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Abstract: The optimal design of prestressed concrete cylindrical walls is greatly beneficial for eco-
nomic and environmental impact. However, the lack of the available big enough datasets for the
training of robust machine learning models is one of the factors that prevents wide adoption of
machine learning techniques in structural design. The current study demonstrates the application
of the well-established harmony search methodology to create a large database of optimal design
configurations. The unit costs of concrete and steel used in the construction, the specific weight of
the stored fluid, and the height of the cylindrical wall are the input variables whereas the optimum
thicknesses of the wall with and without post-tensioning are the output variables. Based on this
database, some of the most efficient ensemble learning techniques like the Extreme Gradient Boosting
(XGBoost), Light Gradient Boosting Machine (LightGBM), Categorical Gradient Boosting (CatBoost)
and Random Forest algorithms have been trained. An R2 score greater than 0.98 could be achieved
by all of the ensemble learning models. Furthermore, the impacts of different input features on the
predictions of different machine learning models have been analyzed using the SHapley Additive
exPlanations (SHAP) methodology. The height of the cylindrical wall was found to have the greatest
impact on the optimal wall thickness, followed by the specific weight of the stored fluid. Also,
with the help of individual conditional expectation (ICE) plots the variations of predictive model
outputs with respect to each input feature have been visualized. By using the genetic programming
methodology, predictive equations have been obtained for the optimal wall thickness.

Keywords: optimization; machine learning; XGBoost; SHAP; prestressed concrete; post-tensioning;
genetic programming

1. Introduction

Prestressing has well-known benefits in terms of increasing the load-carrying capacity
and durability of concrete structures like liquid storage tanks, silos, and nuclear facilities [1].
It significantly reduces concrete cracks at the tension side by pre-compressing those parts
of the concrete structures under tensile strain before the service loads are applied thereby
countering the effects of tension caused by bending. Post-tensioning is a type of prestressing
where the tendons are stressed after the concrete has been poured and hardened. Post-
tensioning is a particularly favorable technique when the serviceability requirements on
a large-scale structure cannot be met using conventional reinforcement techniques while
keeping the dimensions of the structure in an economically feasible range [2].

Previous studies of the reinforced concrete structures optimization with and without
prestressing have demonstrated the applicability of metaheuristic optimization techniques
like the harmony search (HS) methodology to reduce the structural cost and environmental
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impact [2–6]. Metaheuristic optimization techniques have been applied to a variety of
problems in civil and structural engineering including the dimensioning of trusses [7–13],
retaining walls [14–22], laminated composite plates [23–30], and steel plate girders [31].
On the other hand, post-tensioning in structures is an area where metaheuristic optimiza-
tion techniques found relatively few applications. The research in the area of structural
post-tensioning can be grouped into studies related to beams [32], slabs [33–35], experi-
mental studies [33,34,36], and numerical studies [32,34–36]. Elbelbisi et al. [32] performed
a parametric study of post-tensioned fiber reinforced polymer (FRP) systems. The flexural
behavior of beams externally post-tensioned with FRP tendons was investigated using
finite element analysis. The application of external post-tensioning significantly increased
the load-carrying capacity of the beams. Elsheshtawy et al. [33] investigated the effect of
prestressing force and layout of strands on the punching shear strength of slab-column
connections and found that the banded layout of the post-tensioning strands was most
favorable to increase the punching shear strength of the post-tensioned flat slabs. Attia
et al. [34] examined the load-carrying capacity of two-way flat slabs under post-tensioning
with external FRP laminates using finite element analysis. A parametric study was car-
ried out and it was shown that post-tensioning with FRP laminates increase the ductility.
Furthermore, strengthening near the supports was shown to be more effective than in
the middle of the slab. Tahmasebinia et al. [35] investigated post-tensioned concrete flat
slabs under dynamic loading. According to finite element analysis, increasing the slab
thickness and damping ratio is favorable towards better vibration serviceability. Vavrus
and Kralovanec [36] investigated the application of steel fiber reinforced concrete in the
anchorage zones of post-tensioning tendons to increase the load-carrying capacity. Based
on numerical analysis, increasing the fiber content near the anchorage plate is favorable for
the increase of the load carrying capacity. In some of the more recent studies in the area of
post-tensioned structural members, bearing capacity of anchorage zones [37], precast post-
tensioned girders [38], and post-tensioned self-compacting concrete beams with recycled
coarse aggregate [39] have been experimentally and numerically investigated. Lei et al. [37]
proposed a new formula for the bearing capacity of anchorage zones using the stress field
approach. Joyklad et al. [38] carried out an experimental program with full-scale pre-cast
post-tensioned (PCPT) girders accompanied with numerical simulations. Two PCPT gird-
ers of 29.95 m length, 1.8 m depth and 0.69 m width were manufactured. The upward
deflection response of these girders, post-tensioning tendon strains, and reinforcement
strains were measured with displacement transducers and strain gauges for 120 days. Fur-
thermore, the thermal response of fresh concrete was measured using thermocouple wires.
All measured parameters were observed to increase during post-tensioning. Yu et al. [39]
carried out four-point bending tests on post-tensioned beams with and without recycled
coarse aggregate. The specimens made with recycled coarse aggregate and self-compacting
concrete were demonstrated to have similar flexural capacity as the specimens with natural
coarse aggregate. To the best of the authors’ knowledge the only research studies involv-
ing the application of metaheuristic optimization techniques to post-tensioned reinforced
concrete cylindrical containers was carried out by Bekdaş et al. [40]. It was found that the
addition of multiple layers of post-tensioning cables reduces the amount of carbon emission
associated with the manufacturing process. Harmony search (HS), teaching–learning based
optimization (TLBO), and flower pollination algorithm (FPA) were utilized for minimizing
the carbon footprint.

