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Abstract: This paper presents a deep-learning-based classification model that aims to detect diverse
pest infections in strawberry plants. The proposed model enables the timely identification of pest
symptoms, allowing for prompt and effective pest management in smart farms. The present research
employed an actual dataset of strawberry leaf images collected from a smart farm test bed. To expand
the dataset, open data from sources such as Kaggle were utilized, while diseased leaf images were
obtained through web crawling with the aid of the Python library. Subsequently, the expanded and
added data were resized to a uniform size, and Pseudo-Labeling was implemented to ensure stable
learning for both the training and test datasets. The RegNet and EfficientNet models were selected
as the primary CNN-based image network models for repetitive learning, and ensemble learning
was employed to enhance prediction accuracy. The proposed model is anticipated to facilitate the
early identification and treatment of pests on strawberry leaves during the seedling period, a pivotal
phase in smart farm development. Furthermore, it is expected to boost production in the agricultural
industry and strengthen its competitive edge.

Keywords: deep learning model; strawberry leaf pest; sustainable smart farm

1. Introduction

The concept of smart farming has gained considerable attention in the pursuit of
sustainable agriculture. By utilizing modern technologies such as sensors, drones, and
machine learning algorithms, farmers can optimize various aspects of crop production [1,2].
Through advanced techniques to monitor critical factors such as soil conditions, weather
patterns, and crop health, farmers can minimize waste, reduce resource consumption, and
enhance overall efficiency. Such practices not only benefit the environment by decreasing
the impact of farming on ecosystems but also ensure the long-term viability of agricultural
production by making it more economically feasible. As a result, smart farming has
emerged as a crucial strategy for promoting sustainable agriculture and addressing the
challenges of food security and climate change.

Deep learning is one of the key technologies for building sustainable smart farms [3].
Deep learning enables more accurate predictions and decision making. For example,
deep learning can be used to optimize the growing environment of crops, the amount
of pesticides used, and the timing of harvests. This allows for more crop production
while managing crop production environments more efficiently. Such technology not only
contributes significantly to increasing crop productivity but also plays a major role in
realizing resource efficiency and environmentally friendly agriculture.

This paper presents a deep-learning-based classification model for detecting various
pest infections in strawberry plants. By enabling the timely identification of pest symp-
toms, the proposed model supports effective pest management in smart farms, thereby
contributing to improved crop yields and quality. As the healthy food industry and the
vegan market continue to expand, there is increasing attention given to the importance of
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supplying high-quality horticultural crops, particularly in response to climate change and
food crises. The emergence of smart farms has made it possible to produce crops of better
quality than those grown in open fields or plastic greenhouses and to cope with extreme
weather conditions.

Strawberries are a highly valuable crop, but they are susceptible to pests and dis-
eases during the seedling stage. Although all crops face the threat of diseases and pests,
strawberries are particularly vulnerable at this stage compared to other crops and times.
Failing to prevent foliar diseases and pests during the strawberry seedling period can
lead to significant yield and quality reductions, resulting in substantial losses not only for
farmers but also for the national agricultural economy. Therefore, there is a pressing need
to develop a system model that can swiftly and precisely diagnose various diseases and
pests of strawberries to combat this issue.

The objective of this study is to design a research model based on deep learning that
can facilitate the early detection and response to leaf pest symptoms for sustainable smart
farms. Figure 1 demonstrates the structure of a sustainable strawberry smart farm. The
proposed model aims to identify and prevent strawberry leaf pests during the seedling
period at an early stage. This is expected to contribute to an increase in strawberry yield,
thereby enhancing the competitiveness of the agricultural industry. By using advanced
techniques to diagnose and prevent leaf pest symptoms, farmers can optimize crop pro-
duction, minimize waste, reduce resource consumption, and improve overall efficiency.
The successful implementation of this research model will be instrumental in promoting
sustainable smart farming practices and addressing the challenges of food security and
climate change.
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Figure 1. Architecture of a sustainable smart farm.

