
Citation: Chen, H.; Chen, H.; Kardos,

L.; Szabó, V. Application of Biochar

for Ion-Adsorption of Rare Earth

Contaminated Soil Remediation: A

Review. Sustainability 2023, 15, 7934.

https://doi.org/10.3390/su15107934

Academic Editor: Chenggang Gu

Received: 28 March 2023

Revised: 8 May 2023

Accepted: 9 May 2023

Published: 12 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Application of Biochar for Ion-Adsorption of Rare Earth
Contaminated Soil Remediation: A Review
Haimei Chen 1,2 , Haibin Chen 3,*, Levente Kardos 2 and Veronika Szabó 1

1 Department of Dendrology and Floriculture, Faculty of Horticultural Science, Hungarian University of
Agriculture and Life Sciences, Villanyi ut, 29-43, 1118 Budapest, Hungary; ellenchm@yahoo.com (H.C.);
szabo.veronika@uni-mate.hu (V.S.)

2 Department of Agro-Environment Studies, Faculty of Horticultural Science, Hungarian University of
Agriculture and Life Sciences, Villanyi ut, 29-43, 1118 Budapest, Hungary; kardos.levente@uni-mate.hu

3 School of History and Geography, Minnan Normal University, Zhangzhou 363000, China
* Correspondence: chb1555@mnnu.edu.cn; Tel.: +86-1835-962-6366

Abstract: Rare earth elements, particularly middle and heavy rare earth, are among the most valuable
resources in the pursuit of a greener economy. The production of middle and heavy rare earth
elements heavily relies on ion adsorption, which constitutes over 80% of global output and is centered
in southern China. Unfortunately, the extensive mining activities have led to severe environmental
pollution, resource depletion, and risks to human health. In contrast, biochar application offers a
cost-effective and efficient phytoremediation solution. However, existing literature on the biochar
application in IAT-Res mine tailings is limited. In this paper, we conducted a literature review and
summarized the contaminations in the ion adsorption mine tailings, as well as explored the potential
of using biochar to remediate contaminations. We aim to raise interest and encourage further research
on utilizing biochar for pollution remediation in ion adsorption rare earth mine tailings. By effectively
managing contamination, this approach can contribute to the sustainable supply of ion adsorption
rare earth elements while ensuring their long-term viability.

Keywords: ion adsorption rare earth; biochar; remediation; contaminated soil

1. Introduction
1.1. Background

Rare Earth Elements (REE) have received considerable interest due to their vital
applications in various areas, including agriculture, electronics, green energy, the national
defense industry, and precision equipment [1,2]. They are defined by the International
Union of Pure and Applied Chemistry as a group of 17 elements that naturally occur
in earth-parent materials, including scandium, yttrium, and the lanthanide series [3].
Although REE are present in more than 250 minerals (silicates, carbonates, oxides, and
phosphates), their distribution is unpredictable and scarce, which makes extraction difficult
as they are not found in concentrated mineral structures [4–6]. The total crustal abundance
of REE is 169 mg/kg, with 137.8 mg/kg of light rare earth elements (LREE: La to Gd) and
31.34 mg/kg of heavy rare earth elements (HREE: Tb to Lu, plus Sc and Y), where LREE
are 4.39 times higher than HREE [7]. Mid-heavy REE (including Gd) are considered critical
resources, and nearly 80% of the world’s supplies are from ion-adsorption type rare-earth
(IAT-Res) ores in South China [8–10].

IAT-Res deposit is a unique REE resource. REE-oxide are trivalent cations that REE are
adsorbed onto clay minerals during weathering [11,12]. In the past few decades, unregu-
lated and intensive extraction for REE in the IAT-Res ore consequence ecological pollutant
has been pronounced in these areas [10,13]. Because of the uncertain bioaccumulation
mechanisms, there have been only a few successful plant restoration occurrences on IAT-Res
mine tailings so far [7]. The crucial lack of HREE resources, however, makes contamination
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control and IAT-Res recovery from contaminations increasingly crucial. This paper aims
to provide an overview of the IAT-Res mining-related contaminations and look into a
potential contamination remediation strategy by biochar application.

