly, ht−1, Ct−1, and xt input information to the LSTM cell. The
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LSTM gates interact with the input to generate a logic function. The input goes through ft,
and a new cell state Ct is constructed, quantifying the importance of the input information
with 0 and 1 to be used to decide whether the input information is stored or not. Then, ft
will update the cell state with the new important information. Finally, the remaining state
values are calculated by the hidden layer of the LSTM.

2.5. LightGBM

The LightGBM base learner is a decision tree, which supports efficient parallel training.
The advantages of LightGBM include faster training, lower memory consumption, better
accuracy, and distributed support for the fast processing of large amounts of data. The
decision tree algorithm by histogram, which obtains the leaf histogram by subtracting its
father node histogram from its sibling node histogram, can be doubled in computational
speed. To calculate the information gain, the LightGBM algorithm employs gradient-based
one side sampling (GOSS), which not only reduces the number of samples used but also
speeds up computation. Only the data with higher gradients are kept, while the data
with smaller gradients are discarded. Exclusive feature bundling (EFB) makes several
mutually exclusive features bind together, which can achieve the effect of reducing the data
dimension [51]. The LightGBM algorithm effectively improves the operational efficiency
through the leaf-wise growth strategy with depth limitation. It solves the problem that
most GBDT tools use the inefficient level-wise decision tree growth strategy, which reduces
the efficiency of machine learning by continuing to split and explore when the split gain is
not high and achieves higher accuracy when the number of splits is the same [52].

2.6. Combined Forecasting Model and Process

The proposed model in this paper is a powerful combination of NARX, LSTM, and
LightGBM models. The NARX-LSTM-LightGBM model merges the properties of each
prediction model to obtain better results. In the proposed model, NARX is associated with
the embedded memory that makes jump connections in the network. NARX is applied
to calculate the error correction vector, which is utilized to reduce the dependence and
sensitivity of the network structure on the time series. Let En = [e1, . . . , en] be the error

vector between the actual value Yt = [y1, . . . , yn] and the predicted value
∧
Yt = [

∧
y1, . . . ,

∧
yn]

of NARX. The residuals are calculated as follows:

En = Yt −
∧
Yt = yit−

n

∑
i=1

wiFit (15)

where Fit and wi denote the nonlinear mapping function of the NARX and the correspond-
ing weight values. Firstly, the initial PV power prediction from NARX is used to obtain the
error correction vector. Then, the error correction vector and predictions are used as input
for the new features. Finally, the LSTM and NARX predict the PV power with the data
incorporating the new features as input, respectively. The NARX-LSTM model predictions
are obtained by the integration of the two models through the inverse of error method. The
formula is as follows:

w1 =
e2

e1 + e2
, w2 =

e1

e1 + e2
(16)

fP = w1v1 + w2v2 (17)

where e1 is the error of model 1 and e2 is the error of model 2; w1 is the weight of model 1
and w2 is the weight of model 2; v1 and v2 are the predicted values of model 1 and model 2,
respectively; and fP is the error inverse method weighted average model.

Since NARX-LSTM is a combined model of deep learning and the LightGBM is a
boosted tree machine learning model with a low correlation between the model principles,
LightGBM has achieved better results in the field of prediction, so it combines the two. To
obtain the final prediction results, the prediction results of the LightGBM algorithm and the
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combined NARX-LSTM algorithm are combined using the error inverse method. To better
understand the proposed model, the combined prediction model is shown in Figure 3.
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Where w1 and w2 are the weights of the NARX neural network and the LSTM neural
network, respectively; w3 and w4 are the weights of the combined NARX-LSTM model

and the LightGBM algorithm, respectively.
∆

Data is the segmented data set. fP1 is the error
inverse method weighted average model of NARX and LSTM; fP2 is the error inverse
method weighted average model of combined NARX-LSTM and LightGBM.

To further enhance the exploration of the internal linkage of the historical time series,
a prediction method based on the combined modal decomposition is proposed, and the
flow chart is shown in Figure 4, which mainly consists of the following parts:

1. After pre-processing the data, only the data in the period of 5:00–20:00 retains. The
Pearson algorithm analyzes the correlation of environmental features, selects the
environmental variables with strong correlation as the features of the combined
prediction model, and normalizes the features with strong correlation to improve the
convergence speed and efficiency of the model.

2. The EMD, EEMD, and CEEMDAN modal decomposition methods were selected to
decompose the original PV power, and the respective modal sequence was combined
to construct the feature matrix for correlation analysis, and the sequence features with
high correlation and environmental features with strong correlation were selected to
integrate into the NARX-LSTM-LightGBM prediction model.