The current study aims to develop predictive models using ensemble machine learning
techniques and genetic programming in order to predict the optimal value of wall thickness
for a post-tensioned reinforced concrete cylindrical wall. In order to train these predictive
models a large database of optimal design configurations has been generated using the
harmony search algorithm. The statistical analysis of this data set as well as the harmony
search methodology have been presented in Section 2 which also contains the details of the
genetic programming and ensemble learning algorithms. Using the genetic programming
algorithm, closed-form equations have been proposed for the prediction of the optimal
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wall thickness for cylindrical walls with and without post-tensioning. The performances
of the ensemble learning and genetic programming algorithms in predicting the optimal
wall thickness have been presented in Section 3. In the same section also, the input feature
impact analysis has been carried out using SHAP and individual conditional expectation
plots. The major novelty of the current paper is the proposal of a new methodology to
overcome the data scarcity for the training of reliable predictive models using machine
learning algorithms. Since reliable machine learning models necessitate large data sets
which are not readily available in case of post-tensioned cylindrical walls, the current
proposed technique can make a valuable contribution to this area.

2. Machine Learning and Optimization Methods

In this section, the procedures of building data sets of optimum post-tensioned cylin-
drical walls and developing machine learning (ML) models based on these data sets are
explained. The database for the training of the ML models is generated using the har-
mony search optimization algorithm. In this process the serviceability requirements on the
cylindrical wall such as the limitation on the crack size according to ACI 318 code [41] are
considered as the constraints of the optimization. The structural analysis of the cylindrical
walls has been carried out using the superposition method (SPM), which is based on St.
Venant’s principle according to which stresses sufficiently far from an applied load are not
significantly altered if this load is changed to a statically equivalent load combination [42].
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Aβl = e−βl(cosβl + sinβl), Bβl = e−βlsinβl (5)

Cβl = e−βl(cosβl− sinβl), Dβl = e−βlcosβl (6)

The process of SPM has been visually depicted in Figure 1 where the beam in the top
left shows a section of length L from an infinite wall, q is a distributed load representing
the forces acting on the wall, MA, MB, QA, QB are the moments and shear forces at the
positions A and B, respectively and P0, M0 at the bottom left portion of Figure 1 are the end
conditioning forces and moments, respectively which should be statically equivalent and
in opposite direction to MA, MB, QA, QB such that these moments and shear forces at the
positions A,B are cancelled and the infinite wall is equivalent to a finite wall with free ends.
The end-conditioning forces can be found by solving Equations (1) to (4). Further details of
the SPM can be found in Hetenyi [43] and Bekdaş [2].

The post-tensioning forces are denoted with P1 to Pn in the right side of Figure 1. The
optimal distances of these forces from the ground as well as their optimal magnitudes
were determined using the harmony search technique. The wall thickness, radius of
the cylindrical wall and the height of the wall are denoted with t, r, and H, respectively.
Using the methodology described in the previous paragraph, data sets of 1925 samples
were generated for cylindrical walls with different numbers of post-tensioning loads. The
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data samples were generated by considering the total cost of the resulting structures and
minimizing the objective function given in Equation (7).

f(x) = CcVc + CsWs + CptWpt + CfwAfw (7)
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In Equation (7), f(x) denotes the function that outputs the total cost of the resulting
structure, x denotes a vector containing the values for the wall dimensions and unit
costs, and Cc, Cs, Cpt, Cfw are the cost of concrete per unit volume, cost of steel rebars
per unit weight, cost of post-tensioning per unit weight and cost of formwork per unit
area, respectively. The details of the objective function can be found in [2]. The database
consisting of the optimal design configurations has been taken for the prediction of the
optimal wall thickness. The height of the wall (H), the unit cost of concrete (Cc), specific
weight of the liquid (γ), and unit cost of steel (Cs), have been used as the input features
defining the load cases. The following section shows the details of each data set used in the
development of the predictive models.