1.2. Ion-Adsorption Type Rare Earths (IAT-Res)

REE-containing minerals are classified into two main types: mineral type REE (MT-Res)
ores and ion adsorption type REE (IAT-Res) ores, with either HREE or LREE dominat-
ing [14,15]. The world reserves of different types of REE are shown in Figure 1. The MT-Res
ores are rich in LREE and are primarily composed of bastnaesite and monazite, whereas
the IAT-Res ores which are weathering profiles developed on protoliths, are primarily com-
posed of middle-heavy REE [1,8,16]. Clay minerals such as kaolinite, halloysite, illite, and
montmorillonite are the primary components (40–70%) of the weathering crust throughout
the weathering process [12,16]. Meanwhile, REE trivalent cations can bind to clay minerals
to form REE-oxide (hydrated or hydroxyl-hydrated ions) [8,14,17]. In this circumstance, an
IAT-Res deposit develops.
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Figure 1. REE types and distributions in the world (data obtained from Borst et al. [8] and USGS [18]).

The world’s most important source of HREE are IAT-Res deposits, which are primarily
found in the southern Chinese provinces, such as Fujian, Guangdong, Guangxi, Hunan,
and Jiangxi [8,19,20]. Since the discovery of IAT-Res ores in Jiangxi, China, in 1969, a series
of hydrometallurgy methods, including barrel/pool leaching, heap leaching, and in-situ
leaching, have been developed by scientists and engineers [16,21]. Pool leaching is similar
to leap leaching. They both require complete stripping of the subsoil in the mining area,
causing physical problems with the territory’s geography, such as landslides and loss of
vegetation cover, soil erosion, crop production damage, and biodiversity loss [22]. Over the
last few decades of exploration, mining for IAT-Res has caused many environmental prob-
lems in these areas. Since 2011, China has restricted REE exports because of environmental
protection concerns [23]. The exploration of IAT-Res resources has expanded to Brazil, Laos,
Thailand, Indonesia, Madagascar, the Philippines, and the United States [18,24,25]. Thus,
environmental management in southern China will be a critical example in the developing
of IAT-Res mining.
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1.3. Usages and Demands

The application of REE takes place in different sectors, such as agriculture and modern
technologies. Global REE demand has spiked in recent years and is expected to increase
from 167,000 tons in 2020 to 280,000 tons in 2030 [18,26,27]. In agriculture, REE are uti-
lized as micro-fertilizers to promote the growth and yield of plants and livestock [5,28].
Since they are used in so many modern conveniences (including lighter flints, fluorescent
lights, batteries, lasers, and permanent magnets), REE are now considered to be strategic
components [15,23,29]. REE are applied in relative amounts, yet they are critical com-
ponents of devices in green economics, high-precision medical equipment, and defense
industries [15]. Most REE is used in magnetic field generators, which are in turn used in a
broad variety of low-carbon technologies (such as wind turbines and electric and hybrid
automobiles) [30,31]. Figure 2 shows a breakdown of their holdings.
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Figure 2. Share of REE application in different sectors (data obtained from Asadollahzadeh et al.
(2021) [30]).

2. Contaminations in IAT-Res Tailings

In contrast to the fact that REE, especially HREE, are critical resources in many coun-
tries, aggressive mining and manufacturing are causing severe environmental contamina-
tion and overlaid REE are considered as hazards in these areas [31,32]. Compared to the
open-pit mining technologies for bastnaesite (MT-Res), fewer environmental impactions
occurred from manufacturing IAT-Res [31,33].

