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Abstract: Electric cars (EVs) are getting more and more popular across the globe. While comparing
traditional utility grid-based EV charging, photovoltaic (PV) powered EV charging may significantly
lessen carbon footprints. However, there are not enough charging stations, which limits the global
adoption of EVs. More public places are adding EV charging stations as EV use increases. However,
using the current utility grid, which is powered by the fossil fuel basing generating system, to charge
EVs has an impact on the distribution system and could not be ecologically beneficial. The current
electric vehicle (EV) market, technical requirements including recent studies on various topologies of
electric vehicle/photovoltaic systems, charging infrastructure as well as control strategies for Power
management of electric vehicle/photovoltaic system., and grid implications including electric vehicle
and Plug-in hybrid electric vehicles charging systems, are all examined in depth in this paper. The
report gives overview of present EV situation as well as a thorough analysis of significant global
EV charging and grid connectivity standards. Finally, the challenges and suggestions for future
expansion of the infrastructure of EV charging, grid integration, are evaluated and summarized. It has
been determined that PV-grid charging has the ability to create a profit. However, due to the limited
capacity of the PV as well as the batteries, the Power system may not be cost effective. Furthermore,
since PV is intermittent, it is probable that it will not be able to generate enough electricity to meet
consumer demand.

Keywords: EV charging; photovoltaic systems; grid connectivity; standards

1. Introduction

The electrical power and transportation networks are beginning to integrate in a way
that was before imaginable thanks to the EV’s environmental, technical, and economic
potential [1]. The main link between the two is the batteries, which power its EV’s traction,
control, lights, and air conditioning system. Charging the EV from the power grid, however,
places additional load on the utility, especially during high demand hours. Prompting
the charge of renewable energy sources is one method to mitigate the grid’s negative
impact [2]. The use of these clean energy sources is meant to reduce negative environmental
consequences while also increasing the overall efficacy of the charging system [3].

Solar energy is becoming widely accepted as a competitive energy source of supple-
menting the grid due to the ongoing decline in photovoltaic (PV) module prices [4]. In
addition, the PV system requires very low maintenance in terms of labor & fuel [5]. The
development of energy converting technology, battery management systems, improved
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installation methods, & design standards have all helped to significantly improve the
application for PV to charge EVs (i.e., PVEV charge) [6].

A lot of the time, especially during the day, EV is left lazily sitting in the parking place,
exposing to the full sun. It facilitates the expansion of charging options for EVs by making
direct use of the “charging-while-parking” concept, it is meant to work in tandem with the
standard “charging by halting” method. Installing a photovoltaic system on the parking
garage’s roof is one easy option for recharging these electric vehicles [7], while the owner of
the vehicle is engaged in other activities [8]. The PV powered charging station offers a wide
range of advantages, according to the authors in. The savings are particularly significant
because charging takes place during the day, while load demand & electricity prices are
their highest. Additionally, it has very low CO2 emissions and small amount of fuel costs.
This roof parking facilities are advantageous structural because they offer free shelter from
sun & rain, which is important for countries with hot climatic conditions [9].

A PV-power, EV charge station uses PV generation as a secondary power point to
recharge EVs, which will cut down on co-emission through fossil fuel-powered plants. In
additional words, while the grid is down, EVs may still be charged using PV energy. In
addition to reducing peak loads and improving microgrid stability via PV production and
V2G, these technologies may also be used to reduce peak loads [10]. However, because
to their mobility features, EVs are not the same as an energy storage system. Even if
enough EVs are present at the charging station, an V2G may not occur, so would reduce
peak power consumption or improve microgrid stability. Even though PV-powered EV
charging stations have the potential to increase microgrid stability, there are a number of
considerations that must be made [11,12].

The layout of a solar-powered EV charging station is shown in Figure 1. Solar panels,
DC/DC converters, EVs, bidirectional EV chargers, as well as bidirectional inverters are the
main components of a PV-powered EV charging station. Through a bidirectional inverter,
the charging station is connected to the microgrid. The bidirectional inverter allows
electricity from the grid to be delivered to the charging station [13,14]. Both bidirectional
inverter as well as the microgrid have parallel connections to the local load. The solar
array’s output may either be utilised to directly serve local customers or added to the
utility grid. As a means of monitoring the highest power point of a photovoltaic array, a
direct current to direct current (DC/DC) converter is used (MPPT) [15]. The charging and
discharging of electric cars are both within the jurisdiction of the bidirectional EV charger.
To link EVs to a microgrid, a bidirectional inverter as well as reversible EV charging are
required [16].

Sustainability 2023, 15, x FOR PEER REVIEW 2 of 27 
 

installation methods, & design standards have all helped to significantly improve the ap-
plication for PV to charge EVs (i.e., PVEV charge) [6].  

A lot of the time, especially during the day, EV is left lazily si�ing in the parking 
place, exposing to the full sun. It facilitates the expansion of charging options for EVs by 
making direct use of the “charging-while-parking” concept, it is meant to work in tandem 
with the standard “charging by halting” method. Installing a photovoltaic system on the 
parking garage’s roof is one easy option for recharging these electric vehicles [7], while 
the owner of the vehicle is engaged in other activities [8]. The PV powered charging sta-
tion offers a wide range of advantages, according to the authors in. The savings are par-
ticularly significant because charging takes place during the day, while load demand & 
electricity prices are their highest. Additionally, it has very low CO2 emissions and small 
amount of fuel costs. This roof parking facilities are advantageous structural because they 
offer free shelter from sun & rain, which is important for countries with hot climatic con-
ditions [9]. 

A PV-power, EV charge station uses PV generation as a secondary power point to 
recharge EVs, which will cut down on co-emission through fossil fuel-powered plants. In 
additional words, while the grid is down, EVs may still be charged using PV energy. In 
addition to reducing peak loads and improving microgrid stability via PV production and 
V2G, these technologies may also be used to reduce peak loads [10]. However, because to 
their mobility features, EVs are not the same as an energy storage system. Even if enough 
EVs are present at the charging station, an V2G may not occur, so would reduce peak 
power consumption or improve microgrid stability. Even though PV-powered EV charg-
ing stations have the potential to increase microgrid stability, there are a number of con-
siderations that must be made [11,12]. 

The layout of a solar-powered EV charging station is shown in Figure 1. Solar panels, 
DC/DC converters, EVs, bidirectional EV chargers, as well as bidirectional inverters are 
the main components of a PV-powered EV charging station. Through a bidirectional in-
verter, the charging station is connected to the microgrid. The bidirectional inverter allows 
electricity from the grid to be delivered to the charging station [13,14]. Both bidirectional 
inverter as well as the microgrid have parallel connections to the local load. The solar ar-
ray’s output may either be utilised to directly serve local customers or added to the utility 
grid. As a means of monitoring the highest power point of a photovoltaic array, a direct 
current to direct current (DC/DC) converter is used (MPPT) [15]. The charging and dis-
charging of electric cars are both within the jurisdiction of the bidirectional EV charger. 
To link EVs to a microgrid, a bidirectional inverter as well as reversible EV charging are 
required [16]. 