2.1. Analysis of the Data Set

The data sets used in the prediction of the optimal wall thickness for the case with
and without post-tensioning consist of 1908 and 1925 data samples, respectively. The data
sets were generated using the harmony search algorithm to find the optimal wall thickness
value corresponding to certain combinations of wall height, fluid specific weight and unit
costs of concrete and steel. These data sets are split into a training set and a test set in 70%
to 30% ratio. The ensemble learning models have been trained on the training set using
the 10-fold cross-validation process. Afterward, the performances of these models have
been measured on the test set which consists of data samples yet unseen by the models.
In the 10-fold cross-validation process the training set is split into 10 disjoint subsets. The
models are trained using 9 of these subsets while the tenth subset is being used for model
validation. After 10 passes of the training set the best performing model is being selected
which is used for performance evaluation on the test set.

The correlation plots in Figures 2 and 3 show the Pearson correlation coefficients
between different features in the upper right triangular parts. It can be seen that the
wall height is the most correlated input feature with the wall thickness with correlation
coefficients of 0.89 and 0.91 followed by the fluid specific weight (γ) with correlation
coefficients of 0.34 and 0.37. The strength of the correlation is also denoted by stars in
Figures 2 and 3. A Pearson correlation coefficient close to 1 would indicate a highly linear
relationship between to variables. The computation formula for the Pearson correlation
coefficient is given in Equation (8) where xi, yi denote two data series of equal length, n is
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the length of these data series, and rxy is the Pearson correlation coefficient between these
two data series.

rxy =
n∑ n

i=1xiyi −∑ n
i=1xi∑ n

i=1yi√
n∑ n

i=1x2
i −

(
∑ n

i=1xi
)2
√

n∑ n
i=1y2

i −
(
∑ n

i=1yi
)2

(8)
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In addition to the Pearson coefficient, Figures 2 and 3 also display the distributions of
different features. The diagonals of each plot contain frequency distributions of the features
whereas the lower left triangular area contains bivariate scatter plots with regression lines.
For each feature denoted on a diagonal tile, the value range of this feature is shown in both
the horizontal and the vertical axis.

2.2. Harmony Search Algorithm

The harmony search (HS) algorithm was developed by Geem et al. [44] and has
been used for solving numerous optimization problems in broad areas including the
numerical solution of differential equations [45], project scheduling [46], weapon target
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assignment [47], law enforcement [48], internet of things [49], robotics [50], soil stability
analysis [51], and structural design [52–54]. The HS method is based on the evolutionary
improvement of an initially randomly generated population of optimal solution candidates
denoted with x in Equations (10) and (11). The size of this population is denoted with HMS
in Equation (9) which stands for harmony memory size. As the members of the population
go through the HS iterations given in Equations (9) to (12), new and better-performing
population members replace the members of the previous generations.

k = int(rand·HMS), rand ∈ (0, 1) (9)

xi,new = xi,min + rand·(xi,max − xi,min), if HMCR > rand (10)

xi,new = xi,k + rand·PAR·(xi,max − xi,min), if HMCR ≤ rand (11)

HMCR = 0.5
(

1− i
max(i)

)
, PAR = 0.05

(
1− i

max(i)

)
(12)

2.3. Ensemble Learning Algorithms

Ensemble learning methods are based on the idea of combining the predictions of
multiple predictive models to obtain a strong learning algorithm. In this study XGBoost,
Random Forest, LightGBM, and Catboost ensemble learning algorithms have been applied.
The ensemble learning models have been trained using the scikit-learn library available
for the Python programming language. The XGBoost algorithm iteratively generates
decision trees while each newly generated tree corrects the errors of the previous trees. In
these iterations the XGBoost algorithm aims at minimizing the objective function given in
Equation (13) where M is the size of the training set, N is the number of decision trees, l
is a loss function and Ω is a penalty function. The XGBoost algorithm is summarized in
Equation (14) where g denotes the strong learner model which is a linear combination of N
weak learners denoted with gk and ŷ is the model prediction [55].

