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Abstract: Tetracycline (TC) is an antibiotic commonly used to treat bacterial infections. It is detected
in wastewater and is considered an emerging contaminant that must be removed before discharge to
water bodies. This study examined its adsorption on commercial biochar, a low-cost and sustainable
adsorbent produced from the agricultural waste of citrus trees, in both batch and continuous flow
systems and from synthetic and real wastewater. The surface area of the biochar was determined using
Brunauer–Emmett–Teller (BET) analysis to be 364.903 m2/g. Batch experiments were conducted
using biochar doses of 1.5–3.5 g/50 mL; initial TC concentrations of 30–90 mg/L; pH values of
4, 7, and 11; and temperatures of 20, 30, and 40 ◦C. The results show that TC was successfully
removed from both synthetic and real wastewater at removal rates reaching 87% at pH = 4, an
adsorbent dose of 3.5 g/50 mL, an initial adsorbate concentration of 90 mg/L, and a temperature
of 20 ◦C in batch experiments for synthetic wastewater and at removal rates reaching 95% for real
wastewater. Thermodynamic parameter estimation results revealed that the process is exothermic
and spontaneous, while kinetic results showed that adsorption is a multi-step process. TC adsorption
on biochar was found to be a physical process. In continuous-mode operation, removal reached 37%
at a bed depth of 3 cm. Scanning electron microscopy (SEM) morphologies and Fourier-transform
infrared (FTIR) spectroscopy confirmed the occurrence of adsorption.

Keywords: tetracycline; biochar; adsorption; wastewater treatment; sustainable adsorbent

1. Introduction

Emerging contaminants (ECs) are pollutants that have recently gained particular
attention. They include, among other contaminants, pharmaceuticals and personal care
products (PPCPs). As a result of the excessive use of pharmaceuticals for both humans
and animals in the past few decades, scientific research has focused on their removal
from wastewater using mainly physical or chemical methods, such as coagulation and
sedimentation, flotation, adsorption, advanced oxidation processes, photodegradation, and
electrochemical and membrane separation processes [1,2].

Antibiotics are antimicrobial medications used to treat bacterial infections. Tetracycline
(TC) is a widely used broad-spectrum antibiotic that can inhibit bacterial growth [3–7].
It is commonly used to treat bacterial infections in humans and animals and is added to
animals’ food for growth improvement [7]. It has been detected in groundwater, wastewater
treatment plants’ influents, effluents, sludge, and drinking water [4]. The main concern with
antibiotics’ accumulation in the environment, if not removed from discharged wastewater
effluents, is the development of antibiotic-resistant strains of bacteria that make antibiotics
ineffective for some humans and animals and have negative side effects on humans when
contaminated water is consumed [7,8].
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The removal of TC from wastewater using biological treatment methods, advanced ox-
idation processes (AOPs), and electrochemical methods has been investigated and reported
in the literature. These methods have several drawbacks. The microorganisms involved in
biological treatment are usually affected by TC toxicity, and the electrochemical processes
involved in AOPs are costly in terms of the consumption of chemicals and energy [9].

Adsorption is an economical and easily implementable treatment method for removing
pharmaceuticals from wastewater. It is characterized by its high efficiency and the avail-
ability of different types of adsorbents with a wide range of adsorption capacities [8–11].
The removal of TC by adsorption has been studied using different types of adsorbents,
such as biochar produced from agricultural wastes [9], carbon nanotubes [12], graphene ox-
ide [13,14], activated carbon fibers [15], bentonite [16], modified biochar [8], and magnetic
resins [17]. Zhu et al. [18] investigated the adsorption of TC on a graphene oxide/calcium
alginate and found that the maximum adsorption capacity was 131.6 mg/g at pH = 6.
Increasing the graphene oxide/calcium alginate dose and initial concentration of TC in-
creased the adsorption capacity, achieving 69.4% removal at an initial TC concentration of
50 mg/L and an adsorbent dose of 30 gm.