3. The proposed model predicts three typical types of weather (six test days) and evalu-
ates the performance of NARX-LSTM-LightGBM.

2.7. Model Performance Evaluation Indicators

The indicators used in this paper to predict the selected performance evaluation
include the MAE, the mean absolute percentage error (MAPE), and the root mean square
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error (RMSE). These percentage error measures are used because of their independent
judgment and the efficiency of the judgment model. The formulas are as follows [53]:

MAE =
1
n

n

∑
i=1

∣∣∣yi −
∧
yi

∣∣∣∣∣ (18)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣yi −
∧
yi

y

∣∣∣∣∣ (19)

RMSE =

√
1
n

n

∑
i=1

(yi −
∧
yi)

2
(20)

where yi and
∧
yi are the actual and predicted values; y is the sample mean.

Figure 4. Prediction flow chart.
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3. Results and Discussions
3.1. Data Preprocessing

The performance of the proposed model was evaluated using real data sets, and the
experimental study used measured data from Andre Agassi College, USA, to verify the
generalization capability of the proposed model. The data set includes seven environ-
mental characteristic variables: ambient temperature, PV inverter temperature, module
temperature, irradiance, ambient humidity, wind speed, and wind direction.

The period of the dataset is 1 January 2012–31 December 2014, with a time interval of
15 min and a total of 96 sampling points a day. The time point of a day without PV power
is eliminated to increase the efficiency of the model calculation, while the daily period of
5:00–20:00 with a time interval of 15 min and a total of 60 sampling points per day are kept.
Missing data are filled by the mean fill method, and min–max normalization is done for the
filled data.

3.2. PV Power Characteristics Correlation Analysis

The correlation of the characteristic variables has considerable significance to the
accuracy of PV power prediction. In this paper, Table 1 [54] is used to define the degree
of correlation between each environmental characteristic variable and PV power, and the
Pearson correlation coefficients of the relevant environmental characteristic variables in the
dataset for PV power are calculated by Equation (1) as shown in Table 2, the relative humid-
ity and wind direction are not correlated, which are unfavorable to PV power prediction
and therefore are discarded, and the wind speed is weakly correlated with less correlation
to PV power, which is also negligible. Thus, we choose the strongly correlated environ-
mental variables as the characteristic variables for prediction, i.e., ambient temperature, PV
inverter temperature, PV panel temperature, and irradiance as the characteristic variables
for the PV prediction model.

Table 1. Correlation value thresholds.

Strength Minimum Value Maximum Value

Strong correlation 0.41 1.00
Medium correlation 0.25 0.40

Small correlation 0.10 0.24
No correlation −1.00 0.09

Table 2. Relative coefficients of power and individual characteristics.

Feature Variables Correlation Factor Correlation

Ambient temperature 0.42 strong
Inverter temperature 0.50 strong
Module temperature 0.69 strong

Irradiance 0.96 strong
Relative humidity −0.40 no

Wind speed 0.20 small
Wind direction −0.03 no

3.3. Combinatorial Decomposition to Build New Features

This paper decomposes the original power using EMD, EEMD, and CEEMDAN
decomposition methods to reduce the model’s complexity, thoroughly excavate the intrinsic
information, and obtain 45 sequences to construct the feature matrix. The decomposed
results are illustrated in Figures 5–7. For example, in EEMD decomposition, IMF1–IMF9 are
high-frequency sequences where the non-smooth data are concentrated, IMF10–IMF12 are
medium-frequency sequences that vary with a certain period, and IMF13–IMF16 are low-
frequency components with a larger period, which have little impact on the overall data
fluctuations. From the figure, it can be known that the sequence after modal decomposition
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is simpler and smoother compared to the original PV power. Next, the decomposed
sequences are analyzed for correlation to form a new feature matrix.
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Too many sequences will result in low computational efficiency of the combined
model, and non-correlated sequences will affect the prediction accuracy of the model, so
the correlation analysis leaves a higher correlation with the PV power feature sequences to
obtain the feature matrix. This paper selects the sequence with a correlation greater than
0.4 and combines them into a feature matrix. It is known from Table 3 that the correlation
of the IMF5 sequence of EMD is 0.802; the correlation of IMF4, IMF5, and IMF6 sequence of
EEMD are 0.614, 0.925, and 0.474, respectively; the correlation of IMF5 and IMF6 sequence
of CEEMDAN are 0.684 and 0.574, respectively. Thus, these sequences are selected to form
the new feature matrix and the rest of the sequence are excluded from the model.
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Table 3. The contrast of sequence correlations of different decomposition methods.