L =
M

∑
i=1

l(yi, ŷi)+
N

∑
k=1

Ω(fk) (13)

g(x) =
N

∑
k=1

gk(x) = ŷ (14)

The LightGBM, Random Forest, and CatBoost algorithms function on similar princi-
pals as the XGBoost algorithm by iteratively adding weak learner trees to the model and
combining their output to build a strong learner model. The distinguishing feature of the
LightGBM algorithm is its computational speed. The LightGBM algorithm implements
techniques such as histogram-based algorithm, and Gradient-based One-Side Sampling
(GOSS) to achieve improved performance [56]. On the other hand, the CatBoost algorithm
stands out by its ability to work with categorical features more efficiently. The CatBoost
algorithm incorporates ordered boosting, greedy method, and L2-regularization to improve
model performance [57].

2.4. Genetic Programming

Genetic programming (GP) is a population based evolutionary algorithm. The al-
gorithm generates a population of programs where each program is represented by a
tree structure. Each node in these programs represents an operation (such as addition
or multiplication) or a numerical value. Figure 4 shows an example of representing a
program as a tree structure where nodes containing numerical values, unary operators and
binary operators are shown in different colors. The fitness of each program is evaluated by
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running on a test set, and the programs that perform the best are selected for producing
the next generation of programs through crossover and mutation [58–60]. The process of
producing new programs from the existing ones using crossover and mutation operations
is schematically explained in Figure 5. In the crossover part of Figure 5 the identical parts
of the programs are shown inside rectangles of the same color whereas in the mutation part
the mutated operator is shown inside a red rectangle.
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3. Results

This section gives a detailed presentation of the predictive performances of the machine
learning models. The predicted and actual optimal wall thickness values are plotted against
each other and the percentage deviations of the predicted values from the actual thickness
values have been shown. The prediction accuracies of ML models have been quantified
using root mean squared error, mean absolute error, and the coefficient of determination
(R2). ML models have been trained on datasets of wall geometries with and without
post-tensioning cables. Figure 6 shows the prediction of the optimal wall thickness as a
function of the concrete and steel unit costs, liquid specific weight, and wall height for a
cylindrical wall without post-tensioning. The wall radius has been fixed at a constant value
in all the databases in this study since the liquid pressure on the wall is not affected by this
quantity. It can be observed from Figure 6 that the predicted and actual optimal values for
the thickness perfectly overlap.
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Figure 6. Comparison of the predicted and actual wall thickness values without post-tensioning
cables using (a) XGBoost, (b) Random Forest, (c) LightGBM, (d) CatBoost.

The performances of four different ML models have been quantified and listed in
Table 1. It can be observed that all of the ML models were able to predict the optimal
wall thickness values with near-perfect accuracy since the R2 scores are close to 1 for
all ML models. Table 1 also lists the performance values for the genetic programming
model (GP). Clearly, in terms of both accuracy and computational efficiency the GP model
performed worse than the ensemble learning models. However, the GP algorithm has been
included in this study, because this algorithm delivers closed-form equations that could be
easily incorporated into practical engineering applications for the prediction of the optimal
wall thickness.

Table 1. Model accuracies in predicting the optimal wall thickness without post-tensioning.

Algorithm
R2 MAE RMSE

Duration [s]
Train Test Train Test Train Test

XGBoost 0.9999 0.9999 0.0001 0.0002 0.0003 0.0003 4.81
Random Forest 0.9999 0.9999 10−5 3 × 10−5 9 × 10−5 0.0002 3.87

LightGBM 0.9999 0.9999 0.0005 0.0006 0.0012 0.0014 4.52
CatBoost 0.9999 0.9999 0.0002 0.0003 0.0002 0.0004 32.82

GP 0.9584 0.9573 0.0465 0.0460 0.0573 0.0570 359

The predicted and actual optimal wall thickness values in the case of a single layer of
post-tensioning have been plotted in Figure 7. It can be observed that the introduction of
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post-tensioning into the models caused a slight reduction in the accuracy of the ML models.
However, Table 2 shows that all ensemble models were capable of predicting the optimal
wall thickness with an R2 score greater than 0.98 on the test set.
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Figure 7. Comparison of the predicted and actual optimal wall thicknesses with post-tensioning for
(a) XGBoost, (b) Random forest, (c) LightGBM, (d) CatBoost.

Table 2. Model accuracies in predicting the optimal wall thickness with post-tensioning.