Biochar is a carbon-based material produced by the pyrolysis of biomass from agri-
cultural wastes, waste from the food industry, and sludge. It is characterized by its high
carbon content, relatively large surface area, and pore volume [19]. Burmese grape seed
biochar has been used to eliminate methylene blue (MB) from an aqueous solution. The
BET specific surface area was estimated at 19.90 m2/g, 85% MB removal was achieved, and
the adsorption capacity was 166.30 mg/g [20]. Biochar derived from Citrus macroptera peel
has been tested for use in textile dye wastewater treatment [21]. Cow manure biochar has
been used for TC adsorption, with three types of biochar produced at different pyrolysis
temperatures. The biochar produced at 700 ◦C achieved a maximum removal efficiency
of approximately 47% at pH = 3 and a biochar dose of 1.25 g/L [22]. With biochar pre-
pared from a water treatment plant’s sludge and used for TC adsorption, the removal
efficiency achieved was 96.72% at a biochar dose of 4 g/L and an initial TC concentration
of 60 mg/L [23]. ZVI@biochar has been used to remove tetracycline, oxytetracycline (OTC),
and chlortetracycline (CTC) from aqueous solutions and wastewater. The ZVI@biochar
had a specific surface area of 172.9 m2/g, the dose used was 4 g/L, and the initial antibiotic
concentration range was 100–500 mg/L. The best removal obtained was in the pH range of
6–7, and equilibrium was reached after 40 min. Adsorption data were fitted to Langmuir
and pseudo-second order models. For wastewater collected from a pig farm with an OTC
concentration of 12.9 mg/L and wastewater collected from a poultry farm with a CTC
of 17.5 mg/L, OTC and CTC removal efficiencies of 95.2% and 96.6%, respectively, have
been achieved [24]. The removal of tetracycline hydrochloride from aqueous solutions
was investigated using biochar produced from the pyrolysis of mixed food scraps and
plant trimmings in a novel heat pipe reactor at 300 ◦C for 12 h. At a biochar dose of
5 g/L and pH of 7, adsorption capacities reached 2.98 mg/g and 8.23 mg/g for TC initial
concentrations of 20 mg/L and 100 mg/L, respectively. The results were found to be
best described by Freundlich isotherm and Elovich kinetic models [25]. In a study of TC
removal using NaOH-activated biochar derived from alfalfa hay with a specific surface
area of 796.50 m2/g, an adsorption capacity of 302.37 mg/g was achieved, which is similar
to that achieved with the commercial activated carbon Calgon F400 [26].

The use of low-cost adsorbents is a practical approach to removing contaminants
from wastewater. Several studies have examined the use of low-cost adsorbents to remove
various classes of pollutants; however, most of these studies focused on batch experiments.
In addition to batch experiments, it is essential to conduct continuous-mode experiments to
assess the feasibility of full-scale application of the process in wastewater treatment plants.
To the best of the authors’ knowledge, TC removal from real wastewater in continuous-
mode operation has not been studied previously. Therefore, the main aim of this research
was to assess the removal of TC from synthetic and real wastewater in both batch and
continuous operation modes under various operating conditions using commercial biochar
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derived from citrus tree waste, which is a sustainable treatment alternative. The specific
objectives of the study were as follows: (1) investigation of TC adsorption from synthetic
wastewater onto biochar for ranges of pH, contact time, initial concentration, and tem-
perature; (2) investigation of TC adsorption onto biochar from real wastewater in batch
mode under optimal conditions; (3) investigation of TC adsorption onto biochar from
synthetic wastewater under optimal conditions in fixed-bed/continuous-mode operation;
and (4) estimation of the cost of using biochar as an adsorbent. The results of this study
provide essential information about the mechanism associated with the adsorption process
in the removal of TC using biochar and the economic feasibility of using such a treatment
process in real applications.

2. Materials and Methods
2.1. Adsorbate and Adsorbent

The tetracycline hydrochloride (TC), C22H25ClN2O8, used in this study was supplied
by the Middle East for Laboratory Tools, Cairo, Egypt. It was provided in the form of a fine
bright yellow powder. Its molecular weight was 480.9 g/mol. The core structure of the TC
antibiotic has four rings: three saturated carbon centers and one aromatic ring.

The adsorbent was biochar, a low-cost adsorbent. The biochar used in this research
was supplied by MIEGOS and was produced by the pyrolysis of citrus tree waste. A
21 kg package was provided. This type of biochar is commonly used for soil fertility
improvement. It was ground to increase its surface area. Table 1 summarizes the chemical
composition of the biochar, according to information provided by the supplier.

Table 1. Biochar composition and characteristics.

