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Abstract: In emergency medical facilities location, the hierarchical diagnosis and treatment system
plays an obvious role in the rational allocation of medical resources and improving the use efficiency of
medical resources. However, few studies have investigated the operational mechanism of hierarchical
medical systems in uncertain environments. To address this research gap, this paper proposes a
hybrid approach for emergency medical facilities’ location-allocation. In the first stage, in order to
concentrate on the utilization of medical resources, we choose alternative facility points from the
whole facilities through the entropy weight method (EWM). In the second stage, uncertainty sets
are used to describe the uncertain number of patients at emergency medical points more accurately.
We propose a robust model to configure large base hospitals based on the robust optimization
method. Furthermore, the proposed robust models are applied to the emergency management of
Huanggang City under COVID-19. The results show that the optimal emergency medical facility
location-allocation scheme meets the actual treatment needs. Simultaneously, the disturbance ratio
and uncertainty level have a significant impact on the configuration scheme.

Keywords: emergency medical facilities; entropy weight method; robust optimization;
location-allocation; hierarchical diagnosis and treatment system

1. Introduction

Public health emergencies such as COVID-19 have brought great threats to people and
society [1–5]. For timely responses, a hierarchical diagnosis and treatment mode should be
established to isolate, control, and treat patients [6–12]. During the epidemic period, the
hierarchical diagnosis and treatment mode [13,14] avoided the paralysis of large hospitals
caused by the concentration of a large number of patients, and the use efficiency of medical
resources was significantly improved. At the same time, medical resources have been
reasonably allocated [15]. It is crucial to improve residents’ satisfaction and happiness [16].

At present, many scholars have investigated facility location problems [17]. Biswas and
Pamucar [18] studied the factors affecting the school location decision from the perspective
of students. They developed an integrated group decision-making framework, that is, a
pivot pairwise relative criteria importance assessment (PIPRECIA). Pamucar et al. [19]
conducted location selection for wind farms using a GIS multi-criteria hybrid model based
on fuzzy and rough numbers. Boonmee et al. [20] summarized the humanitarian facility
location problem. They divided the location problem into a deterministic facility location
problem, dynamic facility location problem, stochastic facility location problem, and robust
facility location problem, respectively. Deterministic facility location problems form the
basis for dynamic, stochastic, and robust models. However, the medical facility location
problem is facing more and more uncertainties (e.g., the uncertain number of patients
in facility points, the uncertainty of transportation costs, etc.). The deterministic facility
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location model cannot describe the impact that uncertain parameter changes have on the
facility location problem, which has a certain gap with the actual situation. Therefore, the
deterministic facility location model has some disadvantages. Stochastic, dynamic, and
robust facility location models can be used to respond to real situations. The dynamic
programming model is effective for solving multi-stage decision problems. However, the
calculation amount of the dynamic facility location problem increases dramatically when
the dimension of decision variables increases. Today’s computers still cannot effectively
solve large-scale dynamic facility location problems in actual emergency medical responses.
For the stochastic facility location, the probability distribution of random parameters
needs to be precisely known in advance. In the emergency medical facilities’ location, it is
difficult to obtain sufficient historical data to estimate the distribution function of random
parameters. In order to overcome the shortcomings of the above three methods, a robust
facility location model is proposed in this paper. We take into account the uncertain number
of patients at the facility points and use the uncertainty sets to describe the uncertain
number of patients more accurately. Therefore, this paper focuses on the robust facility
location. Extant examples of the literature have studied the emergency medical facilities’
location through multi-objective programming [21], the analytic hierarchy process (AHP)
and technique for order preference by similarity to an ideal solution (TOPSIS) [22], mixed
integer linear programming [23,24], and so on. However, the uncertain number of patients
in emergency medical sites during the epidemic situation was not taken into account in the
above literature, which increased the risk of decision-making in the emergency medical
facilities location and was not good for the life and health of patients. Accordingly, we
need to focus on decision-making under an uncertain number of patients to reduce the
uncertainty risk. On the other hand, the above-mentioned literature rarely utilized the
hierarchical diagnosis and treatment system to locate the emergency medical facilities,
so medical resources may not be reasonably allocated, and the use efficiency of medical
resources may be reduced. Therefore, in order to deal with the impact of the epidemic more
economically and effectively, the improvement of the community medical care level and
the completion of the system should be the priority task, which is also beneficial to reduce
the burden of large hospitals.