The study’s details and procedures are as follows: First, a study was conducted based
on strawberry leaf image data provided by a smart farm consulting company in Korea.
Figure 1 shows a diagram of a strawberry smart farm provided by the company. Second,
dataset classes were created, and transformations for data augmentation were defined to
effectively learn and train the data. The collected image data were resized to unify the
image size for the application of the experiment. Additionally, test functions were defined
for training and verification. The model was trained to determine whether the leaves were
normal or abnormal and to identify the disease names of pests using pre-labeled learning
datasets. The Pseudo-Labeling technique was applied to enhance learning training stability.
Third, training and validation loss and prediction accuracy were checked using RegNet
and EfficientNet, and data training was performed through Pseudo-Labeling. Ensemble
learning was then conducted with the results of the two models through the trained data.
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Fourth, the number of epochs was reduced to streamline training while improving accuracy.
Post-processing was performed to identify image data in the form of noise that was not
identified during the pre-processing process or negatively affected learning training and
prediction accuracy. After the post-processing process, the prediction accuracy of the model
was averaged, and the result was generated to complete the study.

This study has four distinctive features compared to previous research.

• Our study investigates a wider range of image classifications by comparing four
different types of pests with normal leaf images.

• We implement a stable learning process using Pseudo-Labeling to enhance the robust-
ness of our model.

• Furthermore, to improve prediction accuracy, we leverage ensemble learning of two
powerful ImageNet models.

• By utilizing an efficient CNN image network model with an optimized number of
epochs, our study achieves excellent performance in pest classification.

The rest of the paper is structured as follows: Section 2 provides a review of previous
research on deep-learning-based image classification for sustainable smart farms. Section 3
describes the detailed procedure for the study and presents the overall framework based
on deep learning. Section 4 presents the implementation results and expected outcomes,
followed by a discussion of the results. Finally, Section 5 concludes the paper.

2. Related Work

This section presents an overview of previous research on deep-learning-based image
classification for smart farming. First, several previous studies that employed the ImageNet
model were examined. For instance, Ref. [4] suggested a technique for the early diagnosis of
crop diseases by comparing and analyzing camera-sensing-based technologies. Ref. [5] col-
lected tomato leaf data and compared and classified the characteristics using four different
models, including EfficientNet. Ref. [6] proposed a method of classifying mushroom image
data based on EfficientNet to prevent misunderstandings about poisonous mushrooms
and implement services. Ref. [7] presented a method to classify malicious code files by
type through imaging and applying them to the EfficientNet model. Ref. [8] achieved high
accuracy in learning image data and predicting the characteristics of difficult-to-distinguish
images using the EfficientNet model. Ref. [9] proposed a pest classification method using
the superpixel technique and a CNN and built a model that, although slightly inferior in
performance, was applicable in real environments. Ref. [10] used the EfficientNet model to
detect cracks in wooden cultural assets and showed better performance than other models.
Ref. [11] demonstrated good performance and improved image utilization using AlexNet
as a strawberry pest image recognition model. Ref. [12] showed high accuracy and efficient
training time using the ResNet model, despite learning only 1306 pieces of image data with
a low number of epochs. Ref. [13] built a PlantVillage dataset consisting of 55,448 images
of 39 classes and found that EfficientNet B5 and B4 models performed better than other
models. Ref. [14] introduced the RegNet model as a new network design model, which
showed up to five times faster speed on a GPU than EfficientNet under similar training
settings and failure conditions. Ref. [15] proposed an effective method for classifying
images by optimally matching the width, depth, and resolution of fruit image data.