Parameter Value

pH 8.5
EC (DS/M) 2.52
N (%) 1.5
P (%) 7
K (%) 2
Organic C (%) 70
O/C 0.6
H/C 0.36

2.2. Experiments

Adsorption experiments were conducted in batch and continuous-flow systems. The
batch experiments were carried out under various operating conditions. An aqueous
solution was prepared by dissolving a preset amount of TC in distilled water. The aqueous
solution with the designated initial TC concentration was then added to Falcon tubes
containing variable biochar weights, according to the experimental program. The tubes
were put on an orbital shaker and shaken for the specified time at 200 rpm to ensure
adequate contact of the solution with the adsorbent. The samples were collected and
filtered, and the filtered solution was then analyzed to determine the final TC concentration.
To test the applicability of the biochar to TC adsorption from real wastewater, wastewater
collected from the secondary settling tanks of the Zenein wastewater treatment plant in Giza,
Egypt, was used in the final run of the batch experiments. The wastewater characteristics
are summarized in Table 2.

To determine the rate at which the adsorbent regenerates, chemical desorption experi-
ments were carried out at four different HCl concentrations (0.2, 0.4, 0.6, and 0.8 moles)
at a predetermined exhausted biochar weight of 3.5 g biochar/50 mL of aqueous solution,
shaken for 3 h at 20 ± 3 ◦C, at six different adsorbate concentrations (50, 60, 70, 80, 90, and
100 mg/L). At the end of each experiment, the TC concentration was estimated, and the
desorption percentage was calculated.
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Table 2. Real wastewater characteristics.

Parameter Value

pH 7.45
Total suspended solids (TSS) (mg/L) 15.5
Volatile suspended solids (VSS) (mg/L) 11.3
Biochemical oxygen demand (BOD5) (mg/L) 17.3

For the continuous-flow column experiments, the aqueous solution was prepared as
explained earlier and then added to a feeding tank placed at a higher elevation than the
adsorption column bed. The feeding tank supplied the solution by gravity at a fixed flow
rate, adjusted using a controllable faucet, to columns containing biochar with different
bed depths. Each bed was placed in a glass tube with an inner diameter of 2.2 cm. The
column was operated at a continuous flow rate of 1 mL/min, an initial TC concentration of
30 mg/L, a feed solution pH of 4.0, and at room temperature. The adsorbent bed depths
tested were 1, 2, and 3 cm, corresponding to 1.6, 3.2, and 4.8 gm of biochar, respectively.
The solution collected from the bottom of each column was then filtrated and analyzed.
The continuous-flow experimental setup is shown in Figure 1.
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Figure 1. Fixed-bed column setup: (a) photograph of the setup, (b) schematic diagram of the process.

To determine the point of zero charge, a NaCl 0.01 molar solution was prepared and
distributed among 3 beakers in which the pH was adjusted using either HCl or NaOH
to obtain pH values of 4, 7, and 11. The solutions were moved to Falcon tubes to which
3.5 mg/L of biochar was added. The tubes were shaken for 24 h, the final pH values were
measured, and the relationship between initial and final pH was determined.

2.3. Analysis

Ultraviolet-visible (UV-Vis) spectrophotometry was used to measure TC light absorp-
tion in the ultraviolet and visible ranges of the electromagnetic spectrum. TC concentrations
were measured using a UV spectrophotometer (Shimadzu, Tokyo, Japan, model UV-1800
UV-V) at a 360 nm wavelength. High-performance liquid chromatography (HPLC, model
YL9100, YL Instruments, Republic of Korea) was used to analyze the real wastewater
samples. A pH meter (inoLab WTW series pH720, Xylem-WTW, Germany) was used to
measure the pH of each solution. All analyses were conducted in duplicate, and average
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values were recorded. The biochar surface before and after adsorption was examined using
a scanning electron microscope (SEM, model SEM Quanta FEG 250, field emission gun)
attached to a unit for energy dispersive X-ray (EDX) analysis with an accelerating voltage
of 30 kV and a magnification range of 14 to 1,000,000×. Brunauer–Emmett–Teller (BET)
analysis was conducted using NOVA touch–Quantachrome instruments, USA. Particle
sizes were estimated using the NICOMP particle sizing system. Fourier-transform infrared
(FTIR) samples were prepared using the KBr pelleting technique, and the FTIR analysis
was conducted using a UV-visible spectrophotometer (Thermo Scientific Nicolet iS50 FT-IR,
MA, USA).