The robust optimization theory is widely used to deal with uncertain optimization
problems. The solution of robust optimization is such that all the constraints still hold in the
worst case. Unlike stochastic programming [25], robust optimization does not require the
probability distribution function of the random parameters. However, it assumes that the
uncertain parameters fluctuate in an interval [26–30]. Since its emergence, robust optimiza-
tion theories have been applied to many fields, such as group decision-making [31–36],
portfolios [37–41], efficiency evaluation [42,43], supply chain management [44–49], etc. In
emergency medical location decisions, some scholars have adopted the stochastic program-
ming method for modeling [50–54]. However, the stochastic programming needs to know
the probability distribution of the patients’ number at the facility point. Due to the urgency
of the event, it is impossible to accurately obtain the probability function of the patient’s
number at the facility point. Consequently, the stochastic programming method describing
the fluctuation of the patient’s number has defects. Hence, in order to overcome the short-
comings of the stochastic programming, we adopted the robust optimization method to
handle the uncertainty of the patients’ number in the emergency medical facilities’ location.

In order to effectively avoid the paralysis of large hospitals caused by the concentration
of a large number of patients and to significantly improve the use efficiency of medical
resources, this paper proposes a hierarchical diagnosis and treatment system for the emer-
gency medical facilities located under the background of the epidemic. Therefore, a hybrid
evaluation method, including EWM and the robust optimization method, is proposed
for modeling. We have a two-step plan for post-outbreak isolation and treatment. In the
first stage, 10 facilities with the highest scores are selected from 30 facilities by EWM as
community emergency medical points. When there are critical patients who cannot be
handled by community medical centers, the second stage of decision-making is to send the
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critical patients to large base hospitals for treatment. We construct a robust location model
with capacity and time window constraints with the presence of an uncertain number of
patients to configure a large rear hospital.

Different from previous studies, this paper proposes a hybrid approach to cope with
the emergency facilities’ location problems. This approach contains two-stage decisions
under a hierarchical diagnosis system. The first stage decision is to obtain reasonable
alternative points from all possible facility points. The second stage decision is to optimally
configure the rear hospital under uncertain demand. The contributions of this paper are as
follows: Firstly, this paper studies the location-allocation of emergency medical facilities
under the hierarchical diagnosis and treatment mode. A hybrid location-allocation decision
for emergency medical facilities is also investigated. In the first stage, alternatives are
selected from all facility points by EWM. In the second stage, considering the uncertain
number of patients at emergency facility points, this paper uses uncertainty sets to describe
the number of patients more accurately. On this basis, a robust model with capacity and
time window constraints is constructed to allocate large base hospitals. The proposed
method fully takes into account the uncertainties when the epidemic occurs. The results of
location-allocation significantly reduce the risk of decision-making and provide a strong
guarantee for people’s health. Therefore, the optimization problem in this paper is in line
with the actual situation when the epidemic occurs. Secondly, the robust optimization
model is equivalently transformed into a mixed integer linear programming problem by
utilizing the duality theory. The robust counterpart model can be solved in polynomial
time. Finally, we conduct simulation experiments on the proposed model through the
location-allocation scheme of emergency medical facilities in Huanggang City during the
COVID-19 epidemic. The results verify the feasibility and robustness of the proposed model.
Sensitivity analysis also shows the effectiveness of the proposed method. The proposed
method of this paper can provide reference and compliance for health departments to
effectively carry out regular epidemic prevention and control.

The remainder of this paper is organized as follows. Section 2 presents the framework
and preliminaries; Section 3 derives the emergency facilities location modeling. Section 4
specifies numerical experiments; Section 5 concludes.