Next, we provide an overview of prior research on deep-learning-based image classifi-
cation for sustainable smart farming, with a focus on studies related to foliar diseases and
pests. Ref. [16] presented a process for classifying tomato pests using image augmentation
techniques consisting of Random Crop, Random Horizontal Flip, and Google AutoAug-
ment. Ref. [17] proposed several specialized systems to diagnose strawberry pests. In this
study, an expert system was proposed to prepare for pests by collecting environmental con-
ditions of cultivation, disease occurrence parts of plants, and symptoms revealed through
pests. Ref. [18] presented the effect of pest control on plants through related experiments
on how they affect plants. In particular, the degree of influence on pests and diseases was
measured through direct experiments for control. Ref. [19] proposed a method to improve



Sustainability 2023, 15, 7931 4 of 17

the pest detection performance of a deep learning model by suggesting a segmented image
dataset specialized for symptoms. Referring to the proposed pest detection performance
method, this study partially applied it to the process. Information on diagnosing and
controlling major pests and diseases of strawberries was referred to in [20]. In particular,
pest control during the seedling period was described in detail, and a manual was prepared
and distributed in case of infection. In [21], a model that can identify the presence of disease
by training strawberry leaf image data with a deep learning model was proposed, which is
the predecessor of this study.

The existing studies have achieved high accuracy by using a powerful ImageNet model
and have conducted research aimed at predicting various topics. With the recent emergence
of numerous ImageNet models, it has been confirmed that studies using related ImageNet
models have also increased significantly. In terms of the utilization of the ImageNet model,
it can be applied to various topics, but among them, it was found that studies applied to
agricultural products are actively increasing. The limitations of existing research include
limited diversity of datasets, limited consideration of real-world conditions, and limited
consideration of economic feasibility.

This study stands out from previous research in the field of deep learning by utilizing
several distinctive features. Firstly, a stable learning process utilizing Pseudo-Labeling
is employed. Secondly, an ensemble learning method is implemented by combining
two powerful ImageNet models, leading to a significant improvement in the model’s
prediction accuracy. Thirdly, despite employing a small number of epochs, the study
achieves excellent performance by utilizing an efficient CNN image network model. The
academic significance of this study lies in its ability to diagnose, prevent, and mitigate the
impact of pests by training a model with leaf image data and utilizing the aforementioned
points of differentiation.

Previous studies on strawberry pest classification have focused primarily on enhancing
image classification accuracy, specifically addressing issues related to normal and abnormal
leaf images. In contrast, the current study distinguishes itself from these previous works
by examining a more comprehensive range of image classifications. Specifically, the study
compares four different types of pests (Fusarium wilt, Cotton aphid, Powdery mildew,
and Mite) with normal leaf images that are commonly encountered in domestic fields.
The study presents a novel deep-learning-based model that can automatically classify
all five image types with a high degree of accuracy, thus demonstrating its potential in
practical applications.

3. Proposed Methods
3.1. Overall Framework

The overall framework of this study is shown in Figure 2. Initially, additional straw-
berry leaf image data were obtained through the project, web crawling, and open data,
which were then used to build the entire dataset by dividing the strawberry leaf image
data into a training and test dataset. RegNet and EfficientNet were applied based on the
Pseudo-Labeled image data, and ensemble learning was performed to derive the data
applied to the model, to verify the utilization plan and expected effect of the study, and
to present research limitations and future research directions. In addition, we utilized
Grad-CAM to visually illustrate the results of learning. Through the use of Grad-CAM we
were able to generate visual explanations of the model’s decision-making process, which
can help to improve interpretability and transparency in machine learning applications.
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Figure 2 shows the overall framework of this study.

3.2. Research Environment Setup

Optimizing the hyperparameters of a deep learning model requires careful tuning
based on the performance of the model on a validation set rather than relying solely on the
training phase. By integrating a validation set and discerning the optimal hyperparameters
based on both training and validation, we were able to enhance the accuracy and efficacy
of the proposed model. The optimizer was set to Lamb, the scheduler was set to cycle, the
batch size was set to 8, weight decay was set to 1 × 10−3, and finally, the epochs were set to
30. Table 1 shows the hyperparameter settings used for this study.

Table 1. Hyperparameters settings.