Algorithm
R2 MAE RMSE

Duration [s]
Train Test Train Test Train Test

XGBoost 0.9967 0.9825 0.0087 0.021 0.0139 0.0346 5.66
Random Forest 0.9973 0.9850 0.0077 0.019 0.0126 0.0320 5.14

LightGBM 0.9908 0.9864 0.0153 0.019 0.0234 0.0305 4.39
CatBoost 0.9931 0.9863 0.0129 0.018 0.0203 0.0306 25.15

GP 0.9588 0.9581 0.0422 0.045 0.0501 0.0531 150

To have a clear visualization of the model performance, the percentage errors on the
training and test sets have been plotted for the CatBoost model in Figure 8. Figure 8a shows
the overlap between the actual and predicted optimal wall thickness values. According to
Figure 8b, the error percentages fluctuate in the ±10% and ±30% ranges for the training
and test sets respectively. Figure 8c,d show the distributions of the error percentages for
the training and test sets respectively. Figure 8d, shows that most of the error percentage
fluctuations on the test set are accumulated in the ±20% range whereas smaller error
percentages are observed in Figure 8c in the ±10% range. The entire data set was split into
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a training set and a test set in 70% to 30% ratio. In terms of mean absolute error (MAE), the
CatBoost model performed best on the test set, whereas the LightGBM model performed
best in terms of RMSE and R2. It should be noted that all of the four ensemble learning
models tested in this study demonstrated similar performances and the differences in
performance are deemed negligible. On the other hand, a significant difference in terms
of the computational speed could be observed for the CatBoost model. It was observed
that the duration of training and testing the models is significantly longer in the case of
CatBoost. The LightGBM model was observed to be the most efficient model in terms of
computational speed, although the XGBoost and Random Forest models also have similar
performances to LightGBM in terms of computational speed. Finally, the closed-form
equation obtained from the genetic programming (GP) algorithm performed less accurately
than the ensemble learning models.
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Figure 8. Error percentages of the CatBoost model.

Figure 9 shows the first of the decision trees that constitute the XGBoost model
developed for the case with one layer of post-tensioning cables. The XGBoost model
consists of a total of 100 iteratively added decision trees such that each new decision tree
corrects the errors of the trees before itself. The final prediction of the XGBoost model is the
sum of all the predictions made by the decision trees. The decision tree in Figure 9 consists
of a root node which is split according to the level of wall height, 41 internal nodes, and
43 leaf nodes. The internal nodes are split at different levels of the fluid specific weight,
and the unit costs of steel and concrete. The green colored leaf nodes contain the possible
contributions of the decision tree to the final model prediction.
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3.1. Interpretation of the Ensemble Learning Models Using SHAP Approach

The SHAP summary plots in Figures 10 and 11 visualize the impact of each input
feature on the CatBoost model predictions. The load cases with and without post-tensioning
are visualized in Figures 10 and 11, respectively. In the SHAP summary plots each dot
represents one of the data points in the data set. The SHAP value corresponding to an
input feature in a data point is represented on the horizontal axis, whereas the value of
the input feature is color coded as shown with a color bar on the right-hand side of the
plot. The higher values of an input feature are displayed with shades of red, while blue
colors represent the lower values of an input feature. The input features are sorted by
the magnitude of their impact, in decreasing order from top to bottom. The SHAP value
measures the contribution of a feature to the model prediction such that positive SHAP
values indicate an increasing effect of an input feature on the model output and negative
SHAP values indicate a decreasing effect on the model output. The computation of the
SHAP values can be described as in Equation (15) where F is the set of all input features
and S is a subset of F where the feature with the index i has been withheld. In Equation (15),
x and φi represent a vector of input feature values and the corresponding SHAP value
respectively [61].

φi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

[
fS∪{i}

(
xS∪{i}

)
− fS(xS)

]
(15)
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According to Figures 10 and 11 the height of the cylindrical wall has the greatest
impact on the predicted optimal wall thickness for both load cases. The fluid specific
weight is the second most impactful input feature whereas the concrete and steel unit costs
have a relatively minor impact on the model predictions. Particularly, in the load case
without post-tensioning, the impacts of the concrete and steel unit costs are significantly
less than the fluid specific weight and the wall height.
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Figures 12 and 13 show feature dependence plots where the y-axis represents the SHAP
value for the feature of interest, and the x-axis represents the actual value of the feature for
each point in the dataset for the cases with and without post-tensioning respectively. The
color of each dot on the feature dependence plots represents the value of a second feature
that is most correlated with the main feature represented in the horizontal axis. The feature
dependence plots convey information about how the predictions of the model are affected
as the value of an input feature varies. A positive relationship between a feature’s value
and its corresponding SHAP value indicates that an increase in that feature’s value will
result in an increase in the model predictions. In both Figures 12 and 13, there is a positive
relationship between the height of the wall and the corresponding SHAP values which
indicates that increased wall height leads to increased predictions of the wall thickness. The
coloring of the dots in Figures 12 and 13 indicate that for any given value of the wall height,
an increase in the fluid specific weight is associated with a greater increasing impact on the
model output wall heights greater than 10 m. On the other hand, for wall heights less than
10 m, in both load cases with and without post-tensioning, the fluid specific weight has
the opposite effect on the predicted wall thickness. A similar relationship is also observed
between the fluid specific weight and its SHAP value. For values greater than 10 kN/m3