Local load

GridBidirectional 

inverterDC/DC Converter

Bidirectional EV charger

PV array

EV 1

EV 2

EV 3

 
Figure 1. Structure of the investigated PV-powered EV charging station [17]. 

Figure 1. Structure of the investigated PV-powered EV charging station [17].



Sustainability 2023, 15, 8122 3 of 26

There are some review papers regarding EVs. Table 1, presents a brief review of some
of the existing works along with the most important aspects that investigated in the articles
under 7 domains including EV market review and analysis, technical requirements, EV
charging infrastructure, grid concepts, overview of the current state of EV and analysis on
important global standards, presenting future challenges and suggestions for the develop-
ment of charging infrastructure, and EV-PV charging system. As it can be seen in the table,
most of the mentioned papers are not considered EV-PV stations except Ref. [18] which it is
not considered EV’s market, and standards.

Table 1. A brief review on some of the related existing review papers carried out on electric vehicle.

Domain
Ref [19]
Year 2022
Publisher Elsevier

Ref [20]
Year 2021
Publisher Elsevier

Ref [21]
Year 2022
Publisher Wiley

Ref [22]
Year 2021
Publisher IEEE

Ref [18]
Year 2022
Publisher IJRER

EV Market
review and
analysis

Technical
characteristics of 17
EVs are compared.
Also, a
comprehensive
analysis is carried
done regarding the
countries using EVs
as well as
introducing the most
popular EVs.

The overall view of
cost and characteristics
of 10 EVs are
compared. Also, the
number of EVs in
some countries are
reported as well as the
trend of banning of
using internal
combustion cars

The number of EVs
used in some
countries and their
market’s share are
shown from 2015
to 2019

There is no
analysis regarding
EV’s market, while
in a table a
comparison about
the technical
characteristics of
4 EVs models
is done

There is no
analysis
regarding EV’s
market

Technical
requirements

Investigations of
3 charging
techniques
considering
5 aspects and the
optimum site of
charging stations are
presented.
Analysis of
controlling
infrastructures
including the
controlling
architecture,
centralized and
decentralized
controlling are
presented.

Investigation of fast
charging system (DC)
considering converters
and their instructions
is done as well as a
comprehensive
analysis on different
converters.

13 articles are
listed regarding
the charge
standards. Also,
different aspects of
controlling
including
harmonics and
disharmonic,
methods and
architecture of
charging controls.
Discussion
regarding the
integrating of
distribution
sources with
distribution
network is the in
the highlights of
the study.

Improvement of
off -board charger
(EVs with IPT) and
its infrastructure
are investigated,
since it addresses
the need of a
specific protocol
for each EV.

Application of
passive balancer
for energy
management of
EVs considering
various EVs and
charge stations
are investigated
to analyse the
output power of
PVs. Also,
considering:
architecture of
EV-PV, topology
of converters,
and
5 optimization
methods
regarding the
improvement of
the system

EV Charging
infrastructure

Charging methods
including BSS, CC,
and WPT are
discussed along with
a comprehensive
investigation of
various conectors’
protocols

On-off board charging
systems are discussed
along with a
comprehensive
analysis is carried
done on converters as
well as cost of
charging stations in
some countries

Charging
infrastructures are
discussed

Description of the
topology of
AC/DC and
DC/DC converters.
Power factor
corrector, two
stage onboard
chargers and
integrated onboard
chargers are
discussed.

Charge levels
and their
different moods
along with
vehicle coil
detection system
are presented
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Table 1. Cont.

Domain
Ref [19]
Year 2022
Publisher Elsevier

Ref [20]
Year 2021
Publisher Elsevier

Ref [21]
Year 2022
Publisher Wiley

Ref [22]
Year 2021
Publisher IEEE

Ref [18]
Year 2022
Publisher IJRER

Grid concepts

Investigation of the
positive and
negative effects of
integration of EVs
with grid along with
the role of
distributors and
aggregators on EVGI

An overall description
of grid concepts along
with the investigation
of converter’s
topologies

Investigation of
integration of
distributed energy
resources with grid
considering DER
standards and the
role of data
analysis on DER

A comprehensive
description of the
effect of charging
stations on the grid
considering RES,
grid stability,
demand-supply,
assets, and current
harmonics

Description of
intelligent grid
system along
with V2G
technology and
intelligent
transportation
system

Overview of
the current
state of EV and
analysis on
important
global
standards

25 different
standards based on
the standards’ kind
including connector,
safety, charging
teqniques are
presented. Also,
presenting the
specific standard
using by different
manufactures

A comprehensive
presentation of patents
and projects of EV
manufactures. Also, a
comprehensive study
is carried out on the
charging stations
standards

Investigation of
9 standards
implemented in
some countries

Charger standards
are discussed

There is no
description
regarding
standards

Presenting
future
challenges and
suggestions for
the
development
of charging
infrastructure

Discussing the
challenges regarding
the integrating of
grid, V2G
technology, and
range anxiety.
Presenting the
challenges and
suggestions
regarding the
integration of grid.

Application of SiC and
GaN in converters
creates research rooms
for fast charging and
discharging

DR is considered
as a challenge and
the solutions are
discussed.
Challenges and
barriers of EV
adoption from
different aspects
including social,
policy, and
economy are
discussed.

Introducing 7 cases
that researchers
focus on as
challenges, such as
V2G technology off
board charging

Introducing of
the different
criteria on the
charging time as
a challenge

EV-PV
charging
system

There is no
description
regarding EV-PV

There is no description
regarding EV-PV

There is no
description
regarding EV-PV

There is no
description
regarding EV-PV

A comprehensive
study on EV-PV
stations along
with their
architectures

Considering more aspects of the research regarding EVs would cause to have a com-
prehensive source for readers. In this review paper, for the first time, all of the mentioned
domains in Table 1 are systematically discussed to have an overview regarding other
important related factors of EV-PV stations. The contributions of the present work are
as follows:

• Electric Vehicle and Plug-in hybrid electric vehicles Charging Systems: global deploy-
ment of electric vehicle charging infrastructure, charging systems and their standard-
ization, classification of electric vehicles charging levels, specifications, and standards,
standards for electric vehicle charging as well as grid integration, electric vehicle charg-
ing standards, electric vehicle grid integration standards, safety standards for electric
vehicle, electric vehicle integration in the power grid, modelling of grid-connected
electric vehicle-photovoltaic system, electric vehicle smart charging using photovoltaic
and grid
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• Control Strategies for Power Management of Electric Vehicle/Photovoltaic System:
intelligent energy management strategy, energy management strategy for smart home
integrated with electric vehicle, and photovoltaic, control strategy for power elec-
tronic components

• Recent Studies on Various Topologies of Electric Vehicle/Photovoltaic Systems
• Challenges and Future Work Recommendations: modelling, optimization and control,

issue on the integration with smart grid system, challenges and suggestions for electric
vehicle charging

Figure 2 shows a flow diagram to see how the bibliometric review and research method
and other parts of the current study is carried out.
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2. Electric Vehicle and Plug-in Hybrid Electric Vehicles Charging Systems
2.1. Global Deployment of Electric Vehicle Charging Infrastructure