The contamination in the IAT-Res mining areas can be categorized into soil physico-
chemical properties, ammonium pollution, and REE pollution. Pool and heap leaching
methods have been abandoned for IAT-Res mining since 2008, leading to the widespread
adoption of in-situ leaching, which does not require the removal of surface vegeta-
tion [9,21]. However, contaminations left behind from the early production of IAT-Res
by pool or heap leaching are still apparent, trees do not grow at these tailings [22,30].
In-situ leaching, which is considered an eco-friendly method requires a higher amount
of ammonium leachate during processing. As the extraction of IAT-Res follows the
mechanism, Clay–REE3++ 3 NH+

4 → Clay– (NH+
4 )3 + REE3+ [34,35], the ammonium-

containing leakage could further lead to greater terrestrial and aquatic eco-toxicity rat-
ings [21,22,30]. Nevertheless, the toxicity of discharged REE to the environment and
humans is usually underestimated because it is commonly evaluated as a group, but their
toxicity coefficients can be higher than heavy metals, such as Lu, Eu, and Tb are higher
than Pb and Cu [36–38].
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2.1. Vegetation Loss and Soil Degeneration

IAT-Res only has 0.05–0.3 wt% REO but extracting REE from IAT-Res is simple and
inexpensive [14,17,21]. To produce one ton of REO using pool or heap leaching, one needs
to strip off 150–200 m2 of vegetation and 1500–2000 m3 of topsoil, leading to 150–200 m2

and 1700 t of tailings [39]. In recent decades, intensive exploration of IAT-Res resources
has resulted in more than 100 km2 of REE mine tailings in Southern China [10,17]. Because
of the serious environmental consequences of unregulated small-scale extraction for IAT-
Res resources, China is stepping up efforts to limit illegal mining and conduct artificial
vegetation restoration in mine tailings [23,40–42].

As IAT-Res are scattered across the distribution, surface mining has become the
predominant method. This has changed how land is used and caused soil degradation
in Southern China. Further contamination caused irreparable harm to the ecosystem,
including soil erosion, air pollution, biodiversity loss, and human health issues [17,38].
Moreover, red soil predominates in these regions, making natural restoration after extensive
vegetation loss problematic. For example, Figure 3 shows a satellite image of IAT-Res mine
regions and mine tailings where no grass grows even after many years of rehabilitation.
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2.2. Ammonium Contamination

In-situ leaching has replaced pool leaching and heap leaching in IAT-Res mining since
2008, as it does not result in severe soil deterioration, such as landslides and soil erosion,
nor does it leave behind a barren wasteland [43,44]. Nevertheless, in-situ leaching requires
a substantial quantity of the leaching reagent ammonium sulfate [(NH4)2SO4], which, after
leaching, enters the soil and groundwater [10,45]. Around seven to ten tons of ammo-
nium sulfate are required to manufacture one ton of REO; hence, the excessive amount of
ammonium sulfate at a mining site leads to changes in the surface soil and groundwater
characteristics [17,43,46]. In the IAT-Res mine tailing soil profiles, the ammonia nitrogen
concentration ranged from 49.8 to 77.7 mg/kg, whereas it was between 5 and 6 mg/kg in
the original mine soil [47]. According to the Pollution Discharge Standards for the Rare
Earth Industry, the limits for water or air in the form of ammonia pollution should not
be higher than 25 mg/L [31,48]. However, after in-situ leaching, the wastewater in the
IAT-Res mine tailings was found to contain ammonia-nitrogen up to 3000–4000 mg/L [10].
Ammonium pollution extends to nearby habitats; Hao et al. (2016) [49] evaluated differ-
ent surface and shallow aquatic systems from the REE mining area in southern Jiangxi
Province. They stated that the concentration of NH+

4 paddy field water (1.28 mg/L), pond
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water (4.53 mg/L), and stream water (8.31 mg/L) all exceeded the standard (0.02 mg/L).
In addition, the NH+

4 leachate produces a large amount of H+ ions and lead to soil acid-
ification [50]. In conclusion, leaching solutions containing ammonium sulfate not only
lead to severe ammonia-nitrogen pollution and soil acidification, but they also contain
low levels of REE and flow off into rivers when it rains, resulting in incalculable REE loss
and contamination.