Sequence EMD EEMD CEEMDAN

IMF1 0.073 0.132 0.078
IMF2 0.069 0.134 0.073
IMF3 0.083 0.145 0.066
IMF4 0.340 0.614 0.315
IMF5 0.802 0.925 0.684
IMF6 0.310 0.474 0.574
IMF7 0.156 0.334 0.154
IMF8 0.062 0.124 0.072
IMF9 0.062 0.114 0.071

IMF10 0.075 0.096 0.064
IMF11 0.046 0.074 0.034
IMF12 0.027 0.084 0.038
IMF13 0.121 0.264 0.184
IMF14 0.274 0.264 0.268
IMF15 None 0.085 0.046
IMF16 None 0.037 None

3.4. Model Parameters Setting

After several experiments, the prediction model was created by dividing the initial
66,870 sets of data into a training set and a test set in a ratio of 7:3, then feeding the results
into a NARX neural network model with 12 hidden layer neurons and the order of the time
delay being 8. The output 20,059 PV power test set and residual vector are obtained, and
the latter 20,059 sets of the original data are jointly input into the LSTM neural network
and LightGBM algorithm, and the correlation analysis shows that the test set power and
residual vector have a high correlation of 0.87 and 0.51. The LSTM neural network model
uses the ReLU function as the activation function, the optimizer is Adam, batch_size is 32,
the maximum number of iterations is 32, and the learning rate is 0.1; the optimization of
the LightGBM algorithm hyperparameters is performed using the grid search algorithm to
obtain a learning rate of 0.01, the number of base learners (n_estimators) is 15,000, and the
number of leaf nodes (num_leaves) is 31 by default.

Using the data from 6 February 2014 to 17 December 2014 as training samples, the PV
power is shown in Figure 8. In order to avoid chance error and provide a high generalization
capability of the model, a weather type two days in total six days were selected as the
sample test set: December 23 (sunny day 1) and December 25 (sunny day 2); December
18 (cloudy day 1) and December 20 (cloudy day 2); and December 17 (rainy day 1) and
December 31 (rainy day 2).
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3.5. Validation of Combined Modal Decomposition

This paper adopts the method of combined decomposition to deeply explore the
intrinsic connection between PV power and historical time series to decompose PV power.
The average run time of the NARX-LSTM-LightGBM model is 45.23 min, and the average
run time of the CD-NARX-LSTM-LightGBM model is 67.59 min.

For the three weather types, sunny, cloudy, and rainy days, the reference models,
including LSTM, CD-LSTM, NARX-LSTM-LightGBM, and CD-NARX-LSTM-LightGBM,
are constructed, respectively, for PV power prediction experiments contrast. Predictions
were made for the above test days, and by observing Figure 9, it can be seen that the four
models match the actual PV power prediction curves under sunny weather. The prediction
models with combined modal decomposition in cloudy and rainy weather perform better,
the prediction curves fit better with the real values, and the overall curves are consistent.
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Table 4 shows the results of the error–index contrast table, and Figure 10 shows the
histogram stacking of prediction errors for the prediction of PV power by the four models
(different colored areas indicate different prediction methods, and their smaller areas
indicate smaller errors of the corresponding methods). For example, in the MAE in cloudy
1, the area of the rectangle representing CD-NARX-LSTM-LightGBM (red) is smaller than
the area of the other models, and the area of the rectangle representing CD-LSTM (light blue)
is smaller than the area of the rectangle representing LSTM (dark blue), and even smaller
than the area of the rectangle representing NARX-LSTM-LightGBM (white). In RMSE, MAE,
and MAPE, the CD-LSTM model reduces by 24.68%, 29.82%, and 29.82%, respectively,
compared to the LSTM model, the CD-NARX-LSTM-LightGBM model compared to the
NARX-LSTM-LightGBM model reduced by 56.30%, 58.45%, and 63.04%, respectively, and
the CD-LSTM model reduces by 8.52%, 2.56%, and 13.04%, respectively, compared to
the NARX-LSTM-LightGBM model. Overall, the prediction performance of the model is
improved significantly by adding the high correlation sequence of the combined modal
decomposition, and in some cases, the CD-individual model is even smaller than the
combined prediction model error, which demonstrates that the machine learning model
incorporated with the combined modal decomposition creates favorable conditions for
improving the accuracy and reducing the uncertainty of PV power prediction.
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Table 4. The error of prediction results before and after combined modal decomposition.