To that end, the federal government of the United States has mandated that one million
electric vehicles be in use by the year 2015, as well as numerous regulations have been put
into place to encourage electrification of all spheres of public life. According to the Ontario
Ministry of Transportation, using money of its Green Investment Fund, the Canadian
state of Ontario plans to construct 500 EV charging stations (EVCSs) in around 250 places
throughout the province by the end of 2017. It is estimated that by 2020, Germany will need
around 70,000 public on-street charging spaces, according to the country’s National Electric
Mobility Platform (NPE) [23]. As a solution to the problems caused by China’s current
approaches to exploiting renewable energy and to keeping up with the ever-increasing
energy needs of electric cars, the concept of placing a limited number to solar-powered
charging stations to EVs is presented [24]. In May of 2017, the United States, Canada,
France, Germany, Japan, the Netherlands, Norway, Sweden, and the United Kingdom
formed the Electric Vehicles Initiative (EVI), a multi-govt policy forum with the goal of
promoting the global adoption of EVs. South Africa, which joined the EVI in 2016 but
remains a member, is actively involved in EVI operations, as do Korea and India [25]. The
Indian government as well as major automakers have joined forces to promote e-vehicles
as well as other clean fuel options in an effort to lower transportation-related pollution.
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Thus, plan (NEMMP) 2020 for the nation’s EV mission was initially suggested in 2013, and
the following year it was signed into law. Faster Adoption and Manufacturing of (Hybrid
&) Electric Vehicles (FAME) is another initiative in this space. The year 2015 also saw the
announcement of India’s intention to push the use of electric vehicles, and the India Scheme
is introduced to support that effort [26]. It subsidises both utilities and their customers. The
absence of charging outlets is now the biggest problem with India’s infrastructure. There
are still not a lot of places to charge your car around the country. Ninety-five percent of the
world’s electric vehicle stock and registrations are held by EVI members [27].

2.2. Charging Systems and Their Standardization

The classification of EVs charging levels, specifications, and standards, as well as in the
next section, we will talk about controls strategies for EV/PV system power management.
Finally, a review of the issues and the prospects for the future is provided, with an emphasis
on the energy management system.

Electric Vehicle Charging Standards

Full EVs enable total electrification of the transportation industry, in contrast, Electric
Vehicle and Plug-in hybrid electric vehicles (PHEVs) are just partially electrified auto-
mobiles [28]. Various charging states are shown in Figure 3. In addition to high-power
off-board chargers, Plug-in electric vehicles may also be charged continuously at any time
of day or night using on-board level 1 or level 2 chargers (PEVs). An on-board integrated
charge that can rapidly charge PEVs may combine the best features of conventional on-
board and off-board chargers. Different charging levels had been defined by various
organization throughout the globe, with an emphasis on the architecture of the vehicle
and the kind and size of the battery utilized [29]. As a result, each car charges differently
and behaves differently when charging. Therefore, the PV-EV charger must be designed in
accordance with the aforementioned specifications.
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2.3. Classification of Electric Vehicles Charging Levels, Specifications, and Standards

Conductive charging, wireless (or contactless) charging, and battery swapping are
the three ways to refill an electric vehicle as classified in Figure 4. The most common
and easiest way to charge anything nowadays is via conductivity [30,31]. In conductivity
charging, the power source and battery are connected by a cable, whereas in wireless
charging (WC), they are not. As opposed to conductive charging, WCs and battery shifting
are currently under investigation and development [32,33]. The sections that follow will
give further information on these technologies. Figure 4 provides a categorization of several
charging methods.
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2.3.1. Conductive Charging

EV battery charger play crucial role for development of EVs since the adoption &
societal acceptability of EVs is contingent on the ease of access of charging stations and
public chargers. Various topologies of single phase & three phase EV charger are dis-
cussed [35]. A power factor adjustment unit, a DC-DC converter, and an AC-DC converter
are the three components that make up this setup. There are two types of charger systems:
on-board (inside the car, for slow charging) as well as off-board (outside the vehicle, for
quick charging) (i.e., outside vehicle for fast charging) [36]. In addition, these chargers may
be categorized as unidirectional or bidirectional. The gear for unidirectional charging is
basic and merely permits electricity to flow from the grid to the electric vehicle. Bidirec-
tional charging permits power to be transferred from the vehicle’s charging station to the
battery while driving on a public road; also known as “charging” to provide energy to a
structure, the grid, or a home [37]. Potentially alleviating some of the stress experienced by
EV owners and lowering the amount of energy storage required for onboarding may be
achieved via the availability and development the EV charging infrastructure. The Society
of Automotive Engineers (SAE) has established three different charging thresholds in its
standard J1772 [38]. Level 1 and 2 chargers will be the norm for residential use, level 3
will be used by public charging stations, as reported by Electric Power Research Institute
(EPRI) [38].

Level 1 Charging

Due to lack of extra infrastructure and the ability to use any wall outlet, this method
of charging is both the slowest and easiest. For Level 1, a typical 120 V/15 A wall outlet
is utilized in the US. Only by on-board charger is offered. This EV takes a time to charge
completely, although being less expensive than other charging levels. This charging level
has the least negative effects on distributing networks because of its low power rating [39].

Level 2 Charging

Level 2 charging utilizes 19.2 kW of charging power and 208 V or 240 V at currents
up to 80 A. Because Level 2 requires less time to charge than Level 1, EV owners prefer it.
For both private and public charging, specific electric vehicle supply equipment (EVSE)
installation may be necessary. Electric vehicles like the Nissan Leaf have this much charging
capacity built in [40].
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Level 3 Charging

Level 3 is used for quick charging & functions like typical gas station (i.e., less than
an hour of charging time) that may be put on major roads and highways. Due to the high
charging power, which may surpass 100 kW it is only accessible as an off-board charger and
is fed from a 3-phasing circuit with 480 V or greater voltages. It was obvious that level 3
charging is inappropriate for use at home. Its expensive installation raises the possibility of
a problem [41]. Level 2 as well as Level 3 charging stations are expected to be widely used
in public places including shopping centers, garages, restaurants, hotels, movie theatres,
and other entertainment venues to facilitate rapid charging. Expensive charging power is
advantageous to the perspective of charging time, but it may also result in peak demand,
equipment overloaded on distributing network, and of high installation costs [42,43].

2.3.2. Wireless Charging

With WC, electric vehicles may be charged without a cord or any other direct physical
contact here between power source and the battery. To reduce the cost, size, and environ-
mental impact of EVs, advances in WC will reduce the amount of energy needed from
the vehicles’ onboard batteries. WC could replace conventional conductive charging in
the future. The possibility exists to charge the batteries in electric busses using WC. It
will function at various voltages (level 1, 2, & 3). 90% is at greatest efficiency for WC ever
noted. WCs utilizes the inductive, resonant inductive, and capacitive technologies [34].
We’ll go through inductive wireless charging (IWC) to give you an understanding of how
the technology works. The AC electricity from the power grid is converted to DC power
via the IWC’s built-in AC/DC converter. It is then transformed once again into AC power
and delivered to the transmitting (or main) coil at a high frequency. These parts are all
located below under the roadway. The receiving (secondary) coil in the EV gets electricity
from the transmitting coil via the air gap using electromagnetic induction [44–46]. After
an AC/DC converter transforms the energy from an incoming power source into a usable
direct current, the battery may be charged. Static inductive charging & dynamic inductive
charging are two categories for WC. EVs must remain stationary while being charged using
static inductive technology. Dynamic inductive charging, however, permits WC while an
EV is in motion [47,48].