2. The Framework and Preliminaries
2.1. The Framewrok of This Paper

The framework of this paper is shown in Figure 1. A hierarchical diagnosis and
treatment mode is proposed to cope with the impact of the pandemic. Firstly, it is unreal-
istic to establish emergency medical facilities at every point, considering the ease of the
centralized utilization of medical resources. Hence, EWM was utilized to choose alternative
facilities from the whole facilities in the first stage. Secondly, when patients at the facility
points are critically ill, the robust optimization approach is used to configure the large
rear hospital in the case of the uncertain number of patients in the second stage. The time
window constraint is also constructed to ensure the timely treatment of patients. When
patients at the facility are mild patients, they are directly isolated at the emergency medical
point. Accordingly, a hybrid approach for emergency medical facilities location-allocation
is proposed.
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medical resources of the facility point. Additionally, the rear hospitals can meet the 
treatment needs of the assigned critically ill patients. 
The notation in this paper is illustrated in Table 1. 
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I  
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Figure 1. The resolution framework of the proposed hybrid approach.

2.2. Assumptions and Notation

In order to facilitate modeling, the following assumptions were made:

1. The established emergency medical facilities can meet the medical needs of patients
in the city, regardless of the situation of transferring patients to other cities.

2. The radiation range of each facility is a small area, and the patients’ number, which
they receive, is the sum of the patients’ number in the area.

3. All critically ill patients are treated by large rear hospitals, which do not occupy the
medical resources of the facility point. Additionally, the rear hospitals can meet the
treatment needs of the assigned critically ill patients.

The notation in this paper is illustrated in Table 1.

Table 1. The utilized notation in this paper.

Sets

I The collection of the whole emergency medical facilities (reconfigurable convention and
exhibition centers, sports venues, schools), i ∈ I, i = 1, 2, . . . , n.

J The collection of existing large rear hospitals (Grade II and above),
j ∈ J, j = 1, 2, . . . , m.

K The collection of patient types (mild, moderate, and severe three disease grades,
represented by 1, 2, 3), k ∈ K, k = 1, 2, 3.

Decision variables

xi =

{
1 , Open emergency medical facility point i.
0 , Otherwise.

yij =

{
1 , Patients at facility point i are serviced by hospital j.
0 , Otherwise.

zj =

{
1 , Select hospital j to treat critically ill patients.
0 , Otherwise.



Sustainability 2023, 15, 624 5 of 23

Table 1. Cont.

Parameters

S Number of emergency medical facilities opened.
fi Operating cost of emergency medical facility point i.

hij Distance from facility point i to hospital j.
ct Unit driving cost from facility point i to hospital j.
dik Patients’ number of k type at facility point i.
θk The proportion of k type patients, respectively represents the severity level of patients.
cj The maximum service capacity of large rear hospital j.

3. Emergencies Facilities Location Modeling
3.1. Emergency Medical Facilities Alternatives Selection Based on EWM

In this section, we will reveal the first stage of the hybrid approach. Taking into
account the ease of the centralized utilization of medical resources, it is impossible for
public health departments to establish emergency medical facilities at every point. The
scientific and rational decision is to select some facilities from the total of facilities as
alternatives. Consequently, this paper utilizes EWM to make location decisions.

As an objective and comprehensive weighting method, EWM determines weight
mainly based on the information amount transmitted to decision-makers by each index,
which can effectively avoid the influence of subjective factors. Then, we can make weight
calculations more scientific and reasonable. The advantages of EWM are as follows:
(1) EWM can deeply reflect the ability to distinguish indicators and determine a good
weight; (2) Wight assignment is more objective, theoretical, and reliable; (3) The procedure
is simple and easy to practice, EWM does not require other software analysis. Therefore,
the EWM method was utilized to make the first-stage decision in this paper.

The selection principles of the evaluation indicators are as follows: (1) Objective and
true principles. The selected indicators should be objective and true. The data sources
should be based on the official data information so as to ensure that the indicators can
objectively reflect the real situation of each region and avoid deviations between the data
that are caused by personal subjective assumptions and the actual situation. (2) Operability
principle. Ensure that the selected index data can be obtained from statistical information
released by national government departments or official media. Avoid indicators with
vague information or a different statistical caliber. Additionally, we should adopt relatively
easy-to-obtain and relatively stable indicator information. (3) Principle of representative-
ness. The selected indicators should have a certain logical relationship with each other to
reflect the overall situation of each region to the greatest extent. The number of indicators
should be moderate. Too many indicators will lead to high similarity, which greatly reduces
computational efficiency. However, too few indicators will lead to a lack of convincing
evaluation results, which is not conducive to reflecting the real situation.