Hyperparameters

Optimizer Lamb
Scheduler Cycle
Batch size 8

Weight decay 1 × 10−3

Epochs 30

In the previous study [21], the number of epochs involved in the training was not
large since it aimed to discriminate between normal and abnormal leaves. However, in
this study, the number of epochs increased compared to the previous study because it
aimed to discriminate four types of normal and abnormal leaves based on five criteria.
The optimal number of epochs is important to find since a small number of epochs can
show efficient training time but low prediction accuracy, while a large number of epochs
can result in very high prediction accuracy but takes a lot of training time and can cause
overfitting. Overfitting means the excessive learning of the training data in the machine
learning process, leading to decreased errors in terms of the training data but increased
errors in the actual data.

To prevent bottlenecking and the out-of-memory phenomenon that typically occurs in
the Windows OS environment, the research was conducted by replacing it with a Windows
workstation environment. The system environment was built with an Intel Xeon Silver 421R
CPU, a 32 GB memory size, and an Nvidia RTX A5000 GPU. The research was conducted
using Python version 3.9.12 and PyTorch version 1.8.1.
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3.3. Data Selection and Organization

This study is based on strawberry leaf data provided by a company specializing in smart
farms in South Korea. Although the number of image data was not sufficient for the study, it
was necessary to improve the quality of the image data to achieve higher prediction accuracy.
Therefore, Beautifulsoup4, a Python library that can easily collect data from Hypertext Markup
Language (HTML) information, and Selenium were used to collect strawberry leaf image data.
A Chrome Driver was used to store the crawled leaf image data. In addition, the required leaf
image data were augmented using the AI HUB, which is operated by the National Information
Society Agency (NIA), a government agency in Korea.

However, while the normal leaf image data were sufficiently augmented, the number
of datasets for abnormal (pest) leaf image data was not sufficient for deep-learning-based
research. Therefore, the disease-type image data were reinforced through the hand-labeling
of the unlabeled raw image data. The program used for labeling was the Visual Object
Tagging Tool (VoTT), developed by Microsoft (version 2.2.0). VoTT is an open-source
annotation and labeling tool written in React using TypeScript. MS VoTT provides a
pipeline for processing multiple steps in a data processing system and a learning system
at once, including the ability to label images or videos (frame by frame), import datasets
from local or cloud storage providers, and export labeled data to local or cloud storage
providers. Figure 3 shows the data collection process.
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3.4. Data Preprocessing

Our dataset consists of 10,200 strawberry leaf images collected from multiple sources.
Specifically, we obtained 2300 images from the company, downloaded 2720 images from AI
Hub, and collected 1100 images via web crawling. We applied various data augmentation
techniques to the images acquired from AI Hub to increase the dataset size. After excluding
200 low-quality images, our dataset contains 10,000 images. Table 2 shows the composition
of the collected and augmented dataset. The pest data are organized into four classes, each
with an equal number of samples.

Table 2. Composition of collected and augmented dataset.

Classification Normal Data Pest Data Total

Company 700 1600 2300
AI Hub (Before Aug.) 400 2320 2720
AI Hub (After Aug.) 1000 5800 6800

Web Crawling 300 800 1100
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To address the data imbalance issue, we employed various image augmentation
techniques, such as horizontal and vertical flipping, rotation, scaling, and brightness
adjustment. These techniques helped to increase the diversity of our dataset and improve
the generalization capability of our model. Figure 4 displays the four types of datasets used
in this study, excluding the normal image dataset. Each dataset was organized based on
the collected image data. The normal image dataset shows healthy strawberry leaves, and
the pest image dataset shows strawberry leaf images infected with pests. The pest image
dataset was further classified into four types, and the dataset was constructed accordingly.
The dataset was also pre-processed to remove image data deemed unsuitable for data
training or that could adversely affect prediction accuracy.
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The collected data were converted into an appropriate dataset. The number of training
datasets was 8000, and the number of experimental datasets was 2000, with the datasets
constructed in an 8:2 ratio. Three images with channels of 1024 × 1024 resolution were used,
and each image data had one of five One-Hot Encoding Labels. The five labels represent the
states of leaf image data in this study, and their names are as follows: Normal, Fusarium
wilt, Cotton aphid, Powdery mildew, and Mite. This study aims to develop a classification
model that can identify and classify strawberry leaves in the above five states.