2.4. Calculations

The adsorption equilibrium capacity (qe, mg/g) and percent removal were estimated
as per the following equations:

qe = (Co − Ce) V/M (1)

% Removal = [(Co − Ce)/Co)] × 100 (2)

Co and Ce are the TC concentrations at time = 0 and equilibrium in mg/L, V is the
volume in liters, and M is the mass of the biochar in grams.

2.5. Equilibrium Studies and Kinetic Models

The adsorption of TC onto biochar was studied using Langmuir, Freundlich, Dubinin–
Radushkevich, and Temkin isotherms [27–30]:

Langmuir isotherm:
1
qe

=

(
1

QmaxKL

)
1

Ce
+

1
Qmax

(3)

Freundlich isotherm:
log qe = nlog Ce + log KF (4)

Dubinin–Radushkevich isotherm:

lnqe = −KDRR2T2ln2
(

1 +
1

Ce

)
+ lnqDR (5)

Temkin isotherm:
Qe = B1 ln KT + B1 ln Ce (6)

To study the adsorption of TC onto biochar, the following kinetic models were used in
their linear forms [23,28]:

Pseudo-first order (PFO):

ln (qe − qt) = ln (qe) − k1t (7)

Pseudo-second order (PSO):

t
qt

=
1
qe

t +
1

k2q2
e

(8)

Elovich equation:

qt =
1
β

ln(αβ) +
1
β

ln(t) (9)

Qmax is the maximum capacity of adsorption in mg/g; KL is a constant denoting
the affinity between the adsorbate and adsorbent; n is the Freundlich isotherm intensity
factor; KF is the Freundlich constant in (mg/g)/(mg/L)n; KDR is a constant indicating the
adsorption energy in mol2/J2; qDR is the adsorption capacity in mg/g; R is the ideal gas
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constant, equal to 8.31 J/mol·K; T is the temperature in K; B1 is a Temkin isotherm constant;
KT is a constant for the Temkin isotherm equilibrium binding in L/g; t is the time in min; k1
is the rate constant of the PFO in min−1; k2 is the rate constant of the PSO in g/mg/min; α
is the initial rate constant in mg/g/min; and β is the desorption constant in mg/g.

2.6. Adsorption Mechanism

The adsorption mechanism usually proceeds as follows: film diffusion, in which the
adsorbate molecules migrate from the solution to the external surface of the adsorbent;
particle diffusion, which is the movement of the adsorbate molecules to the insides of the
adsorbent pores; and, finally, solute adsorption onto the interior surfaces of the adsorbent
pores [20].

2.6.1. Intraparticle Diffusion Model

The intraparticle diffusion model is described by the following equation [27–30]:

qt = Ki t0.5 + C (10)

2.6.2. Boyd Kinetic Model

The Boyd kinetic model is described by the following equation [27–30]:

Bt = −0.4977 − ln(qt/qe − 1) (11)

where qt is the amount of TC adsorbed per gram of biochar in mg/g, Ki is the intraparticle
diffusion rate constant in mg/g/min0.5, and C is a constant.

2.7. Adsorption Thermodynamics Studies

∆G◦, the standard Gibbs free energy change in kJ/mol, was calculated as follows [27]:

∆G◦ = −RT ln(Kc) (12)

where Kc is the equilibrium constant, calculated as follows:

Kc =
Co − Ce

Ce
(13)

∆H◦ and ∆S◦ were estimated, as follows, using the van’t Hoff equation:

ln(Kc) = −∆H◦

R
1
T
+

∆S◦

R
(14)

where ∆H◦ is the standard change in enthalpy in kJ/mol, and ∆S◦ is the standard change
in entropy in J/mol/K.

3. Results and Discussion
3.1. Adsorbent Characterization

The particle size distribution of the biochar was determined using dynamic light
scattering (DLS). The mean particle diameter was 393.92 nm, and the polydispersity index
(PI) was 0.52.

The BET analysis results indicate that the average surface area of the biochar was
364.9 m2/g, the average pore size was 1.0779 nm, the total pore volume was 0.1967 cc/g, and
the average particle radius was 3.737 nm. The surface area was considered low compared to
that of commercial activated carbon, which can be as high as 2000 m2/g [31], but relatively
high compared to that of other unmodified biochar samples [19,23].