the addition of this variable into the models has an increasing impact on the model output
whereas specific weight values less than 10 kN/m3 are associated with a decrease in the
predicted wall thickness values. Furthermore, for any given value of the fluid specific
weight, increased wall height also increases the impact of γ on the model output as the
coloring of the data points shows.
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Figures 14a and 15a clearly show that the predicted optimal wall thickness values increase 
with the wall height while the range of optimal wall thickness values becomes wider as 
the wall height increases. A less steep increase in the optimal wall thickness values can be 
observed with respect to the γ values in Figures 14b and 15b. Also, for any given γ value, 
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Figure 13. Feature dependence plots (CatBoost) without post-tensioning for (a) H (b) γ (c) Cc (d) Cs.

Individual conditional expectation (ICE) plots are helpful for gaining a better un-
derstanding of how a single feature affects the predictions made by a machine learning
model. The ICE plots in Figures 14 and 15 show the variation of the model predictions
concerning a single input feature while the values of the remaining input features are kept
constant. Each line in the ICE plot represents one of the data points in the data set and
the average value of the predictions for all the data points is plotted with a thick blue line.
Figures 14a and 15a clearly show that the predicted optimal wall thickness values increase
with the wall height while the range of optimal wall thickness values becomes wider as
the wall height increases. A less steep increase in the optimal wall thickness values can
be observed with respect to the γ values in Figures 14b and 15b. Also, for any given γ

value, the optimal wall thicknesses take values on a much wider range compared to the
wall height. Finally, the ICE plots of Cc and Cs show that these features have significantly
less impact on the model output compared to H and γ.
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3.2. Genetic Programming

Equations (16) and (17) have been obtained by the genetic programming algorithm
for the prediction of the optimal wall thickness as a function of the wall height and liquid
specific weight for the case of no post-tensioning and one post-tensioning cable, respectively.
The tree representations of Equations (16) and (17) are shown in Figure 16. The tree
population size was 5000 and mean absolute error (MAE) was used as the error metric.
MAE values of 0.041 and 0.046 could be achieved in less than 50 iterations in cases with
and without post-tensioning, respectively.

t(H,γ) = 0.095·H·log(0.878·log(γ)) (16)

t(H,γ) = tan
(

tan
(

0.093·H·tan
(

log
(√

log(γ)
))))

(17)
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Figure 16. Tree representations of (a) Equation (16), (b) Equation (17).

Figures 17 and 18 show the development of the equation length and accuracy through-
out the generations. It can be seen from Figure 17 that after 50 iterations an MAE value of
0.046 could be achieved with a predictive equation that consists of 9 components in the load
case without post-tensioning. These 9 components consist of the log function which appears
2 times, the multiplication operator which appears 3 times, the coefficients 0.095 and 0.878,
and the variables H and γ. Figure 18 shows that after 50 iterations an MAE value of 0.041
is achieved with a predictive equation consisting of 11 components. These components
are the tangent function which appears 3 times, the log function which appears 2 times,
the square root function which appears 1 time, the multiplication operator which appears
2 times, the coefficient 0.093, and the variables H and γ. The larger MAE value associated
with the case without post-tensioning is due to the larger wall thicknesses necessary in the
absence of post-tensioning. A complete list of the hyperparameters modified in obtaining
Equations (16) and (17) is given in Table 3. For the remaining hyperparameters, the default
values have been used.
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Table 3. Hyperparameters for the Genetic Programmin (GP) Model of the wall thickness.

Model Parameter Name Value

GP population_size 5000
p_crossover 0.7

p_subtree_mutation 0.1
p_hoist_mutation 0.05
p_point_mutation 0.1
tournament_size 150

function_set (‘add’, ‘sin’, ‘cos’, ‘tan’, ‘log’,
‘sub’, ‘mul’, ‘div’, ‘sqrt’)

4. Discussion

The current study demonstrates the application of the harmony search optimization
algorithm in generating large data sets for training state-of-the-art machine learning mod-
els. The problem of predicting the optimal wall thickness of a cylindrical post-tensioned
reinforced concrete wall of a liquid container has been investigated. In addition to en-
semble learning models such as XGBoost and CatBoost also, the genetic programming
methodology has been utilized to obtain closed-form predictive equations. The ensemble
learning models have been trained with the height of the wall, specific weight of the liquid,
and unit costs of steel and concrete as the input features. It was shown that the inclusion
of post-tensioning cables leads to a decrease in the optimal wall thickness. The output of
the ensemble learning models has been further analyzed using the SHAP approach and
individual conditional expectation plots. The SHAP analysis showed that the wall height
is the most impactful input feature affecting the model predictions of the optimal wall
thickness followed by the liquid specific weight. An increase in the wall height and liquid
specific weight was shown to also increase the optimal wall thickness. Furthermore, the
genetic programming methodology provided predictive equations as functions of wall
height and liquid specific weight for the load cases with and without post-tensioning. All
predictive models were able to provide highly accurate predictions of the optimal wall
thickness, with of the ensemble learning models achieving R2 scores greater than 0.98 on
the test sets. The LightGBM model delivered the fastest and most accurate predictions in
the case of walls with post-tensioning whereas the CatBoost model was the slowest.
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5. Conclusions