Existing WC implementations are geared at facilitating one-way flow of power from
the grid to a vehicle, but developments in this area will enable electric vehicles to wirelessly
withdraw the grid’s energy to provide power. These benefits of this technology are user
ease, cable-free operation, and electrical safety. The disadvantages of this technique are the
poor power transfer efficiency between prices and the expensive infrastructure expenditures
compared to conductive charging [49].

2.3.3. Battery Swapping

BSSs are charging station where empty batteries may be swapped out. A fully charged
battery will soon replace the EV battery. Electric buses with large batteries that require a
long time to charge using conventional conductive charging may employ battery swapping.
The BSS or a third party that rents batteries to EV owners is required to maintain a sizable
inventory for this technology [50]. The BSS is equipped with a distribution transformer,
batteries, battery switching equipment, and AC/DC converters for charging the batteries.
According to certain research, BSS might leverage bidirectional charges to provide electricity
services using a V2G paradigm. Battery uniformity, significant infrastructure costs, and a
huge BSS footprint are obstacles for this technology. A battery switching technology that
can change the battery in 90 s was unveiled by Tesla Company in 2013 [51].

2.4. Standards for Electric Vehicle Charging as Well as Grid Integration

As a result of using EVs, the auto and power sectors have more room to expand. Every
part of this new technology must be standardized if it is to be used consistently over the
world. The standardization of EV charging may be divided into three categories according
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on the Table 2: EV charging component standards, EVGI standards, & safety requirements.
Component-level EV charging standards are developed by the International Organization
for Standardization (ISO) and others, whereas ISO focuses on EV standardization as a
whole [52,53].

Table 2. Classification table of comparison between different type of EVs charging levels, specifica-
tions, and standards.

S.No Charging
Station Voltage(V) Power(kW) Type of Vehicle

(Wheels)
Type of

Compatible Charger

1 Level 1 (AC) 240 ≤35 4, 3, 2 Type 1, Bharat
AC-001

2 Level1 (DC) ≥48 ≤15 4, 3, 2 Bharat DC-001

3 Level 2 (AC) 380–400 ≤22 4, 3, 2
Type 1, Type 2, GB/T,

Bharat
AD-001

4 Level 3 (AC) 200–1000 22 to 4.3 4 Type 2

5 Level 3 (DC) 200–1000 Up to 400 4 Type 2, CHAdeMO,
CCS1, CCS2

The requirements for EV discharging and charging into the grid have been specified.
Electric vehicles serve as a DEV during grid charging as well as discharge (DER). As
a result, DERs’ grid connectivity regulations also apply to EVGI. The IEEE (Institute
of Electrical and Electronics Engineers Engineers) as well as Underwriters Laboratories
(UL) are two of the most influential organizations in the development of standards for
grid connection [54]. The majority of the aforementioned organizations have established
its safety requirements for EV charging & grid connectivity. On the other hand, the
National Fire Protection Association (NFPA) and National Electrical Code (NEC) are heavily
concerned with safety [55]. Subsequent sections elaborate on the norms and regulations
established by such groups.

2.5. Electric Vehicle Charging Standards

EV charging infrastructure is included in a few international standards. Whereas IEC
is commonly used in Europe, SAE & IEEE are employed by manufacturers headquartered
in the United States [56]. The CHAdeMO EV charging protocol was developed in Japan.
The Guobiao (GB/T) standard [52] is used in China for both alternating current (AC) and
direct current (DC) charging, IEC standards [53] are identical to those of the GB/T for AC
charging [55]. The Chinese National Committee for ISO as well as IEC developed this
specification. Since the IEC [57] as well as SAE standards [38] for EV charging are the most
widely used, we devote a lot of space to them here. From the specifications alone, it is
evident that IEC61852 and SAE J1772 [38] are almost similar with the exception of certain
language differences. While “level” is used to describe the intensity of an output in SAE,
“mode” is the preferred term in the International Electrotechnical Commission (IEC) [57].

International Electrotechnical Commission standards

The IEC is a British organization that establishes norms for many forms of electrical,
electronic, as well as related technologies.

• IEC61851 [52]. The IEC 61851 outlines the requirements for charging EVs and PHEVs
using on-board and some off equipment utilising 1000 V AC and 1500 V DC supply
voltages.

• IEC 61980 [52]. WPT systems up to 1000 V AC or 1500 V DC are covered under the
IEC 61980 standard. This requirement applies to the WPT system that may be accessed
using local storage facilities [57].

• IEC62196 [58]. IEC62196 specifies the plugs, socket outlets, vehicle connections, as
well as vehicle inlets used for electrically conducting electric cars.
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• SAE standards. The SAE is professional organization with headquarters in the United
States that creates standards for engineering organizations in many sectors.

• SAEJ2293 [59]. For use with either an on-board or external power source, check
out SAEJ2293 for detailed specifications. Part one of this standard, J2293-2, covers
the information requirements and network architecture of EV charging, Part One of
the J2293 standard discusses the energy needs and system design in three different
operational scenarios (conductive AC charging, conductive DC charging, as well as
inductive charging) [59].

• SAEJ1772 [38]. The current rating of circuit breakers and the voltage rating of chargers
are both included in SAEJ1772. Both AC and DC are included in the definition of the
standard, and each includes three levels. Almost all modern cars can receive Level 2
AC onboard charging at current that flows of less than 30 A. In terms of DC charging
standards, the SAE DC level provides the fastest possible rate. However, a number
of other elements, like as infrastructure and battery chemistry, have an impact on the
actual charging rate [60].

• SAEJ1773 [38]. This standard outlines the minimal specifications for EV inductively
linked charging systems. Inductive charging systems must be manually linked in
accordance with SAEJ1773, which also specifies the criteria for the software inter-
face [61].

• SAEJ2847 & SAEJ2836 [62]. These two standards, together with SAEJ1772, specify
what electric vehicles and their charging stations must be able to communicate with
one another. SAEJ2836 describes the scenario and provides the testing environment;
SAEJ2847 details the necessary means of communication [62].

• SAEJ2931 [62]. This standard defines the requirements for digital interaction between
electric vehicles, EVSEs, utilities, power utility interfaces, smart meter infrastructure,
and home area networks. To make smart grid recharging of electric vehicles possible, a
communication network must be constructed in accordance with SAEJ2931 standards.

• SAEJ2954 & SAEJ2954 [62] recommended practice (RP). When it comes to wireless
charging, SAEJ2954 only supports level 2 (7.7 kW), while a recently published RP
version claims to support level 3. (11 kW). For electric vehicle producers, the updated
version will serve as a more uniform testing ground as well as infrastructure companies
to evaluate the efficacy and validity of new products. This standard also incorporates
autonomous charging, smooth EV parking, and payment setup [63].