According to the selection principle of evaluation indicators, this paper mainly con-
siders three influential factors of facility location, namely cost factor, capacity factor, and
infrastructure factor. Then, we constructed the evaluation index system of emergency
medical locations during the epidemic situation, including the construction cost of facili-
ties, transportation convenience, the patients’ number that the facility can accommodate,
regional population density, accessibility of patients, and the number of hospitals within
10 km. In terms of cost factors, due to the particularity of emergency medical facilities,
this paper only considers the construction cost of facilities. Construction costs are deter-
mined according to the scale of the facility point. It is the most representative of all the
cost-influencing factors. The capacity factor mainly considers the population density in the
region and the number of people that can be accommodated at the facility. The capacity
limit of the emergency medical point determines its maximum service capacity. The emer-
gency treatment demand needed to be met in the administrative area to the greatest extent.
As infrastructure factors, the transportation convenience degree and the accessibility of the
patients are sufficient to ensure that the infected are treated and isolated in the first place
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to prevent more people from becoming infected. The number of hospitals within 10 km
can ensure that patients have access to transfer care and medical supplies at the large base
hospital when the infected experience deterioration.

The procedure for selecting emergency medical facilities alternatives with the EWM
are as follows.

Step 1: Construct the index matrix X. Let the Y = {y1, y2, · · · , yn} indicate the neces-
sary numbers of health care providers (i.e., all the facilities points) and A = {a1, a2, · · · , am}
means the evaluation indicators. Let I = {1, 2, · · · , n} and J = {1, 2, · · · , m} be number
sets. xij is the value of the j− th evaluation index under the facility point i, and the index
matrix X is as follows:

X = (xij)n×m =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

...
...

xn1 xn2 · · · xnm

 (1)

Step 2: Normalize the index matrix. Since the measurement units of each index are
not uniform, it is necessary to standardize them to homogenize the heterogeneous indexes.
Positive indicators and negative indicators are utilized for data standardization processing.
In addition, the higher the positive indicator value is, the better. Additionally, the lower
the negative indicator value is, the better. The specific methods are as follows.

Positive indicators:

x′ij =
xij −min

{
xij, . . . , xnj

}
max

{
x1j, . . . , xnj

}
−min

{
x1j, . . . , xnj

} (2)

Negative indicators:

x′ij =
max

{
x1j, . . . , xnj

}
− xij

max
{

x1j, . . . , xnj
}
−min

{
xij, . . . , xnj

} (3)

Then, the normalized index matrix is:

X′ = (x′ij)n×m
=


x′11 x′12 · · · x′1m
x′21 x′22 · · · x′2m

...
...

...
...

x′n1 x′n2 · · · x′nm

 (4)

Step 3: Calculate the information entropy value of the j− th index.

ε j = −
1

ln(n)

∣∣∣∣∣ n

∑
i=1

pij ln(pij)

∣∣∣∣∣, j = 1, 2, . . . , m. (5)

Here, pij = x′ij/
n
∑

i=1
x′ij is the proportion of the i− th emergency medical facility points

under the j− th indicator when pij = 0, ln(pij) is meaningless. In this case, the definition

of pij needs to be amended, that is, pij = (1 + x′ij)/
n
∑

i=1

(
1 + x′ij

)
.

Step 4: Calculate the entropy weight ωj of each index.

ωj =
1− ε j∣∣∣∣∣m− m

∑
j=1

ε j

∣∣∣∣∣
(6)
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Step 5: Calculate the comprehensive score si for each emergency medical facility point.

si =
m

∑
j=1

ωj pij, i = 1, 2, . . . , n. (7)

Therefore, if the information entropy of one index is smaller, it indicates that the
variation degree of its index value is greater. The more information it provides, the greater
the role it plays in the comprehensive evaluation, and the greater its weight should be.
Hence, in the specific analysis process, entropy can be used to calculate the weight of each
index according to the variation degree of each index value. Additionally, all the indexes
are then weighted to obtain a more objective, comprehensive evaluation result.