Table 3 illustrates the arrangement of the training and experimental datasets used
in this study. The meaning of the Image Array Shape numbers in the training dataset
and the experimental dataset is as follows, from left to right: The first number represents
the number of data used for data training. The second and third numbers represent the
horizontal and vertical pixel sizes of the image data. The fourth number represents the
number of image channels (RGB). The numerical meaning of the Label Array Shape is as
follows from the left. The first number indicates the number of labeled data, and the second
digit represents the image status that distinguishes the presence or absence of disease and
the type of disease.
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Table 3. Training and test dataset.

Classification Training Dataset Test Dataset

Image Array Shape (8000, 1024, 1024, 3) (2000, 1024, 1024, 3)
Label Array Shape (4000, 5) (2000, 5)

The format of the image data is set to jpg. The names of the image data were set from
1.jpg to 10,000.jpg. Of these, the training image data ranged from 1 to 8000, and the label
array format was only half processed. The test image data ranged from 8001 to 10,000, and
the label array format was fully processed.

The high resolution of the original image may cause a bottleneck when loading the
image. A bottleneck is a phenomenon in which the overall benchmark or capacity of a
system is limited by one or a few elements or resources. In this case, the performance or
capacity of the entire system is limited by a small number of image elements that cause
bottlenecks. To prevent this bottleneck, the size of the image data set was adjusted to
an appropriate size (1024 × 1024). Although the size of the image data in the form of
1024 × 1024 may be rather large, the image size was not processed excessively small to
obtain more accurate training and higher accuracy.

3.5. Data Modeling
3.5.1. Pseudo-Labeling

This study adopted a Pseudo-Labeling technique for more stable data learning. Pseudo-
Labeling is a representative semi-supervised learning method and is a powerful technique
frequently used in data analysis contests such as Kaggle and Dacon. Using the ImageNet
model pre-trained through supervised learning with Pseudo-Labeling, prediction is per-
formed on untagged image data. After Pseudo-Labeling, multiple training is performed
using the expanded dataset.

The Pseudo-Labeling sequence applied in this study is as follows. First, the ImageNet
model is trained with image data with correct labeling. Second, we predict unlabeled
data using the previously created ImageNet model and create new Pseudo-Labeled data
using the result as a label. Third, another ImageNet model is created and re-trained using
both the previously created Pseudo-Label data and the existing image data labeled as the
correct answer. Fourth, this process has been performed a total of 5 times in the same
way to train the ImageNet model. This process can help improve model performance,
particularly in cases where labeled data are scarce or expensive to obtain. Figure 5 shows
the Pseudo-Labeling process.

When pseudo-labeling, we can use multiple models to compare performance and
then select the best-performing model, as Tasin et al. presented in their paper on using
machine learning companies to predict diabetes [22]. In this study, we opted to use a single
high-accuracy ImageNet model (RegNet) for pseudo-labeling rather than utilizing a variety
of models. Our aim was to propose a novel method and demonstrate its effectiveness, and
we found that using a single model was sufficient for achieving our objectives. However,
we recognize the potential for improving our method by exploring the use of various
ImageNet models in future studies.

The performance of pseudo-labeling can be evaluated by comparing the performance
of a model trained with pseudo-labeled data against a model trained without it, typically on
a validation dataset. Additionally, the effectiveness of different ImageNet models used in
the pseudo-labeling process can also be compared to evaluate the performance of pseudo-
labeling. In this study, since the method of comparing the performance of the model
trained with and without pseudo-labeled data was not used, we evaluated the performance
of the model trained with pseudo-labeled data on a validation dataset, which demon-
strated high accuracy results. This suggests a positive impact of pseudo-labeling on the
model’s performance.
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Figure 5. Pseudo-Labeling process.

3.5.2. ImageNet Model

The codes used in this study were written by Akash Haridas [23] and Tarun Pa-
paraju [24] in Kaggle—<Plant Pathology 2020>.

A previous study confirmed the proper use of the model for image processing and
high accuracy in the preprocessing stage. Therefore, in this study, it was decided to
use the EfficientNet model and the RegNet model. In this study, the EfficientNet-B3
model was used. Considering the size of the model, it was determined that the B3 model
was sufficient.