2.3. REE Contamination

REE enter the environment through various pathways, including mining, atmospheric
deposition, and end-life product disposal [5]. In the IAT-Res resources reserved surround-
ings, mining is the majority means of exceeding REE in the ecological environment and
is considered an emerging contaminant. Mining for the IAT-Res in Southern China has
left a large area of tailings that contain 409–1035 mg/kg of REE [51,52]. In the majority
of these sites, the REE level exceeds the mining-grade threshold (500 mg/kg) [53]. For
instance, the total REE level of 976.94 mg/kg found by Jin et al. (2019) [2] in a mine tailing
in China’s Jiangxi province, is 4.53 times and 5.09 times greater than the soil in Jiangxi
province and the entire country, respectively. Liu et al. (2019) [52] also found the total
REE in a mine tailing soil (392 mg/kg) in Jiangxi province was two times higher than
the control sites (192 mg/kg). Similarly, soil samples from 118 locations around Fujian
province were analyzed for their Rare Earth Element (REE) composition by Chen et al.
(2019) [54]. With an average of 255.34 mg/kg, the total REE content was significantly higher
than the Fujian province background value of 186.76 mg/kg and the HREE (77.07 mg/kg)
was two times higher than the background value. This also agreed with the study of Li
et al. (2013) [38] in Hetian County, Fujian; the soil REE (242.92 mg/kg) was higher than
the background soil (135.85 mg/kg). Studies that claim soil REE contamination in IAT-Res
mining tailings are listed in Table 1. Nevertheless, the content of REE in the soil is also
determined by the soil pH, sorption capacity, and salt content and studies focusing on REE
contaminations are spare, thus more systematic studies and comprehensive information
still need to be conducted.

Table 1. REE content in the soil of IAT-Res mining tailings (mg/kg).

Location Soil Content Control References

Jiangxi 976.94 215.66 and 191.93 [2]
Hetian, Fujian 242.92 135.85 [38]

Dingnan, Jiangxi 392 192 [52]
Changting, Fujian 255.34 186.76 [54]

Despite the soil contaminations, overloaded REE also spread to the surrounding wa-
ter system. The concentration of REE in rivers in the mining area is 55.72 mg/L, which
is 8974.7 times higher than the contrast area [2]. Studies by Liu et al. (2019) [52] and
Hao et al. (2016) [49] also found that the total REE concentrations in the stream water
(4.46 mg/L and 1.596 mg/L), pond water (0.069 mg/L), paddy field water (0.031 mg/L),
spring water (0.035 mg/L), and well water (0.03 mg/L) all exceeded the recommended
contents (0.02 mg/L). Although it is applied in agriculture as a micronutrient, studies show
that REEs also cause adverse effects in plants and animals [55–57]. Furthermore, Li et al.
(2013) [38] documented higher REE in human blood and hair in the mine tailing surround-
ing areas than in control sites. To date, the determination of REE in the environment is
limited because more sensitive analytical techniques allow a quantitative assessment of the
trace concentrations in various biological materials [4].

2.4. Current Problems

The shortage of REE is a global problem. They are considered the most critical
raw materials group with the highest supply risk by the European Commission, the US
Department of Energy and the British Geological Survey [18,58,59]. Although the only
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REE element estimated to have a resource life of fewer than 1000 years is Eu, which has a
resource life of about 600 years [15], the dramatic growing consumption of particular REE
still marks the importance of the recovery potential.