2.6. Electric Vehicle Grid Integration Standards

IEEE1547, UL1741, & NFPA70 [32] are three accessible standards and codes. The
following list of standards and codes highlights their key features.

• IEEE1547 [32] is a set of standards for integrating decentralized energy sources into
centralized electrical grids. Specifically, performance, operation, testing, safety issues,
and maintenance needs for interconnecting DERs are discussed, as well as DER
installation on both secondary and primary network distribution networks with a PCC
aggregate capacity of 10 MVA or less, it is appropriate to all DER technologies [64].

• UL standards [32] UL released a number of standards to address various DER grid
interconnection issues. The criteria of power conversion equipment and related
protective devices as they pertain to DER grid integration are covered in UL 1741 [32],
the most relevant of these standards. Additionally, we adhere to UL62109, UL62109-1,
UL62109-2 [32], as well as UL1741 SA [65].

2.7. Safety Standards for Electric Vehicle

This safety safeguard is a necessary component of grid connectivity and EV charging.
Even though the majority of standardization bodies include safety requirements, NFPA and
NEC place a strong emphasis on safety and security. Below is further information on the
codes that these two organizations have created for EV charging and grid interconnection.
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2.7.1. National Fire Protection Association Requirements

When it comes to educating the public about fire, electrical, and life safety, NFPA
was an early adopter. The EV & its grid integration community has published its NFPA
70 [32] standard, which details wiring and safety procedures for electrical equipment on
the customer side of a PCC [66].

They include:

• Electrical equipment and conductors mounted on or inside or outside of public or
private buildings & other structure.

• Electrical wires that link the installations to an electrical supply as well as other
external conductors & on-site machinery.

• Fiber optic cable.
• Structures utilized by the electric utility but not necessarily a component of power

plant, a substation, or a control room [67].

2.7.2. National Electrical Code Standards

NEC [32] is different supplier of standards that focuses on EV safety measures. Addi-
tionally, it offers the specifications for EV charging hardware.

• NEC 625 [32], “Electric Vehicle Charging as well as Supply Equipment Systems”,
details the norms for EV charging infrastructure that is not part of the vehicle itself.
Installation guidelines for EV charging station hardware are included. This includes
things like conductors, connecting connections, including inductive charging devices,
which are all part of the charging infrastructure connected either to feeder or branch
circuits [68].

• NEC 626 [32]. The area of truck parking spaces is covered by this standard, which
is labeled “Electrified Truck Parking Spaces.” It specifies the requirements for the
electrical apparatus and conductors used to charge trucks that are located outside of
the vehicle. Circuit breakers, grounds, cable diameters, back feed prevention, & other
requirements are among them [69].

2.8. Electric Vehicle Integration in the Power Grid

Until recently, there was only tenuous connection between the transportation & electric
power industries. The widespread electrification of transportation has significantly altered
the established economic strategies of electric utilities [20]. Overall, EVs have given the
electrical grid both considerable problems and advantages.

Impacts of Electric Vehicle Integration on the Grid

EVGI has both positive and negative outcomes. The next subsections and Figure 5
illustrate the specifics.

• Negative Impacts: Electric utilities face a huge difficulty as a result of EVs. According
to Table 3, excessive EV integration into the distribution network may have an effect
on the distribution grid’s stability, power losses, voltage and frequency imbalances,
load profile, and component capacity [70].

• Positive impacts: It’s true that having too many EVs upon that grid might cause issues
with power quality degradation, an increase in peak demand, and challenges with
power regulation, all of these concerns can be managed by adopting modern power
management methods. The benefits of integrating EVs into grid in a strategic manner
are summarised in Table 4 [71].
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Table 3. Negative Impacts of EV grid integration along with the corresponding descriptions [32].

Impacts Description

Load demand increase
Up to 1000 TWh of extra loads (a 25% increase from present levels) may be added by EVGI.
If electric vehicle charging is not controlled, the surge in demand during peak times might be a
serious issue for utilities.

Component overloading
Extra-large EVGI values provide an incremental load demand that must be produced and
communicated. The new demands are too much for the components of the current power system,
which might lead to overloading and reduce transformer lifetime.

Phase and voltage unbalance Since EV chargers are single phased, charging a lot of EVs at once might lead to phase imbalance.

Harmonics injection

Harmonics are created during the power conversion process by EV chargers since they are power
electronic equipment as well as, if their penetration is larger, harmonize the grid.
Although the THD level may increase as more chargers are being used, several studies suggest
that it is less than 1% due to EV charging.

Power loss

A significant quantity of actual power is used as EVs become more and more integrated into the
grid, which results in distribution system power loss.
Given that 60% of the cars linked to the distribution system are electric vehicles, During off-peak
times, power loss might increase by as much as 40%.
Coordinated charging may increase the load factor of the electrical system while minimizing
power losses.
Power loss in the grid may be reduced by strategically placing charging stations.

Stability

The power system becomes unstable when electric vehicle loads are added since they are
nonlinear and consume lot of power rapidly.
More electric vehicles on the road makes the power infrastructure more vulnerable to outages
and increases the time it takes to get things back to normal.
EVGI has the potential to improve the stability of the electricity system if properly handled.
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Table 4. Positive Impacts of EV grid integration along with the corresponding descriptions [32].

Power management The use of planned charging and draining may improve power management.
Discharging may be scheduled during peak hours to meet peak load demand.

Power quality
improvement

Controlled EVGI may reduce voltage surges brought on by unchecked DER penetration.
Flickering voltage may be reduced.
When necessary, reactive power may be introduced.
Uncontrolled DER harmonic injection may be minimized.

Regulation

Frequency control using grid frequency deviation regulation.
Achieving voltage regulation via the production or consumption of reactive power.
An equilibrium in power flow is achieved by the use of energy storage.
Absorption of power that ramps up.
An increase in the stability of isolated electric networks.

Renewable energy
support

Using electric vehicles as energy storage might help smooth out the fluctuations in
renewable energy production. Using electric vehicles as a buffer for renewable energy
might reduce emissions and save money.

2.9. Modeling of Grid-Connected Electric Vehicle-Photovoltaic System
2.9.1. Photovoltaic System

In this study, a diode serves as the PV module. As a result, a diode, a current source
with a variable output, as well as a series as well as parallel resistance compensate the PV
cell idea (Rs and Rp). Evidence for the dependability of this paradigm already exists. To
determine the output current (Ipv) ones from a PV system, apply the following [72,73]

IPV = IPh − Isat

(
eq(VPV+IPV Rs)/(NkTPV)

)
−(VPV + IPV Rs)/RP (1)

Isat = K1T3e(−
qVg
kT ) (2)

where K represents the Boltzmann constant, Isat represents the saturation current of the
diode, Ko and K1 represent constants that are dependent on the features of PV cells, in the
PV model, N represents the input impedance of the an diode, q represents an elementary of
an electron, and T represents the temperature at which the PV cells are active [74].