The RegNetY-064 model was used as another model in this study. Using the PyTorch
image model library, the model was trained using RegNet, which has a strong generalization
performance as a basic model. In this study, Pseudo-Labeling based on RegNetY-064 was
repeatedly performed.

3.5.3. Ensemble Learning

In this study, we used RegNet and EfficientNet to create a model directory for pre-
diction and ensemble learning. Additionally, we used Pseudo-Labeling to create a data
frame for training, repeating a total of five times. For the first Pseudo-Labelling, we used
optimized RegNet Five-Fold ensemble learning. After that, we performed a total of four
Pseudo-Labeling update trainings in the same model config, resulting in a total of five
Pseudo-Labeling trainings.

We applied ensemble learning, combining RegNet and EfficientNet, in this study.
Ensemble learning is a technique that leverages multiple machine learning models to find
an optimal solution. It trains and learns data using multiple models and averages the
predictions of all models to reduce errors and improve accuracy. Finally, we confirmed that
the EfficientNet five-fold ensemble model showed the highest benchmark test. Figure 6
shows the structure of the five-fold ensemble learning used in this study.
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4. Research Results
4.1. Confusion Matrix and Learning Curve

Figure 7 is the confusion matrix of this study. A confusion matrix is a representative
index used to measure and evaluate the performance of a model and is a matrix-type index
that shows how accurately predicted values are predicted to actual observed values. In the
confusion matrix, the color of each cell is darker in proportion to the size of the number.
Through Figure 7, it can be confirmed that four types of strawberry leaves, except for
wilt disease, are distinguished with high accuracy. However, it was confirmed that the
wilt disease leaf showed slightly lower accuracy than the prediction accuracy of other leaf
image data.
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Through the confusion matrix, the accuracy, recall, and precision of this study can
be obtained. Accuracy is the ratio of correctly predicted data to the total amount of data,
and it can be calculated using the formula shown in Equation (1). Recall is the ratio of
true positives to all actual positives, and it can be calculated using the formula shown
in Equation (2). Precision is the ratio of true positives to all predicted positives, and it
reflects how accurately the model identifies positive instances. It can be calculated using
the formula shown in Equation (3).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Figure 8 is the result of the learning curve of this study. As a result of a series of
training processes, the model achieved an accuracy of 0.8560, with the training taking
approximately one hour and the number of Epochs set to 30. The training time of one
hour refers to the time taken to complete all 30 epochs of training using an ensemble
of RegNet and EfficientNet models trained on the ImageNet dataset. In this study, we
employed the Adam optimizer and CrossEntropyLoss function as the optimization and
loss function, respectively. The learning curve graph shows the loss function value and
prediction accuracy for each training and validation dataset. Train loss was measured to
be 0.0147, and Val loss: 0.1420. The confusion matrix shown in Figure 7 can be used to
calculate the recall and precision values using the formulas shown in Equations (2) and (3).
As shown in the learning curve graph in Figure 8, it can be seen that high prediction
accuracy is shown even at low epochs. Overall, it shows high accuracy from the beginning
of training, and it can be confirmed that it continuously increases as the number of epochs
increases. However, compared to the previous study [21], the prediction accuracy seems to
be somewhat lower.
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As for the different accuracies for each type of pest, it is likely due to differences
in image quality and image characteristics of each type. It should be noted that we did
not compare the performance of our model with existing studies on strawberry pest
classification, as we could not find any studies that categorized multiple types of pests for
strawberries. This study aims to fill this gap and provide a more comprehensive approach
to pest classification in strawberry crops.

Overall, it shows high accuracy from the beginning of training, and it can be confirmed
that it continuously increases as the number of epochs increases. The reason for the high
prediction accuracy for leaf image data in five states is the use of a powerful ImageNet
model and effective data training due to ensemble learning, as well as noise image data
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or leaf image data that may have problems with learning recognition during the data
preprocessing process. It is also considered an appropriate reason to apply data training by
erasing in advance.