On the other hand, the extensive mining for IAT-Res has led to severe environmental
contamination and toxic effects on surrounding habits. REE mine tailings contain high
concentrations of REE even after years of abandonment, and these REE are highly ex-
changeable (>20% of total REE) [10,52,54]. The contradiction between limited resources
and resource demand growth has shifted governments’ awareness of the importance of re-
source conservation. A new concept has been promoted: from waste to valuable resources.
However, in contrast to the emerging studies focusing on REE pollution and biochar as
promising adsorbents for toxic contamination, the information on biochar application in
IAT-Res tailings remains sparse.

3. Biochar
3.1. What Is Biochar

Biochar is made when biomass, such as wood, grass, dairy manure, broiler litter, and
crop residues are processed by pyrolysis [60–63]. Pyrolysis is the thermal (usually not
over 700 ◦C) decomposition of biomass in the partial or complete absence of oxygen [64].
Producing biochar requires less energy and cost than active carbon generation since biochar
is generally obtained at lower temperatures and without additional activation process-
ing [65–67]. It consists primarily of cellulose, hemicellulose and lignin [64]. Because of its
adaptable physicochemical properties, high adsorption capacity, and chemical stability,
biochar is a low-cost carbonaceous material that has been widely used in environmental
applications, either to neutralize greenhouse gas emissions or as a replacement for fossil
carbon carriers [64,68,69]. When investigating the removal of a given component through
the adsorption process, the selection of adsorbent material is a crucial step [24]. Trace
element adsorption is significantly affected by biochar’s porous structure and the presence
of functional groups [70,71]. The reaction states of biochar in soil include dissolution
(1–3 weeks), reactive surface development (1–6 months), and aging (beyond 6 months) [72].

In the first state, the major influence factors are the selection of adsorbent materials and
the soil conditions [24,71]. After application to soil, biochar dissolves soluble organic and
mineral compounds by pores, increasing dissolved organic carbon, cations, and anions in the
soil solution, increasing electrical conductivity and pH and reducing redox potential [72,73].
After the rapid dissolution, biochar interacts with plant roots and microorganisms. In this
state, the porous structure of biochar and surface functional groups (e.g., carboxyl, carbonyl,
hydroxyl) absorb trace elements, which results in trace element precipitation [65,70,71]. In
the long-term reaction stage, biochar aging in the soil, along with cultivation and soil fauna,
causes further fragmentation of biochar particles and the oxidation of biochar surfaces
exposed by micro agglomerate detachment [72,73].

3.2. Environment Effects

Applying biochar in trace element remediation has been proposed as a novel ap-
proach to sustainable environmental development. Evidence shows biochar is effective
in adsorbing organic pollutants from wastewater [74], improves soil fertility, reduces soil
bulk density, increases crop production [13,62], is a long-term sink for atmospheric CO2 in
terrestrial ecosystems [61,75], and provides a habitat for microorganisms [13,76]. Biochar
possesses the necessary qualities of permeable porosity and pore size in wastewater treat-
ment [69]. When applied as a soil amendment, it is expected to function as long-term carbon
storage while enhancing soil characteristics [68,76,77]. More examples of biochar are used
in conjunction with traditional phytoremediation procedures to stabilize trace elements in
soil and reduce phytotoxicity, according to studies by Paz-Ferreiro et al. (2012) [78], Sarwar
et al. (2020) [79], and Wei et al. (2019) [80].
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3.2.1. Improve Soil Chemical Properties

Applying biochar increases soil phytochemical properties, such as pH, electrical con-
ductivity, and organic matter, further influences REE remediation [81]. Biochar application
increases soil acidity in the short term by releasing acidifying chemicals via chemical and
microbiological processes but raises soil pH in the long term as the carbonates and hydrox-
ides contained in biochar degrade [72,77,82]. A low pH is typical of the red soil found in
southern China. Heavy mining for REE has caused the soil in IAT-Res mining wastelands
to have a loose texture, poor aggregation, low water-holding capacity and fertility, and less
microbial variety; biochar, on the other hand, with vast surface area and large functional
groups (e.g., carboxyls and phenolic hydroxyls) can improve soil cation exchange capacity,
water-holding capacity, and keep fertilizer from washing away [13].