A DC/DC converter completes the virtual photovoltaic system. This part controls
the PV system’s output voltage as well as makes the PV voltage compatible with MVDC
bus voltage so that the PV system can run in maximum power point tracking mode. The
DC/DC converter might be switching to a different mode (DC bus voltage sustaining
mode) in order to maintain a constant MVDC bus voltage, resulting in a reduction in the
quantity of power provided by the PV modules [75].

2.9.2. Electric Vehicle as Well as Energy Storage System Batteries

The SimPowerSystems toolbox of Simulink’s model has been used to simulate these
batteries for both EVs & energy storage system (ESS). One resistance and one variable
voltage source are coupled in series to make up this type. As a result, battery voltage may
be determined by the steps below [8].

Vbat = Ebat − IbatRint (3)

where Rint is the internal resistance of the battery, Ibat is the current through the battery,
and Ebat is the open-circuit voltage, that changes with the state of charge or discharge. To
prevent the battery from being damaged by excessive charging or discharging, one of the
most crucial battery metrics to be monitored is the state-of-charge (SOC) [76]. Inferring it
from following expression:

SOC (%) = SOC (%)− 100
(∫

Ibatdt
Q

)
(4)
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Q = maximum battery capacity.

2.9.3. Direct Current/Direct Current Converters

All of the DC/DC converters’ dynamic behavior has been modeled using average-
value equivalents. These models are often used to investigate lengthy simulation situations
because it may be possible to recreate the converters’ dynamic behavior faithfully. This
DC/DC converter type consists of a voltage source as well as a current source that may
each be adjusted independently [14]. Depending on the converter being utilized, the duty
cycle links the input, output voltages & currents. For a complete rundown of a DC/DC
converters found in the tested systems, see Table 5.

Table 5. Summary of the dc/dc converters found in the tested systems and functions [77].

Component Converter Energy Flow
(From–To) Transfer Function

PV Unidirectional-boost (PV–DC bus)–boost MDC = Vα
Vi

= Vi
Vo

= 1
1−DC

EV Unidirectional-buck (DC bus–EV)–buck MDC = Vo
Vi

= Vi
Vo

= DC
1−DC

EV Bidirectional (ESS–DC bus)–boost MDC = Vα
Vi

= Vi
Vo

= 1
1−DC

2.9.4. Grid Connection

The link to the neighboring 20 kV AC grid is made possible via a delta-wye transformer
as well as a three-phase IGBT inverter. This components’ representation based on models
created. A Space-Vector PWM modulator is used to drive the inverter under control [78].

2.10. Electric Vehicle Smart Charging Using Photovoltaic and Grid

Numerous research has looked at the benefits of PV-based EV charger systems. Ref-
erence highlights the benefit of charging the EV with PV and explains how it enables for
higher penetration of both PV as well as EV. Additionally, EVs may lessen the consequences
of excessive PV production. Reference provides a case study of Columbus, Ohio, to demon-
strate that solar-powered EV charging is both cheaper and less polluting than traditional
grid-based EV charging [79]. The grid integrated PV system outperforms the other two
systems economically, a case study contrasting three different approaches to recharging
electric vehicles (grid alone, PV just plus battery storage, as well as grid integrated PV).
The authors of reference discuss the use of PV power and EVs as a battery system to reduce
peak grid demands. Studies like this show how much better PV-based EV charging is
compared with grid-based EV charging. Numerous papers discuss alternative charging
algorithms and what role they may play in meeting the financial, technological, and societal
goals of PV-based EV charging [80].

The problem formulation determines the kind of optimization model. Convex type
problems (linear, mixed-integer, and quadratic) often have cheap processing costs and
may reach optimum solutions [81]. Optimization strategies of the meta-heuristic kind,
such the Genetic Algorithm and the Particle Swarm Optimization, may be used to solve
non-convex problems and provide solutions that are close to optimum while requiring
little computing effort. With limited data and processing resource needs, the rule-based
algorithm or heuristic type optimization techniques may give adequate solutions for
arbitrary instantaneous occurrences (such as the plugging in/unplugging of EVs or the
change in PV power, for example) [82].

The reason why PV-based EV charging systems for homes and offices have received
more attention than those used in commercial settings is that they need less complex
analysis and flexible integration inside the distribution system. Additionally, the majority
of research on smart charging focuses on particular ways to improve EV grid integration,
for example, variable rates of pricing, market participation, and supplementary offerings
A complex system with many different components is needed to simulate the real-life
implementation [83].
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3. Control Strategies for Power Management of Electric Vehicle/Photovoltaic System

The power flow between the system’s four key components must be investigated in
order to create the suggested system layout. Electrical grid, PV sources, battery storage,
as well as EV charging load are the major components. Power flow management can be
used to establish the demand for and size of a bidirectional power flow energy automated
device. Consequently, the study introduces their applicability on the examined application
in an effort to answer the power flow management issue [83,84].

Heuristic algorithms that take into consideration loaded demand, PV insolation levels,
including off utility hours are often used to estimate power flow in energy PV/battery
systems. However, the proposed system’s solution is made considerably more difficult
by a dynamic grid pricing [85,86]. Using the streamlined heuristic concepts to operate the
PV/battery system will provide operational cost solutions that differ considerably from of
the least cost operation underneath a dynamic grid pricing model. As a result, the pace of
research in this field has quickened [87].

The intended architecture for power flow management must allow for non-linear oper-
ations. This enables the designed topology to be used to various operational circumstances.
To enable the system to function properly under mismatched circumstances and predicting
deviations, the topology must feature an online error compensation phase [88,89]. Last but
not least, the online optimization step should be built with a short calculation time so that
it may be quickly incorporated into real-time controllers. To get over these issues and carry
out the suggested optimization, research on smart methods of energy management and
flexible power distribution is urgently required [90].

3.1. Intelligent Energy Management Strategy

In its present form, the EV-PV charger should be able to charge an electric vehicle
using solar power, but it has no intelligence of its own [91]. According to forecasts, the
cost of electricity will be lowest in the morning hours, this being an ideal moment to plug
in your electric vehicle to the grid for a recharge. While solar charging is most effective
during sunny afternoons. Smart charging algorithms are required for the control of EV-PV
systems to be realized [92].

Every car has a predictable period of accessibility as a load, and this condition of
charging the automobiles at parking lots has been taken into consideration. While parking
the car, the user specifies the billing interval and makes any other relevant price/billing
type/etc. selections.