The results of the XRF analysis are shown in Table 3. CaO was the largest oxide
component of the biochar used.



Sustainability 2023, 15, 8249 7 of 16

Table 3. Oxide contents (%) of adsorbent determined by X-ray fluorescence.

CaO CoO Cl FeO K2O MnO MoO3 Nb2O5 P2O5 SO3 SrO SiO2 TiO2 ZnO ZrO2 Sum

50.99 0.08 7.54 6.72 14.71 0.19 0.38 0.31 0.94 4.20 0.43 9.01 0.92 0.75 0.18 97.35

Figure 2a,b show the surface morphology of the biochar before and after the adsorption
of TC at magnification 500×. The figures show that the biochar surface had a heterogeneous,
porous structure. A fiber-like appearance can also be observed [21]. After adsorption, the
pores were smaller and filled with small molecules of adsorbate, confirming the adsorption
of TC onto the biochar surface.
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Figure 2. SEM images of biochar (a) before adsorption and (b) after adsorption.

FTIR spectroscopic analysis was conducted in the range of 400–4000 cm−1 to identify
the functional groups present on the biochar surface and how they contribute to the
adsorption process, as they help explain the adsorption mechanisms. As Figure 3 shows,
the most distinct peaks were obtained at 3431, 2918, 2851, 1600, 1573, 1432, 875, and
470 cm−1. The peak at 3431 cm−1 can be attributed to O–H stretching [32], those at 2918
and 2851 cm−1 to alkane C–H stretching [9], that at 1574 cm−1 to aromatic C=C stretching
and C=O stretching [9,32], that at 1432 cm−1 to C–H bending, and that at 875 cm−1 to
aromatic C–H bending [9].
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The FTIR spectra after adsorption show a shift in some peaks and damping in others,
while some new peaks appeared in the range from 1500 to 500 cm−1, which is the fingerprint
area. This proves the formation of new bonds, confirming the occurrence of the adsorption
process [5,10]. The new peaks appeared at 753 cm−1, due to C-Cl stretching, and at
681 cm−1, due to C–H “oop” stretching.
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3.2. Effects of Initial pH and Adsorbent Dose

pH is a key parameter affecting the adsorption process, which is why it was essential
to study its effect to determine its optimum value for use in subsequent experiments.
Figure 4 shows the effect of varying the solution’s pH on the removal efficiency of TC at
different biochar doses. The best removal was achieved at pH = 4 for all biochar doses,
with increasing removal as the biochar dose increased, up to a maximum of 67% removal
at 3.5 g/50 mL of biochar. The isoelectric point of the biochar was found to be 9.5, which
is close to values reported in the literature [23,33]. This means that below 9.5, the biochar
surface is positively charged. TC is usually found in the following ionic forms: cationic
at pH values < 3.3, zwitterionic at pH values in the range of 3.3–7.8, and anionic at pH
values higher than 7.8 [9,22,34]. This implies that the high removal rate obtained at pH = 4,
at which both the adsorbent and adsorbate were positively charged, was due to the π–π
electron donor–acceptor (EDA) interaction [9,13], which is a weak bond that usually occurs
between aromatic rings as an electron transfer occurs between an electron donor and an
acceptor. This mechanism is common in the adsorption processes of several pollutants on
carbonaceous materials, such as biochar, when used to adsorb TC [8,22].
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3.3. Effect of Initial Concentration

As Figure 5 shows, the initial concentration of TC has a major effect on the removal
efficiency: a lower initial concentration corresponds to lower removal efficiency. This can
be attributed to the biochar having more vacant sites at lower initial TC concentrations.
The removal efficiency increased rapidly with the initial TC concentration up to 20 mg/L
and more slowly thereafter, up to 90 mg/L, before decreasing. This trend is attributable to
a significant initial concentration gradient creating a driving force for TC transfer to the
surface of the biochar [5]. Based on these results, initial TC concentrations in the range of
50–100 mg/L were studied in subsequent experiments.