In addition to leachate absorption, biochar also absorbs organic matter and nutrients,
resulting in increased concentrations of water-extractable organic carbon, total soluble
nitrogen, plant-available phosphorus, and plant-available potassium, therefore, increasing
the nutrient retention capacity of the soil [75,77,83]. In the study of Chen et al. (2018) [84],
an additional 2.5–5% of biochar can largely promote plant growth on IAT-Res mine tailings
by improving soil physicochemical properties. Moreover, the effect of biochar is a long-term
retention, thus it will be promising in decreasing soil acidity and soil amendment.

3.2.2. Buffer Ammonia Contamination

In the nitrogen cycle, nitrate nitrogen (NO−3 − N) is the final product of nitrogen
compounds in soil [47]. To degrade NH+

4 −N pollution, nitrification and denitrification are
the two important processes; it is first oxidized to NO−2 −N and NO−3 −N, then reduced
to N2O or N2 under anaerobic conditions [47,85]. Biochar can efficiently adsorb ammonia
and act as an ammonia (NH3) buffer in soil [72,78,82].

Biological immobilization of nitrogen occurs in both captured particles in the reaction
state and naturally loaded particles during the biochar aging phase [86]. The surfaces of
biochar form redox-active layers that physically or chemically bind nitrogen molecules
during the medium-term reactions, while at the aging stage, biochar adsorbed nitrogen onto
the organo-mineral micro agglomerates [72,86]. Some studies have explored the potential of
biochar to adsorb ammonium (NH+

4

)
nitrate (NO−3

)
from IAT-Res tailings [85,87]. Keep-

ing in mind that IAT-Res mining produced a large amount of (NH4)2SO4 leachate, applying
biochar will potentially decrease ammonia volatilization from the IAT-Res mine tailings.

3.2.3. Remove REE Contamination

Among the several methods (precipitation, filtration, and solvent extraction) to recover
REE, adsorption has been recognized as one of the most promising because of its simplicity,
high efficiency, and wide availability [29,88,89]. To adsorb REE elements from aqueous
solutions, a variety of organic and inorganic adsorbents, including zeolite, silica, graphene
nanomaterials, activated carbon (AC) and its modifications, and low-cost materials, have
been used [30,32]. Biochar has a relatively structured carbon matrix with a medium-to-large
surface area, suggesting that it may act as a surface absorbent before being suspended
by bioturbation and hydraulic drift; it may absorb pollutants on a solid matrix, such as
sediments [60,90]. Studies prove that applying biochar is effective in adsorbing REE from
wastewater [91–93]. This is mainly contributed to by the process of ion exchange with
elements such as Ca, Mg, K, and Na and the carboxyl, hydroxyl, and related phenolic
groups, then REE adsorbed on the surface of biochar [91,92].

Most studies explored the possibility of remediation of total REE elements from the
mine tailings, such as Zhang et al. (2020) [50], Jin et al. (2018) [94], Zhao et al. (2021) [95] and
Liu et al. (2020) [96]. Some studied the remediation of a single REE element [92,97]. You et al.
(2019) [98] evaluated the possibility of remediating NO−3 −N from IAT-Res mine tailings. We
summarized articles that applied biochar in REE contaminant remediation and listed them in
Table 2. Considering REE’s critical role in modern techniques and South China’s weathered
IAT-Res ores supply the majority of total world HREE production [9]. Applying biochar in
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the IAT-Res contamination reduction will lead to its resources’ sustainable development.
Since lanthanide ions reside in solutions in the third oxidation state, Kołodyńska et al.
(2018) [93] found that the maximum sorption capacity of biochar is at pH = 4 in their study.
As mentioned previously, IAT-Res mine tailings in south China are in naturally acidic red
soil, which will point to the success of the application of biochar in phytoremediation.

Table 2. Biochar utilization in REE contaminants remediation.