Capacity, chemical composition, open-circuit voltage, battery state of charge, ambient
temperature, and so on are all characteristics of a vehicle. Every car will allocate the power
to the system based on the user’s preferences and the battery’s characteristics. So, in
order to sum up, dynamic power management of loads takes into account user preferences
and load variables to optimize energy consumption [93,94]. Improving demand-side
power management, control mechanisms, as well as consumer preferences for utility
services are the cornerstones of grid design. A specific system was designed to show
how the smart grid works [95,96]. The skeleton of the whole system is shown in Figure 6.
All of the advantages outlined and taken into account during the system’s design are
realized via battery loads, charging, and connection to the power grid all fall within the
purview of energy management. Every parking deck is controlled by the Intelligent Energy
Management Strategy (IEMS), and each parking deck is made up of different loads [97,98].
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3.2. Energy Management Strategy for Smart Home Integrated with Electric Vehicle, and
Photovoltaic

To limit load power curve volatility and associated energy costs in homes with PV
and EV, energy management measures may be essential. With the proposed method
in [99]., electricity may be transferred from the grid to vehicles (G2V), photovoltaics to
vehicles (PV2V), as well as vehicles to houses (V2H), therefore reducing daily energy
expenses and smoothing out graph of smart home electrical consumption [100]. When PV
power generation is unavailable (PV power is equal to 0), stage A of the proposed control
technique has three modes of operation, while Stage B has five modes of operation (PV
power greater than zero) [101]. The primary objectives of the approach are to manage the
energy drawn from the grid and/or PV and the energy given to a load demand by EVs,
and to regulate the charging and discharging cycles of EVs. Maintaining the load curve
inside the optimal energy consumption range will reduce power bills, the following goals
may be attained [102].

• Find out when the price of power is at its lowest and highest.
• Determine when the residence under study uses the most and the least power.
• To save energy costs and increase valley capacity, at moments of low power demand

as well as cheap energy costs, charge electric cars from the grid utility.
• Manage the battery’s level of charge to avoid overcharging and overdischarging it

when charging and discharging, respectively [103].
• Learn when PV production is inversely proportional to the amount of needed power

that can be supplied by photovoltaics, and use those periods to charge your electric
vehicle from the extra energy you’ve generated.

• Electric car discharge during peak demand periods has the potential to minimise peak
demand [104].

The following data is used as inputs in the proposed method to accomplish the
aforementioned aims: the time the EV Tin arrives, the time the EV Tout leaves, SOC of an
electric vehicle battery at time t, maximum (SOCmax) and minimum (SOCmin) levels of
charge, average power load (Pavg) and average price signal (Cavg), and time-of-use price
signal (C) are all variables to consider; the profile of solar power production Ppv (t); and so
on [105].

3.3. Intelligent Energy Management Strategy

In its current version, the EV-PV charger can take in solar energy and charge the EV,
but it does not have any specialised knowledge on how to do it. The cost of electricity is
predicted to remain low throughout the morning; hence, charging an EV from the grid is
more profitable in the morning. While bright afternoons are advantageous for solar charg-
ing. A smart charging algorithm is required for the control of an EV-PV system [106,107].
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As each parked car is available for a certain amount of time as a load, the pricing situation
in carparks has been investigated. The user chooses the charging period, price, and kind of
charge at the time of parking [108,109].

A vehicle’s capacity, chemistry, open-circuit voltage, charging levels, the state of charge,
temperature, and similar factors are all additional features. Every car will allocate power to
the system based on user selection and battery parameters. To summarise, the system’s
energy usage is maximised by taking into load factors and customer preferences into
consideration while implementing dynamic power management [110]. Control methods,
advanced demand-side power management, as well as customer service preferences are
some of the primary drivers behind grid layout. A specialised system was designed to
demonstrate the benefits of the smart grid. All the advantages outlined and results expected
by integrating a power grid, charging infrastructure, and battery loads into an existing
energy management system. Each parking structure under the IEMS’s jurisdiction holds
a broad range of cars and must adhere to its rules [111,112]. The IEMS is automatically
updated with information about available power and cost from the grid’s perspective at
a given time interval. This approach assists IEMS in monitoring several converters at the
same time in order to make real-time choices [113–116].

3.4. Control Strategy for Power Electronic Components

Power converters are used to link all the parts of the system to a DC power source.
The maximum output of a PV array is constantly monitored by the boost converter. When
it comes to performance as well as battery life, a bidirectional DC/DC conversion is used
for charging and charging the battery. Electric cars need two separate control systems in
order to work with a broad variety of battery sizes. We’ll look at two types of controllers:
(1) the I-V controller, as well as (2) the average sliding mode control [117].

3.4.1. I–V Controller for Electric Vehicle

The EV runs in a current loop mode to enhance an EV’s charging capacity. Charging
the EV requires just a correct current reference control algorithm [118]. The system’s health
determines how often this resource is refreshed. Feedback from a comparison of a current
drawn from a PI controller is able to maintain a steady-state error of zero by connecting the
batteries of a hybrid or electric car to a current reference illustrated in Figure 7 [119,120].
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Meanwhile, the EV’s battery voltage is compared to a value computed by the PI
controller. The DC/DC converter is controlled by pulses generated from an external PI
block’s output. The electric vehicle may be charged to a maximum of 6 kW when overall
power generation exceeds consumption [121].

3.4.2. Average Sliding Mode Controller to Electric Vehicle

Nonlinear control is used because conventional linear controllers like proportional-
integral-derivative (PI) as well as proportional-integral (PID) are inadequate when dealing
with substantial input as well as load voltage fluctuations [122]. Despite variations in the
system’s features and load, sliding mode management maintains stability and resilience.
To improve performance, multi-loop control is used instead of basic loop control, however
designing the controller is difficult, especially for higher order converter topologies [123].
Sliding mode control and hysteresis control are two examples of nonlinear control ap-
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proaches that provide very accurate models. To regulate DC/DC boost converters, several
current controllers are employed. In order to fine-tune the current characteristics and attain
the targeted dynamic performance, average sliding mode control (SMC) is used, as shown
in Figure 8. For this reason, the average SMC reference current is derived from PI current
control block’s output [19].
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The varying switching frequencies make it very sensitive to overall SMC noise. Few
regulated options exist to address the issue of variable switching frequency. After the
median SMC has established the allowable signal range, its variable switching frequency
is locked in at a fixed value. Figure 9 depicts a typical SMC building block [124]. Output
current as well as voltage from the EV are calculated and compared to standards before
being sent to the PI controllers [125].
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4. Recent Studies on Various Topologies of Electric Vehicle/Photovoltaic Systems

Table 6 discuses the recent studies of the EV-PV systems.

Table 6. Summary of Topologies of EV/PV Systems based on the recent studies and their methodolo-
gies and outcomes.

Reference Methodology Outcomes

[126]

a high gain, fast charging DC–DC
converter and a control algorithm for grid

integrated Solar PV (SPV) based EVCS
with battery backup

The proposed converter and its control
algorithm’s performance are investigated in

three different modes using
MATLAB/Simulink tool and the simulated
results are validated with Real-Time Digital

Simulation (RTDS) in OPAL-RT. The observed
results meet the Power Quality limits of an

IEC61000-3-2 [52] standard and met the level-4
dc charging standard IEC61851 [32]
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Table 6. Cont.

Reference Methodology Outcomes

[127]

minimizing the cost incurred due to
energy losses in an IEEE-37 bus system

integrated with a commercial EVCS
located in Qatar. The Particle Swarm

Optimization (PSO) algorithm is used for
the efficient location allocation of EVCS.