In conclusion, the leaf image data of this study were trained through a series of
preprocessing processes, and through this, a model study that can distinguish five types of
leaf image data with high accuracy was completed.

4.2. Utilization Scenarios

This section describes how the deep learning model proposed in this study can be
used in a sustainable smart farm. There are two suggestions for the utilization of this study.
First, the learned image net model can be used to provide a service in the form of a personal
digital assistant (PDA) or mobile app in strawberry farms, and direct photography or drone
photography using it is also possible. It is believed that utilizing this technology can help
improve the efficiency and productivity of strawberry farming.

The second suggestion is that the service using the learned ImageNet model can
be applied to all people in the horticultural crop industry, including beginners who are
considering commercializing horticultural crops, such as those returning to farming or
young farmers. A virtual service realization screen and use process are provided in Figure 9
to demonstrate how this technology can be applied. This suggests that the service can
be used as a tool to support and educate those who are new to the industry, potentially
leading to increased participation and success in horticultural crop production.
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Figure 9. Example of a service implementation scenario.

Second, it is possible to apply the process of this study to other leaf image data to
conduct research. As a related study, it is confirmed that most research is conducted
through the use of tomato image data, which is considered to be focused on tomato image
data research because tomato image data are currently the most shared data. If other image
data are supplemented through the shared data hub in the future, it is judged that the
process of this study can be used to apply to other ImageNet model studies or image
classification studies in the future.

Lastly, if the process of this study is applied to facility gardening, it is expected to
provide more smooth and useful services in building smart farms. Figure 10 is a blueprint
for building a smart farm using the model of this study.
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Two expected effects can be suggested using this study. First, it is possible to block the
transmission route at an early stage and minimize damage from pests by identifying the
exact symptoms and taking appropriate measures for the symptoms. As a representative
example, in the case of damage caused by pests such as cotton aphids, when the damage is
confirmed, pesticide prevention or spraying of chemicals should be performed around the
area with a certain diameter. On the other hand, in the case of strawberry anthracnose, the
seedling itself must be destroyed if the damage is confirmed. As such, it is expected that
damage from pests can be minimized by taking correct measures through the application
of this study because the size of the damage and coping methods are completely different
depending on the symptoms of each pest.

Second, it is possible to increase the production of strawberries and other horticultural
crops through proper countermeasures against pests. As a typical example, in the case
of wilt disease, an average of 10 to 43% of plants were damaged in an environment of
abnormally high temperatures after the rainy season. If the application point of this study
is service planning, the number of plants damaged by pests can be reduced, and through
this, it can lead to increased production and improved profitability of farms.

4.3. Discussion

In this section, we analyze the characteristics of the leaf image data used in the study
and organize the factors that hinder the prediction accuracy of a deep-learning-based
classification model. Additionally, we discuss the image pre-processing method used in
this study to resolve the factors that hinder prediction accuracy and consider ways to
further improve the results of Section 3.4.

The image data used in this study are based on the strawberry leaf image data provided
by a smart farm company, as well as other image data generated through web crawling,
open data, and data labeling. Since the image data were collected in various ways and
was unstructured, it contained a lot of irregular noise. Identifying the image data from
the seedling period to the growing period was not easy, and there were many images of
complex pests. Furthermore, there was a possibility that the image data training may have
been adversely affected due to noise and quality degradation of pixel values. As a result,
we spent a lot of time refining the image data through pre-processing and post-processing.

As shown in Figure 7 in Section 4.1 above, the prediction accuracy for toxic wilt
disease is lower than that of other pest crops. For wilt disease image data, the image quality
was generally low, and there were image data with less pre-processing and noise in the
pre-processing process, leading to lower accuracy. In the case of image data for other
pests, image data could be easily converted due to the presence of redundant image data.
However, not much image data were collected for wilt disease, so the image data itself
could not be converted in the post-processing process because there were not enough data.
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The accuracy of the learned model was 0.8560 as a result of training through a series
of processes. However, compared to the high prediction accuracy derived in the previous
study, the prediction accuracy in this study is rather low. The previous study distinguished
between normal leaf image data and abnormal leaf image data, so there were not many
variables applied. On the other hand, this study classifies leaf image data of five states of
pests in addition to normal leaf image data, making it a more complex study, which may
account for the relatively lower prediction accuracy.