3.4. Effect of Reaction Time

As Figure 6 shows, the removal rate of TC was very high in the first 20 min and then
decreased, reaching an equilibrium at approximately 120 min. This pattern is common in
an adsorption process, as vacant adsorption sites are abundant at the start of the process
and become occupied over time. It is also consistent with TC adsorption patterns observed
by He et al. [23] and Dai et al. [33].
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3.5. Adsorption Isotherms

Table 4 shows that the Langmuir isotherm does not represent the data well. For the
Freundlich isotherm, the coefficient of determination R2 is 0.9059, which indicates that the
Freundlich model fits the adsorption data well and that the surface is heterogeneous. In
addition, 0.1 < 1/n < 0.5 indicates that TC was readily adsorbed onto the biochar surface [22].
The maximum adsorption capacity reached was 14.23 mg/g. The R2 of 0.878 for the Temkin
model is the lowest R2 for all of the isotherms considered, which suggests that it does not
describe the experimental data well either. The Dubinin–Radushkevich model describes
TC adsorption onto biochar well, as indicated by the R2 of 0.9043 for ln qe versus ε2. The
calculated value of Ea was 0.2092 (kJ/mol), which means that a free energy change of
0.2092 kJ/mol is needed to adsorb one mole of TC onto the biochar surface. A physical
adsorption mechanism is implied by the value of Ea being less than 8 kJ/mol [14,35]. TC
structures have aromatic rings that are adsorbed onto biochar by the π–π EDA interaction
as multi-layer adsorption [6].
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Table 4. Isotherm parameters for TC adsorption at T = 20 ± 3 ◦C, t = 240 min, pH = 4, and biochar
dosage of 3.5 g/50 mL).

Freundlich Langmuir Temkin Dubinin–Radushkevich

1/n (g/L) 0.35 Qmax (mg/g) −0.3263 B1 (mg/L) 1.6949 qDR (mg/g) 11.4146

Kf (mg/g)(mg/L)n 0.001038245 KL (L/mg) −0.0678 KT (L/mg) 0.1512 KDR (mg2/J2) −2.3912 × 10−6

R2 0.9059 R2 0.9245 b (J/mol) 1430.1327 Ea (kJ/mol) 0.2093

R2 0.8788 R2 0.9034

3.6. Adsorption Kinetics

Table 5 shows the kinetic parameter values for PFO, PSO, and the Elovich equations
and the coefficient of determination, R2. The R2 values are high for all models and highest
in the case of PSO. The difference between the calculated qe values and the experimental qe
values was high in the case of PFO, indicating that PFO does not represent the data well,
whereas, for PSO, this difference was less significant, and PSO provides a good fit to the
data, as does the Elovich equation.

Table 5. Kinetic parameters for the adsorption of TC onto biochar (T = 20 ± 3◦ C, pH = 4, and biochar
dosage of 3.5 mg/50 mL).

Kinetic Model Parameter
Initial Concentration of TC (mg/L)

50 60 70 80 90 100

PFO

K1 (min−1) 0.0193 0.0198 0.0189 0.0209 0.0195 0.0215

qe (exp)(mg/g) 0.4785 0.5792 0.6860 0.7966 0.9100 0.8537

qe (calc)(mg/g) 0.3480 0.3115 0.3594 0.3772 0.3862 0.9481

R2 0.9978 0.985 0.9925 0.9954 0.9960 0.9897

PSO

K2 (g/mg/min) 0.0904 0.1247 0.1083 0.1203 0.1171 0.0185

qe (exp)(mg/g) 0.4785 0.5792 0.6860 0.7966 0.9100 0.8537

qe (calc)(mg/g) 0.5192 0.6093 0.7175 0.8276 0.9382 1.0750

R2 0.9977 0.9985 0.9985 0.9988 0.9989 0.9924

Elovich

α (g/mg/min) 0.0707 0.2460 0.3352 1.02659 1.96380 0.0480

β (g/mg) 10.2459 10.5263 9.1996 9.2937 8.8261 4.3122

R2 0.9971 0.9915 0.9938 0.9937 0.9946 0.9806

3.7. Adsorption Mechanism
3.7.1. Intraparticle Diffusion Model

As Figure 7 shows, TC adsorption onto biochar is a two-step mechanism. The first step
is the liquid film diffusion process, and the second step is the internal diffusion process.
The fact that the plotted lines do not pass the origin indicates that intraparticle diffusion is
not the only controlling step [22,29].