The system is analytically examined through
the Thukaram Load Flow Algorithm and

investigations are conducted to observe the
beneficial impacts of load balancing between

RES and utility

[128]

conceptualizes the interconnection of these
components through a 750 V DC nanogrid
as against a conventional three-phase 400
V AC system. The factors influencing the
performance of a DC-based nanogrid are
identified and a comparative analysis with
respect to a conventional AC nanogrid is
presented in terms of efficiency, stability,

and protection.

It is proved how the minimization of grid
energy exchange through power management
is a vital system design choice. Secondly, the

trade-off between stability, protection, and cost
for sizing of the DC buffer capacitors is

explored. The transient system response to
different fault conditions for both AC and DC

nanogrid is investigated.

[129]

, an application mode of EV charging
network and distributed photovoltaic

power generation local consumption is
studied. The management idea of

two-layer and four model has been
established, including the regional

distributed photovoltaic output model,
electricity consumption model, EV

consumption model, and regional grid
load dispatching model, which can realize
the scheduling of the energy flow formed
by photovoltaic, induce the charging of

EVs, and make the photovoltaic
consumption in office building areas and
residential building areas complementary

This mode is intended to guide the
consumption of new energy through economic

leverage, which can realize the unified
regulation of distributed energy convergence,

consumption and storage.

[130]

mainly focuses on the various standards
for EV, PV systems and their

interconnection with
grid-connected systems.

For a better operation of EV for domestic and
commercial use, it is necessary to follow
certain international standards that are

published and proved to be efficient. Some of
the important standards to be followed in the

design and manufacturing of EVs.

[131]

presents the control of a single phase
EVCS powered by a wind energy

generation system (WEGS) and a PV array
that are installed in houses for EV
charging and household supply.

Test results have proven the satisfactory
operation of the CS for supplying the domestic
loads while accomplishing the primary task of

charging the EV.

[132]

r reviews the state-of-the-art literature on
power electronics converter systems,

which interface with the utility grid, PV
systems, and EVs. Comparisons are made

in terms of their topologies, isolation,
power and voltage ranges, efficiency, and

bi-directional power capability for
V2G operation.

A brief description of EV charger types, their
power levels, and standards is provided. It is
anticipated that the studies and comparisons
in this paper would be advantageous as an

all-in-one source of information for researchers
seeking information related to EV

charging infrastructures.

5. Discussion and Conclusions

This paper provides an overview of PV-EV charging system technology, operation,
and status. In addition, it provides information on the principles of electric cars, batteries,
and a description of PV. To prove the technological and economic feasibility of PV-grid as
well as PV solo charging, a case study is carried out by contrasting them with grid-only
charging. It has been determined that PV-grid charging has the ability to create a profit.
However, due to the limited capacity of the PV as well as the batteries, the Power system
may not be cost effective. Furthermore, since PV is intermittent, it is probable that it will
not be able to generate enough electricity to meet consumer demand.
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6. Challenges and Future Work Recommendations
6.1. Modeling, Optimization and Control

In spite of the various efforts that have been done on PV–grid charge techniques, it is
essential to the alternating nature of PV be recognized. Because of the unpredictability of the
sun irradiation, there is no way to know how long the charcoal will keep its consistency. As
a result, it is of the utmost importance to design the system to have an energy management
function that is optimum. This development of reliable forecast model for power production
of PV systems is one topic that is of interest [133]. This may be linked with an accurate
model of the cost of grid energy (which is basing on dynamic tariff structures), which will
guarantee that the owner of the charging station obtains the highest possible return on their
investment [134]. The following works are evidence of the growing interest in the various
energy management systems.

Static charging requires electric car owners to notify the station owner in advance of
the anticipated demand for charging their vehicles. In more realistic dynamic charging
situation, an electric vehicle (EV) may enter and depart the station at any moment, without
the owner of the station having previous knowledge of this [135]. In order to accomplish
this goal, optimum solutions basing linear programming & heuristic algorithms used, one
for static issues & the other for the dynamic ones, respectively [136]. Despite the fact
that the dynamic scenario presents a more accurate representation of reality, the answers
provided by the static issues may serve as a standard against which performance can be
measured. The optimization of electric vehicle charging has a number of possibilities for
the use of approaches from soft computing [137].

The optimization of the photovoltaic charging system utilizing the soft computing
approaches has a number of difficulties, despite the fact that these methods are successful
in themselves. For instance, the fuzzy logic controller is simply appropriate for use in a
system that has a limited number of charging outlets and electric vehicles that need to
be charged [138]. The rule table will get more complex as well as the algorithm will take
longer time to execute if there are a large number of energy sources and EVs. In addition,
achieving exact tuning of the fuzzy variable quantity is quite challenging, yet with the
assistance of methods such as the genetic algorithm [139].

6.2. Issue on the Integration with Smart Grid System

It has been determined that smart grid technology, which has renewable energy
sources & electric vehicles play a vital part, will be that dominant trend in the fields in
future power systems. For instance, electricity that is produced by PV may alleviate some
of the strain placed on the grid, especially during peak hours [140]. However, utilities’
worries about potential unintended consequences, such as impacts on system reliability,
power quality, protection, as well as grid synchronisation, have increased in tandem with
the widespread use of renewable energy sources. This is all tied up with PV’s status
as an intermittent energy source. It is regarded to be a big problem for the smart grid
system to handle these qualms in PV–EV charging, which gives intriguing opportunities
for additional exploration [139].

6.3. Challenges and Suggestions for Electric Vehicle Charging

• Range, refill time, and cost all play a role in determining how popular electric cars
are. The availability of charging stations for EVs is crucial to these considerations.
Below, we highlight some of the difficulties and recommendations associated with EV
charging [141].

• There are not universal manufacturing requirements for charging devices. For instance,
there are different standards for charging connectors in Japan, the US, and Europe.
Homogeneity in charging standards and equipment may save costs and increase
market acceptance of EVs.
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• Currently, not each EV models can handle every charging levels, & Warning: not all
public charging stations can handle high-power devices. Because of this, those who
own electric vehicles have a hard time finding enough charging infrastructure [142].

• Currently, fast charging station users must pay a set monthly demand fee, which
discourages EV owners from utilizing their vehicles since they are unable to charge
them on demand based on a variable power tariff. Modifying the fixed demand fee
policy may be able to alleviate EV owners’ complaints [143].

• The charging facility layouts of the charging stations vary since they remain installed
by various businesses in various locations. The users find it difficult to adjust to
different charging facility layouts. The popularity of EVs will rise with a uniform
charging facility structure comparable to ICEV refuelling stations [144].

• Private fast-charging facilities, such those in homes, are still difficult to set up and
often need permission from local service companies & govt. This drawn-out procedure
discourages EV owners from building their own private fast charging infrastructure
for satisfying their needs.

• It’s important to strategically deploy EV charging stations along major thoroughfares
and in urban areas. Owners of EVs are concerned about the lack of planning for
charging stations outside of major cities [145].

• Renewable energy sources, including solar or wind energy, may be used in charging
stations. Such charging stations demand a lot of room and expensive design and
execution. Vacant lots near roadways are excellent locations for renewable energy-
powered EV charging stations [146].
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