To improve the prediction accuracy, we applied various types of EfficientNet models
with RegNet and compared and analyzed the results of training. EfficientNet performed
ensemble learning by applying models from B0 to B7 to RegNetY-064. While EfficientNet-
B2 showed the highest prediction accuracy as a single ImageNet model, EfficientNet-
B3 showed the highest prediction accuracy when RegNetY-064 and ensemble learning
were applied.

Based on our experiments, we observed that the choice of the EfficientNet version
is dependent on the specific environment and purpose of use. While higher versions of
EfficientNet tend to perform better, their larger model size may lead to longer training times
and higher memory usage. In our experiments, we found that EfficientNet-B2 performed
the best when used alone, whereas EfficientNet-B3 showed the best performance when
combined with RegNet (Refer to Figure 11). This can be attributed to the optimal combina-
tion of network width, height, depth, resolution, and learning method in EfficientNet-B2
and B3, given the number and quality of the image data.
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Figure 11. Intercomparison analysis graph of predictive accuracy of ensemble models.

In this study, we used Gradient-weighted Class Activation Mapping (Grad-CAM) to
identify which parts of the strawberry leaf image the model mainly learned and determined
the presence or absence of pests [25]. Grad-CAM is a technique that allows you to visually
check which parts of the CNN model have been seen or recognized more visually. Grad-
CAM allows you to see how the deep learning model proposed in this study determines
which parts of the image are diseased. Figure 12 is a diagram that visually confirms the
classification of this research model through Grad-CAM. From left to right, these are images
of Fusarium wilt, Cotton aphid, Mite, and Powdery mildew. The figure illustrates the
significance of different regions in an input image for a specific class prediction, where
warmer colors (e.g., red, yellow) indicate the most critical areas for the prediction, while
cooler colors (e.g., blue, green) represent the less important regions.
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5. Conclusions

The proposed study aims to develop a deep-learning-based classification model that
can detect early symptoms of strawberry leaf pest infections. This will contribute to the
establishment of sustainable smart farms. This study proposed a stable learning method
using Pseudo-Labeling as an effective pre-processing method, and various ImageNet
models, including RegNet and EfficientNet, were used to classify foliar pests with high
accuracy. Through ensemble learning, accurate and robust models can be proposed.

The study has significant implications for learning, including the early detection of
crop diseases, the identification of patterns through data analysis, and the automation of
human decisions. Additionally, the study can aid in collecting and analyzing strawberry
leaf image data through web crawling, comparative analysis of accuracy with other models,
and utilization of ensemble learning.

The industrial implications of the study are that it can help identify the marketability,
scale, and added value of strawberries and horticultural crops, as well as strengthen the
management and engineering grounds to increase competitiveness in the agricultural
industry. By detecting and responding to crop diseases at an early stage, the study is
expected to increase production and bring about a change in agricultural awareness by
introducing the latest technology to the industry.

However, it should be noted that the study has certain limitations, mainly stemming
from the paucity of pest leaf data and the frequent errors encountered during the exper-
imental phase, which negatively impacted image learning training. In order to further
enhance the model’s capabilities, future studies may consider implementing various image
processing and augmentation methods. Additionally, it is imperative that further research
be conducted to more accurately distinguish between different types and severity levels
of strawberry leaf pests. To further advance this area of research, it is recommended that
future studies focus on measuring the performance of pseudo-labeling techniques and
comparing the efficacy of various ImageNet models in the pseudo-labeling process. By
doing so, a more comprehensive understanding of the strengths and weaknesses of these
techniques can be achieved, leading to further improvements in image classification and
other related fields.
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Overall, the study succeeded in deriving high prediction accuracy, and the proposed
model can be utilized for artificial intelligence services and even commercialization in
the future.
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