3.7.2. Boyd Model

Boyd’s kinetic model was used to determine which step in the adsorption process was
the slowest. As Figure 8 shows, the plots of Bt versus time for all initial TC concentrations
are linear but do not pass through the origin, indicating that TC adsorption onto biochar is
mainly due to film diffusion, which makes it the rate-limiting step [22,28].
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3.8. Adsorption Thermodynamics Studies

As Figure 9 shows, the van’t Hoff plots of ln (Kc) vs. 1/T show linear correlations for
all adsorbate concentrations (50, 60, 70, 80, and 90 mg/L), with high values of R2 > 0.90.
The estimated values of the thermodynamic parameters (∆G◦, ∆H◦, and ∆S◦) based on
the experimental results are shown in Table 6. The fact that ∆G◦ has a negative charge
indicates that the TC adsorption onto the biochar was both spontaneous and possible. The
exothermic adsorption of TC is indicated by the negative value of ∆H◦. The reduction in
randomness at the liquid–solid interface during the adsorption process is demonstrated by
the negative ∆S◦ charge. Adsorption enthalpy can be used to classify the adsorption process
as either chemical (40–800 kJ/mol) or physical (5–40 kJ/mol). TC may adsorb onto biochar
physically, according to the ∆H◦ value shown in Table 6. TC adsorption onto various
carbon-based adsorbents, including activated carbon from tomato industrial processing
waste [5], graphene oxide [14], and magnetic porous carbon from waste hydrochar [36], has
been found to be physical.
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Table 6. Thermodynamic parameters of TC adsorption by biochar at different temperatures.

T (◦C)
Initial TC Concentration (mg/L)

50 60 70 80 90

∆H◦ (kJ/mol) −20.45 −19.47 −11.88 −11.15 −11.61

∆S◦ (J/mol/K) −57.19 −52.11 −25.97 −22.24 −23.19

∆G◦ (kJ/mol)

20 −3.70 −4.20 −4.27 −4.63 −4.82

30 −3.13 −3.68 −4.01 −4.41 −4.59

40 −2.55 −3.16 −3.75 −4.19 −4.35

3.9. Desorption

The biochar’s potential for useful applications was established by evaluating its
reusability. HCl was used at four different concentrations (0.2, 0.4, 0.6, and 0.8 M) as a
desorbing agent. The desorption percentage increased with increasing HCl concentration,
as shown in Table 7. The desorption efficiency at 0.8 M HCL reached 87.24% for a TC
concentration of 50 mg/L, 88.04% for 60 mg/L, 88.51% for 70 mg/L, 92.95% for 80 mg/L,
91.26% for 90 mg/L, and 91.71% for 100 mg/L. The successful desorption of TC from
biochar indicates its high potential for being used several times, which would reduce the
cost of the adsorption process.

Table 7. Desorption of TC from biochar using HCl.

TC Initial Concentration
(mg/L)

Average Removal
Efficiency (%)

Percentage of Desorption (%) vs. HCl Concentrations

0.2 M 0.4 M 0.6 M 0.8 M

50 82% 80.50% 83.27% 84.62% 87.24%
60 83% 84.58% 85.48% 86.81% 88.04%
70 84% 83.99% 85.10% 87.18% 88.51%
80 86% 88.57% 91.31% 91.73% 92.95%
90 87% 88.27% 88.83% 89.52% 91.26%
100 74% 88.31% 89.20% 91.17% 91.71%

3.10. Real Wastewater Experiments

To assess the applicability of biochar for TC adsorption from real wastewater, wastew-
ater was collected from the effluent channel of the final settling tanks of Zenein WWTP,
Giza, Egypt. The wastewater characteristics were previously indicated in Table 2. TC
was added to the wastewater. Biochar at a dose of 3.5 g/50 mL removed TC from the
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real wastewater at efficiencies of 95, 93, and 91% for initial TC concentrations of 70, 80,
and 90 mg/L, respectively. These removal efficiencies are higher than those obtained for
synthetic wastewater, which may be because of the presence of dissolved solids in the
water that act as “salting out agents” [37].