3.2. The Deterministic Model

In this section, we allocate the large rear hospital for the alternative facility points by
using the robust optimization method to ensure the timely treatment of patients in the
second stage.

After a comprehensive evaluation by EWM, the alternative sites were selected. Due
to limited medical conditions, emergency medical centers can only be used as a place for
treating ordinary patients. When patients are seriously ill, they still need to be sent to a large
rear hospital for treatment. Accordingly, we also need to configure the large rear hospitals.
We should rationally allocate these emergency medical facility points to rear large hospitals
through quantitative analysis. On the basis of considering the capacity limitation of base
hospitals and the time window limitation of treating patients, the emergency medical
facilities configuration (EMFC) model was constructed with the goal of minimizing the
total cost. Thus, a complete emergency medical security system was formed that can
respond to public health emergencies.

When the patients’ number of k type in the emergency medical facility i is known as
dik, the deterministic model (DM) is as follows:

min ∑
i∈I

fixi+∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij+∑
i∈I

∑
j∈J

p(tij)xi (8)

s.t.∑
i∈I

xi ≤ S (9)

∑
j∈J

yij = 1, ∀i ∈ I (10)

yij ≤ xi, ∀i ∈ I, j ∈ J (11)

∑
i∈I

∑
k∈K

θkdikyij ≤ cj, ∀j ∈ J (12)

p(tij) =


0 , 0 ≤ tij < ET
cp(tij − ET) , ET ≤ tij < LT
+∞ , tij ≥ LT

, ∀i ∈ I, j ∈ J (13)

xi ∈ {0, 1}, ∀i ∈ I (14)

yij ∈ {0, 1}, ∀i ∈ I, j ∈ J (15)

The objective function minimizes the total cost, which is composed of the operating
cost of the emergency medical facility point, the patient transfer cost from the emergency
facility point to the large rear hospital, and the penalty cost that fails to meet the optimal
treatment time window.

The constraint conditions are represented from Equation (9) to Equation (15). Specif-
ically, Equation (13) is the penalty cost function defined in this paper. The travel time
tij is determined by the ratio between the distance from the facility point to the hospital
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and the average speed of the transport vehicle, i.e., (tij = hij/ vj, ∀i ∈ I, j ∈ J). When the
patient’s condition becomes worse, the optimal treatment time is ET and the recoverable
time window is [ET, LT]. When 0 ≤ tij < ET, the patient can arrive at the base hospital
for treatment with no penalty cost, i.e., (p(tij) = 0). When the patient arrives in the time
window [ET, LT], a punishment cost cp(tij − ET) is generated. Additionally, p(tij) will in-
crease with the increase in the arrival time. Once the patient’s arrival time exceeds the latest
recoverable time LT, the patient’s life safety is endangered, and the cost increases infinitely.

In addition, Equation (9) represents the maximum number of opened emergency
medical facility points. Equation (10) indicates that each emergency medical facility point
is serviced by one large rear hospital and can only be served by one rear hospital. Equation
(11) means that patients can be sent to the rear hospital for treatment only when the
emergency medical facilities have opened. Equation (12) indicates that the number of
patients sent from the emergency facility point to the large rear hospital does not exceed
the maximum service capacity of the hospital. Equation (14) and Equation (15) are both a
0–1 integer decision variable.

3.3. The Robust Model

When a public health emergency occurs, the number of patients is highly uncertain.
Therefore, this paper draws on the robust decision idea of Bertsimas and Sim; we adopted
the absolute robust criterion to optimize the target from the worst case [30]. Specifically, we
used d̃ik to represent the patients’ number of k type in the emergency medical facility point
i under uncertain circumstances. Then, we had d̃ik ⊆ [dik − d̂ikξik, dik + d̂ikξik], where dik is
the nominal value and d̂ik is its disturbance value.