The application of optimization techniques to generate big data sets is a novel approach
to overcome the lack of experimental data points for the training of ML models related
to structural engineering. Furthermore, the availability of closed-form equations for the
prediction of optimal design configurations has significant practical benefits. The current
study demonstrated the application of the genetic programming methodology in obtaining
closed-form equations for the prediction of the optimal wall thickness for a liquid containing
post-tensioned cylindrical wall. The data set necessary for this procedure was generated
using the harmony search optimization technique. The obtained predictive equations could
be incorporated into the engineering design process to facilitate structural optimization.
However, further research needs to be done with larger data sets for the performance
validation of the presented equations. On the other hand, higher R2 scores could be
obtained from the ensemble learning algorithms. A limitation of the current study is the
range of design variables included in the data set generation process. Future research in
this area can incorporate additional input features into the data set such as the mechanical
properties of steel and concrete or the positions of post-tensioning cables. Data sets can
also be further enhanced with the results of numerical studies.
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Nomenclature

Cc Unit cost of concrete Cc Unit cost of steel
Cpt Unit cost of post-tensioning Cfw Unit cost of formwork
F Set of all input features FPA Flower pollination algorithm
FRP Fiber reinforced polymer HMCR Harmony memory consideration rate
HMS Harmony memory size i Index of a design variable
γ Specific weight of the liquid GOSS Gradient-based One-Side Sampling
GP Genetic programming H Height of the wall
HS Harmony search ICE Individual conditional expectation
k Index of a population member M Size of the training set
MAE Mean absolute error ML Machine learning
N Number of decision trees Ω Penalty function
P1 . . . Pn Post-tensioning forces PAR Pitch adjustment rate
φi SHAP value of the i-th feature PCPT Pre-cast post-tensioned
r Radius of the cylindrical wall R2 Coefficient of determination
RMSE Root mean squared error rxy Pearson correlation coefficient
SHAP SHapley Additive exPlanations t Wall thickness
TLBO Teaching learning based optimization SPM Superposition method
Vc Volume of concrete Wpt Weight of post-tensioning cables
Ws Weight of steel ŷ Model prediction
Afw Area of formwork
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5. Bekdaş, G.; Nigdeli, S.M. Optimum Reduction of Flexural Effect of Axially Symmetric Cylindrical Walls with Post-tensioning
Forces. KSCE J. Civ. Eng. 2017, 22, 2425–2432. [CrossRef]
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Switzerland, 2021; Volume 326. [CrossRef]

10. Mortazavi, A. The Performance Comparison of Three Metaheuristic Algorithms on the Size, Layout and Topology Optimization
of Truss Structures. Mugla J. Sci. Technol. 2019, 5, 28–41. [CrossRef]
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40. Bekdaş, G.; Yucel, M.; Nigdeli, S.M. Generation of eco-friendly design for post-tensioned axially symmetric reinforced concrete
cylindrical walls by minimizing of CO2 emission. Struct. Des. Tall Spéc. Build. 2022, 31, e1948. [CrossRef]

41. ACI 318M–05; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington
Hills, MI, USA, 2005.

42. Love, A. A Treatise on the Mathematical Theory of Elasticity. 1, 1892. 〈hal-01307751〉. Available online: https://hal.science/hal-
01307751 (accessed on 23 February 2023).

43. Hetenyi, M. Beams on Elastic Foundation; The University of Michigan Press: Ann Arbor, MI, USA, 1946.
44. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]
45. Yadav, N.; Ngo, T.T.; Kim, J.H. An algorithm for numerical solution of differential equations using harmony search and neural

networks. J. Appl. Anal. Comput. 2022, 12, 1277–1293. [CrossRef]
46. Geem, Z.W. Multiobjective Optimization of Time-Cost Trade-Off Using Harmony Search. J. Constr. Eng. Manag. 2010, 136,

711–716. [CrossRef]
47. Chang, Y.-Z.; Li, Z.-W.; Kou, Y.-X.; Sun, Q.-P.; Yang, H.-Y.; Zhao, Z.-Y. A New Approach to Weapon-Target Assignment in

Cooperative Air Combat. Math. Probl. Eng. 2017, 2017, 2936279. [CrossRef]
48. Shih, P.-C.; Chiu, C.-Y.; Chou, C.-H. Using Dynamic Adjusting NGHS-ANN for Predicting the Recidivism Rate of Commuted

Prisoners. Mathematics 2019, 7, 1187. [CrossRef]
49. Xu, C.; Wang, X. Transient content caching and updating with modified harmony search for Internet of Things. Digit. Commun.