Biochar Material Sampling Matrix Aim References

Castor meal, eucalyptus forest residues,
sugarcane bagasse, coconut green pericarp Lab experiment Sm solutions Sm [91]

Pine wood sawdust Aqueous solutions Wastewater Sc, Nd [92]
Wheat straws Lab experiment Aqueous solutions La, Nd [95]

Sawdust NdFeB magnets Magnets NdFeB [97]
Cartus by-product Lab experiment Sm solution Sm [99]

Coconut shell IAT-Res tailings effluent NO−3 −N [98]
Bamboo and coal ash IAT-Res tailings Soil Total REE [50]

Rice straw, rice straw ash, bone charcoal IAT-Res tailing material Soil 15 REE [94]
Fir sawdust IAT-Res tailing material soil Total REE [96]

The REE are cation adsorped via electrostatic bonds on the surface of IAT-Res ores,
and the exterior of mineral clays has a permanent negative charge [100]. Therefore, biochar
can absorb REE through ion cation attraction. Pourret and Houben (2018) [101] examined
REE adsorption onto biochar from pH 3–9 and ionic strength 10−1 mol/L to 10−3 mol/L
and found that increasing the pH from acidic to neutral values increases the amount
of adsorbed REE as well as the relative contribution of carboxy-phenolic and phenolic
groups to REE sorption. At low ionic strength and acidic pH, REE are mainly absorbed
by carboxylic groups, while at high ionic strength and alkaline pH, REE are primarily
absorbed by carboxy-phenolic groups.

As described previously, many REE occur as physically adsorbed species. In most
mining methods, they can be recovered by ion exchange leaching. Thus, biochar can
remove REE contamination by ion exchange. Biochar’s high sorption is not only the result
of surface adsorption but also the precipitation with phosphate due to the high P content of
biochar that would react with metals to form stable minerals [102].

Trace element biosorption is a non-metabolically mediated passive process of metal
binding by biosorbents [103,104]. It is based on physicochemical interactions, and binding
is independent of metabolism and hence a physical process [89,104]. To date, biochar is
considered one of the most cost-effective adsorbents and has been widely used in heavy
metal remediation. Since REE and heavy metals are both trace elements and biochar is more
efficient for long-term metal immobilization at high ionic strength conditions [99,101]
it is promising to use biochar in IAT-Res remediation. Various types of biochar have
been demonstrated to be effective for REE removal [93]. The mechanisms of applying
biochar in IAT-Res remediation involve precipitation, ion exchange, and electrostatic
attraction [105,106] (as shown in Figure 4). Nevertheless, the interaction processes between
biochar and target toxins, as well as the environmental restrictions that govern biochar
application, are poorly known. Before biochar may be used to its full potential as a
remediation agent, its limiting constraints and properties, along with its soil-environmental
interactions, must be better understood.
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3.2.4. Modified Biochar

Since biochar’s ability to immobilize trace elements relies on the number of functional
groups at its surface [101]. Adsorbents can be more selective and have a stronger attraction
to REE in order to increase the efficiency of biochar applications. Modified biochar is biochar
loaded with different elements by impregnation and in situ synthesis methods [89]. Various
modified biochar can be prepared by loading them with target elements, impregnating the
biochar in a solution containing a modifier, such as Fe-Mn-Ce-modified in a mixed solution
with Fe(NO3)3, KMnO4, Ce(CO 3)3, to create a suitable environment for microbial growth
and increase remediation effects [107,108]. In the in-situ synthesis method, the target
modification reagent is added directly to the raw material, followed by pyrolysis, chemical
precipitation, and activation to obtain the modified biochar [89].