3.11. Column Test Experiment

The solution was introduced at the top of the column and traveled for a certain time
that depended on the column’s height. When the adsorbate is detected in the effluent at
the column’s end, this is known as a breakthrough. At a height of 1 cm, the solution took
40 min to reach the exit; at 2 cm, it took 65 min; and at 3 cm, it took 90 min. Figure 10a
shows the relation between removal efficiency and time for biochar bed depths of 1, 2, and
3 cm, while Figure 10b shows the breakthrough curve. The removal efficiency was high
during the first 2 h and then decreased with time. This can be explained by the decreasing
availability of adsorption sites on the fresh biochar’s surface. As time passes, TC fills the
available adsorption sites, and the removal efficiency decreases until the biochar surface is
saturated, as indicated by the effluent’s concentration equaling the influent’s concentration.
It was also observed that the removal efficiency increased with increasing bed depth. As
shown in Figure 10a, the removal efficiencies for the first 2 h were 19%, 23%, and 36% for
bed depths of 1, 2, and 3 cm, respectively. This is attributable to the increase in the surface
area available for adsorption on the surface of the biochar.
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3.12. Cost Analysis

Biochar is sold in Egypt in a 21 kg pack for USD 3.7, i.e., USD 0.18/kg. The optimal
dose of biochar was found to be 3.5 g/50 mL, i.e., 70 g/L. Thus, the expected biochar cost
to treat 1 m3 of wastewater would be USD 12.6. For commercial activated carbon, reported
doses range between 0.2 and 20 g/L, at a cost of USD 45.71/kg, which means that the cost
to treat 1 m3 of wastewater is USD 9.1 to 914.2 [9]. This analysis shows that although the
biochar dose required for TC removal is high compared to that of commercial activated
carbon, its cost is competitive.

3.13. Research Findings in Comparison with the Literature

Tables 8 and 9 present comparisons of this study’s findings with published research
work on the adsorption of TC in batch-mode and continuous-mode operation, respectively.
The results of the comparison indicate that this study’s findings are similar to those obtained
in other studies, even for doses similar to those of other adsorbents of similar nature.
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Table 8. Comparison of study findings and published research on optimal conditions for TC adsorp-
tion on biochar in batch mode.

Adsorbent Used Dose
(g/L) pH T ◦C

TC Initial
Conc.

(mg/L)

Surf.
Area

(m2/g)
Isotherm Kinetic

Model Thermodynamics
Removal
Efficiency

(%)
Ref.

Pistachio shell
Coated with ZnO

Nanoparticles
80 4 25 70 - Freundlich PSO EXO. 84.87 [10]

Natural Iraqi
Bentonite 0.2 6–7 20–40 20 - Langmuir and

Freundlich PSO EXO. 90 [16]

Cow manure biochar 1.25 3 25 50 31.23 Freundlich PSO ENDO. 47 [22]

Water treatment
sludge biochar 4 4 60 34.22 Langmuir and

Freundlich PSO ENDO. 99 [23]

Activated carbon
Dopped alginate

beads
0.2 7 25 20 850 Langmuir and

Freundlich PSO ENDO. 100 [38]

Citrus trees biochar 70 4 20 90 364.903 Freundlich PSO EXO. 87 Current
study

Table 9. Comparison of study findings and published research on optimal conditions for TC adsorp-
tion on biochar in continuous mode.

Adsorbent Used Bed Height (cm) Q (mL/min) C0 (mg/L) pH Removal Ref.

Granular nanoporous activated carbon prepared
from apricot shell 4 4 50 5 38 [39]

Modified wheat straw by diethylenetriamine,
chloroacetic acid, and zirconium 5 2 200 7 48 [40]

Citrus trees biochar 3 1 30 4 36 Current study

4. Conclusions

TC is a commonly used antibiotic found in wastewater effluents. Its removal was
studied using biochar, a low-cost, sustainable adsorbent derived from citrus tree waste with
a surface area of 364.903 m2/gm. TC was removed at an efficiency of 87% in batch-mode
operation at pH = 4, a biochar dose = 3.5 g/50 mL, a temperature of 20 ◦C, and an initial
TC concentration of 90 mg/L. The Freundlich isotherm best described the equilibrium
conditions (R2 = 0.905). The kinetic model that best described the data was PSO, and
thermodynamic analysis indicated that the adsorption process was exothermic and sponta-
neous. The study results suggest that TC adsorption onto biochar is a physical adsorption
process with possible π–π EDA interaction. For real wastewater containing TC, the re-
moval efficiency reached 95% under the previously mentioned operating conditions. In the
continuous-flow operation mode studied in a fixed column, the removal efficiency reached
36% after 2 h at a 3 cm bed height. A cost analysis showed that the cost of biochar required
to remove TC from 1 m3 of wastewater was approximately USD 12.6. The research findings
for real wastewater treatment are promising, but more research is needed to achieve better
removal efficiency for continuous flow.
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