Netw. 2018, 5, 24–33. [CrossRef]
50. Gonzalez, P.; Mora, A.; Garrido, S.; Barber, R.; Moreno, L. Multi-LiDAR Mapping for Scene Segmentation in Indoor Environments

for Mobile Robots. Sensors 2022, 22, 3690. [CrossRef]
51. Cheng, Y.; Li, L.; Lansivaara, T.; Chi, S.; Sun, Y. An improved harmony search minimization algorithm using different slip surface

generation methods for slope stability analysis. Eng. Optim. 2008, 40, 95–115. [CrossRef]
52. Lee, K.S.; Geem, Z.W. A new structural optimization method based on the harmony search algorithm. Comput. Struct. 2004, 82,

781–798. [CrossRef]
53. Lee, K.S.; Geem, Z.W.; Lee, S.-H.; Bae, K.-W. The harmony search heuristic algorithm for discrete structural optimization. Eng.

Optim. 2005, 37, 663–684. [CrossRef]
54. García-Segura, T.; Yepes, V.; Alcalá, J. Computer-support tool to optimize bridges automatically. Int. J. Comput. Methods Exp. Meas.

2017, 5, 171–178. [CrossRef]
55. Aladsani, M.A.; Burton, H.; Abdullah, S.A.; Wallace, J.W. Explainable Machine Learning Model for Predicting Drift Capacity of

Reinforced Concrete Walls. ACI Struct. J. 2022, 119, 191–204. [CrossRef]
56. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision

tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154.
57. Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363.
58. Gandomi, A.H.; Roke, D.A. Assessment of artificial neural network and genetic programming as predictive tools. Adv. Eng. Softw.

2015, 88, 63–72. [CrossRef]
59. Madár, J.; Abonyi, J.; Szeifert, F. Genetic Programming for the Identification of Nonlinear Input−Output Models. Ind. Eng. Chem.

Res. 2005, 44, 3178–3186. [CrossRef]

https://doi.org/10.3390/su142315792
https://doi.org/10.3390/designs7010001
https://doi.org/10.3390/buildings13010035
https://doi.org/10.3390/su15010845
https://doi.org/10.3390/buildings13020524
https://doi.org/10.1016/j.istruc.2023.02.108
https://doi.org/10.1016/j.cscm.2022.e01310
https://doi.org/10.1016/j.conbuildmat.2023.131098
https://doi.org/10.1002/tal.1948
https://hal.science/hal-01307751
https://hal.science/hal-01307751
https://doi.org/10.1177/003754970107600201
https://doi.org/10.11948/20200377
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000167
https://doi.org/10.1155/2017/2936279
https://doi.org/10.3390/math7121187
https://doi.org/10.1016/j.dcan.2018.10.002
https://doi.org/10.3390/s22103690
https://doi.org/10.1080/03052150701618153
https://doi.org/10.1016/j.compstruc.2004.01.002
https://doi.org/10.1080/03052150500211895
https://doi.org/10.2495/CMEM-V5-N2-171-178
https://doi.org/10.14359/51734484
https://doi.org/10.1016/j.advengsoft.2015.05.007
https://doi.org/10.1021/ie049626e


Sustainability 2023, 15, 7890 21 of 21

60. Gondia, A.; Ezzeldin, M.; El-Dakhakhni, W. Mechanics-Guided Genetic Programming Expression for Shear-Strength Prediction
of Squat Reinforced Concrete Walls with Boundary Elements. J. Struct. Eng. 2020, 146, 04020223. [CrossRef]

61. Mangalathu, S.; Hwang, S.-H.; Jeon, J.-S. Failure mode and effects analysis of RC members based on machine-learning-based
SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1061/(ASCE)ST.1943-541X.0002734
https://doi.org/10.1016/j.engstruct.2020.110927

	Introduction 
	Machine Learning and Optimization Methods 
	Analysis of the Data Set 
	Harmony Search Algorithm 
	Ensemble Learning Algorithms 
	Genetic Programming 

	Results 
	Interpretation of the Ensemble Learning Models Using SHAP Approach 
	Genetic Programming 

	Discussion 
	Conclusions 
	References