Chemically modified adsorbents have also been explored and shown high adsorp-
tion efficiency (greater than 99.5%) [105], i.e., the adsorption capacity of La by modified
biochar (363.32 mg/g) was approximately 1.3 times higher than the raw biochar [109].
Thus, modified biochar enhanced trace elements’ retention. In addition to contamination
remediation, modified biochar provided other environmental impacts, such as enhancing
catalytic capacity [110], changing biochar pore structure and enhancing antibiotics adsorp-
tion [111], increasing crop biomass and reducing trace element accumulation in crops [107],
and enhancing antibiotics and trace element adsorbent from the aqua system [109,112,113].
However, attempts of using modified biochar in REE mine tailings are very scarce (Table 3).

Table 3. Modified biochar in REE mine tailing remediation.

Biochar Material Effects References

Pseudomonas fulva K3 and Mg-modified Buffer NH+
4 −N from wastewater [85]

FeSO4 and NaBH4-modified energy
firm waste

Improved removal efficiency of La, Ce, and Nd
(FeSO4:NaBH4 = 1:2) [93]

Ammonium citrate-modified
marine biomass

Exhibited excellent adsorption performance
for La [109]

3.3. Disadvantages and Questions of Biochar Application

Several factors, such as feedstock, highest treatment temperature (300 ◦C to over
750 ◦C), residence time at the highest treatment temperature, and treatments applied
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before and after pyrolysis, influence biochar properties and effects in contaminant amend-
ment [72,102]. Thus, applying biochar is not without its drawbacks.

Biochar’s ability to absorb elements is not universal, some biochars may have weak
remediation effects on contaminated soils [89], which makes the selection of raw biochar
material critical. In the study of Yao et al. (2012) [87], for instance, nine out of thirteen
(69%) examined biochar did not exhibit nitrate removal ability and even released nitrate
into the solution; four out of thirteen (31%) did not show ammonium sorption ability
and five (38%) had the ability to remove phosphate from aqueous solutions and the rest
released phosphate into the solution [87]. In addition, unlike biochar application for heavy
metal retention, which has been intensively investigated [63,113–116], biochar application
in REE remediation is still in its infancy. Few biomass materials are evaluated for REE
retention. Moreover, biochar application might have negative effects on the activity of
certain soil microbial communities [117–119]. As the application of biochar is a long-
term reaction, applying large quantities of biochar can lead to a nutrient imbalance in the
soil [89], including its priming effect on soil native carbons [106,120]. Therefore, secondary
contamination formed by biochar application should be avoided. Lastly, nitrogen (both
NO−2 −N and NO−3 −N) that captured biochar particles is neither easily extracted by
conventional procedures nor readily available to plants under field conditions [86]. This
will apply biochar to mitigate NH+

4 −N from IAT-Res mine tailings in question.
In this paper, we reviewed the mechanisms of plant-biochar-IAT-Res contamination

to attract future interest in the IAT-Res conservation of resources and pollution reduction.
Consider the naturally acidic soil and fragile environmental conditions in the IAT-Res mine
tailings, as well as the overloaded NH+

4 −N, and REE. To ensure the viability of biochar
application in IAT-Res residues remediation, additional research must be conducted in
the future.

4. Conclusions

With the rapid development of current technologies, REE demand continues to rise.
Urgent ecological restoration of the IAT-Res mining region is required. On the other hand,
biochar is promising for improving soil fertility and reclaiming degraded soil. Therefore,
we conducted a literature review to assess the potential of using biochar as a method of
reducing REE-related pollution mitigating their environmental hazards, and conserving
natural resources. Although the current literature is lacking systematic knowledge on the
application of biochar in IAT-Res mine tailing remediation, the obtained results from studies
indicate that the use of biochar or modified biochar in IAT-Res mine tailing contamination
remediation is promising. With this paper, we hope to address the interests of researchers
in this field. The incorporation of biochar into the IAT-Res tailing pollution reduction
strategies will provide critical theoretical support for determining an economical, efficient,
and practical joint remediation approach for promoting the IAT-Res tailings remediation
process and, thus, achieving a sustainable supply of IAT-REs.
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