Test Day Predictive Model RMSE/kw MAE/kw MAPE

sunny day 1

LSTM 1.462 0.912 0.106
CD-LSTM 0.913 0.636 0.074

NARX-LSTM-LightGBM 0.549 0.312 0.036
CD-NARX-LSTM-LightGBM 0.465 0.213 0.025

sunny day 2

LSTM 1.560 0.977 0.105
CD-LSTM 1.006 0.605 0.065

NARX-LSTM-LightGBM 1.003 0.471 0.051
CD-NARX-LSTM-LightGBM 0.399 0.136 0.015

cloudy day 1

LSTM 4.571 2.981 0.513
CD-LSTM 3.443 2.092 0.360

NARX-LSTM-LightGBM 3.764 2.147 0.414
CD-NARX-LSTM-LightGBM 1.645 0.892 0.153

cloudy day 2

LSTM 3.775 2.242 0.383
CD-LSTM 2.375 1.467 0.250

NARX-LSTM-LightGBM 1.675 0.698 0.119
CD-NARX-LSTM-LightGBM 1.664 0.589 0.101

rainy day 1

LSTM 2.938 2.048 0.493
CD-LSTM 1.654 1.136 0.273

NARX-LSTM-LightGBM 1.988 1.052 0.253
CD-NARX-LSTM-LightGBM 1.071 0.553 0.133

rainy day 2

LSTM 2.636 1.527 0.783
CD-LSTM 1.183 0.918 0.471

NARX-LSTM-LightGBM 1.628 0.578 0.296
CD-NARX-LSTM-LightGBM 0.697 0.431 0.221
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3.6. Validation of the NARX-LSTM-LightGBM Model

This section further validates the performance of the CD-NARX-LSTM-LightGBM
model for PV power prediction. For the three weather types, sunny, cloudy, and rainy days,
combined decomposition reference models, including NARX, LSTM, LightGBM, RNN,
and GRU, are constructed, respectively, for PV power prediction experiment contrast. The
simulation results are shown in Figure 11.
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According to Figure 11, It can be observed that the prediction performance depends
greatly on the type of weather. Specifically, the prediction performance of the LightGBM
model decreases significantly on cloudy and rainy days. The PV power has a large am-
plitude variation at certain times. This is due to characteristics such as high volatility
and strong nonlinearity of environmental variables on cloudy and rainy days that directly
impact the prediction results. With more detailed information comparing the original LSTM
with the proposed model, it can be said that the predicted values and the error correction
vector obtained from the initial NARX prediction and combinatorial machine learning
models have significantly enhanced its performance in capturing the trend of the actual PV
power. Overall, the proposed model performs the best, and its prediction performance of
PV power is superior, especially in the two weather types of cloudy and rainy days, and its
predicted power curve fits better with the real power curve.

Figure 12 shows the histogram stacking of prediction errors for the prediction of
PV power by the six models, and Tables 5–7 show the contrast table of prediction errors.
As can be seen from the figure, the area of the rectangle representing the error of the
CD-NARX-LSTM-LightGBM model (red) is the smallest among the six models under any
weather conditions. Specifically, according to the numerical results presented in Tables 5–7,
LightGBM has poor prediction results compared to other models during sunny days, but it
achieves good results during cloudy and rainy days. The mean RMSE for CD-NARX-LSTM-
LightGBM is 1.654 kw and 0.884 kw for cloudy and rainy days, respectively, and the mean
RMSE for rainy days is reduced by 46.55% compared to that for cloudy days. Take rainy
days as an example, in which the mean RSME of CD-NARX-LSTM-LightGBM is 0.884 kw,
while the closest model (CD-RNN) achieves a mean RMSE = 1.585 kw, and the proposed
model has a 44.23% reduction in RMSE compared to CD-RNN. In summary, compared to
individual models, the RMSE, MAE, and MAPE of CD-NARX-LSTM-LightGBM are lower
than 1.665 kw, 0.892 kw, and 0.211, respectively for different weather types, which are better
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than the predictions of other models. The obtained results confirm the high performance of
the proposed model in PV power prediction.
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Table 5. Different prediction model errors (sunny).

Test Day CD-Prediction Models RMSE/kw MAE/kw MAPE

Sunny 1

NARX 2.011 1.298 0.149
LSTM 0.913 0.636 0.074

LightGBM 4.095 3.233 0.371
RNN 0.735 0.491 0.056
GRU 0.897 0.616 0.070

NARX-LSTM-LightGBM 0.465 0.213 0.025

Sunny 2

NARX 2.223 1.405 0.149
LSTM 1.006 0.605 0.065

LightGBM 3.364 2.902 0.310
RNN 1.008 0.581 0.061
GRU 1.148 0.679 0.072

NARX-LSTM-LightGBM 0.399 0.136 0.015

Table 6. Different prediction model errors (cloudy).

Test Day CD-Prediction Models RMSE/kw MAE/kw MAPE

Cloudy 1

NARX 4.655 3.032 0.516
LSTM 3.443 2.092 0.360

LightGBM 2.773 2.363 0.406
RNN 3.922 2.366 0.400
GRU 3.690 2.155 0.365

NARX-LSTM-LightGBM 1.645 0.892 0.153

Cloudy 2

NARX 2.842 1.843 0.310
LSTM 2.375 1.467 0.250

LightGBM 2.908 2.417 0.411
RNN 2.333 1.387 0.233
GRU 2.620 1.487 0.250

NARX-LSTM-LightGBM 1.664 0.589 0.101
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Table 7. Different prediction model errors (rainy).

Test Day CD-Prediction Models RMSE/kw MAEkw MAPE

Rainy 1

NARX 2.585 1.862 0.442
LSTM 1.654 1.136 0.273

LightGBM 2.390 1.992 0.481
RNN 1.313 1.032 0.246
GRU 2.776 1.868 0.440

NARX-LSTM-LightGBM 1.071 0.553 0.133

Rainy 2

NARX 2.026 1.387 0.734
LSTM 1.183 0.918 0.471

LightGBM 2.041 1.786 0.916
RNN 1.004 0.756 0.382
GRU 0.920 0.721 0.363

NARX-LSTM-LightGBM 0.697 0.431 0.221

4. Conclusions

The main objective of this study is to accurately predict PV power to achieve the inte-
gration of additional PV systems into the grid and to further improve energy management.
This paper proposed a novel prediction framework based on the combination of NARX,
LSTM, and LightGBM with the combination modal decomposition to predict PV power.
The conclusions are as follows:

• The proposed model was effective at the accuracy of prediction as compared to an
individual model, which has two apparent advantages. Firstly, the preliminary NARX
prediction values and error correction vector features with high correlation coefficients
(0.87 and 0.51, respectively) enhance the proposed model’s prediction performance in
capturing the trend of the actual PV power. Furthermore, when large errors occur in
individual models, the combination of prediction models by the inverse error method
can largely reduce the impact on the accuracy of the prediction models;

• The original PV power was decomposed by EMD, EEMD, and CEEMDAN, and six
groups of strong correlation sequences were obtained by correlation analysis, among
which the highest correlation coefficient in EEMD was 0.925, which was second only
to the irradiance correlation coefficient. The error of the model is obviously reduced
after integrating the combined modal decomposition features. Taking rainy day 2 as
an example, for RMSE, MAE, and MAPE, CD-LSTM is reduced by 55.12%, 39.88%,
and 39.85%, respectively, compared to LSTM, and CD-NARX-LSTM-LightGBM is
reduced by 57.19%, 25.43%, and 25.34%, respectively, compared to NARX-LSTM-
LightGBM. It was demonstrated that the combined mode decomposition is strongly
able to reduce the complexity of the original power curve and improve the accuracy of
PV power prediction;

• The experiment results demonstrated that the proposed CD-NARX-LSTM-LightGBM
achieved the lowest RMSE, MAE and MAPE, as compared to other models. The
prediction stability of CD-NARX-LSTM-LightGBM is higher than other prediction
methods, during the six test days the range of RMSE is stable in 0.399–1.664 kw,
the range of MAE is stable in 0.136–0.892 kw, and the range of MAPE is stable in
0.015–0.221. The prediction effect of GRU fluctuates the most; the best RMSE can reach
0.897 kw, and the worst is only 3.690 kw;

• For all investigated PV systems, the proposed CD-NARX-LSTM-LightGBM model has
invariably performed better than other models under different climatic conditions,
indicating that the proposed model is superior and acceptable. The proposed model
helps control the operation of the photovoltaic grid connection, making solar energy
become a more economical, efficient, and reliable way to provide energy. Future work
will expand the scope to include proposing models for other smart grid applications,
including wind power and load prediction.
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Nomenclature

PV Photovoltaic
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
CD Combined Decomposition (CD)
IMF Intrinsic Mode Function
NARXNN Nonlinear Auto-Regressive Neural Networks with Exogenous Input
LSTM Long Short Term Memory
LightGBM Light Gradient Boosting Machine
RF Random Forest
SVM Support Vector Machine
BP Back Propagation
XGBoost Extreme Gradient Boosting
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
GOSS Gradient-based One Side Sampling
EFB Exclusive Feature Bundling
CD Combined Decomposition
RMSE Root Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
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