Under the disturbance of uncertain parameters, the original deterministic model can
be equivalently transformed into the following robust optimization (RM) model:

min

{
∑
i∈I

fixi+max
ξ∈Up

∑
i∈I

∑
j∈J

∑
k∈K

cthijθk(dik + d̂ikξik)yij + ∑
i∈I

∑
j∈J

p(tij)xi

}

= min

{
∑
i∈I

fixi+∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij+ ∑
i∈I

∑
j∈J

p(tij)xi

+max
ξ∈Up

∑
i∈I

∑
j∈J

∑
k∈K

cthijθk d̂ikξikyij

} (16)

s.t.(9) ∼ (11), (13) ∼ (15)

∑
i∈I

∑
k∈K

θkdikyij + max
ξ∈Up∑

i∈I
∑
k∈K

θk d̂ikξikyij ≤ cj, ∀j ∈ J (17)

Here, Equation (16) minimizes the total cost of the system in the worst case. Equation (17)
indicates that the number of patients transported from the emergency medical facility point
to the base hospital cannot exceed the maximum service capacity of the hospital in the
worst case. In order to further specify the proposed robust model, three models based on
different uncertainty sets were introduced as follows.

3.3.1. Budgeted Uncertainty Set

Proposition 1. If the uncertain patients’ number is defined as a budgeted uncertainty set, that is,

Up =

{
ξ : ∑

i∈I
ξik ≤ Γk, 0 ≤ ξik ≤ 1, ∀k ∈ K

}
, we can obtain the following robust equivalent

model (REM):

min ∑
i∈I

fixi+∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij + ∑
i∈I

∑
j∈J

p(tij)xi + η (18)
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s.t.η ≥∑
i∈I

∑
k∈K

uik + ∑
k∈K

vkΓk (19)

uik + vk ≥ cthijθk d̂ikyij, ∀i ∈ I, j ∈ J, k ∈ K (20)

uik, vk ≥ 0, ∀i ∈ I, k ∈ K (21)

∑
i∈I

xi ≤ S (22)

∑
j∈J

yij = 1, ∀i ∈ I (23)

yij ≤ xi, ∀i ∈ I, j ∈ J (24)

∑
i∈I

∑
k∈K

θkdikyij + ∑
i∈I

∑
k∈K

u′ik + ∑
k∈K

v′kΓk ≤ cj, ∀j ∈ J (25)

u′ik + v′k ≥ θk d̂ikyij, ∀i ∈ I, j ∈ J, k ∈ K (26)

u′ik, v′k ≥ 0, ∀i ∈ I, k ∈ K (27)

p(tij) =


0 , 0 ≤ tij < ET
cp(tij − ET) , ET ≤ tij < LT
+∞ , tij ≥ LT

, ∀i ∈ I, j ∈ J (28)

xi ∈ {0, 1}, ∀i ∈ I (29)

yij ∈ {0, 1}, ∀i ∈ I, j ∈ J (30)

Here, η is the auxiliary variable. uik and vk are the dual variable of the problem (16).
u′ik and v′k are the dual variable of the problem (17).

Proof of Proposition 1. Because the definition of the budgeted uncertainty set is

Up =

{
ξ : ∑

i∈I
ξik ≤ Γk, 0 ≤ ξik ≤ 1, ∀k ∈ K

}
, then the maximization problem

max
ξ∈Up

{
∑
i∈I

∑
j∈J

∑
k∈K

cthijθk d̂ikξikyij

}
in Equation (16) is equivalent to Equation (31).

max ∑
i∈I

∑
j∈J

∑
k∈K

cthijθk d̂ikξikyij

s.t. ∑
i∈I

ξik ≤ Γk

0 ≤ ξik ≤ 1 ∀i ∈ I, k ∈ K

(31)

According to the strong duality theory, the dual variables uik and vk are introduced,
respectively. Additionally, we can further obtain Equation (32).

min ∑
i∈I

∑
k∈K

uik + ∑
k∈K

vkΓk

s.t.uik + vk ≥ cthijθkdikyij
uik, vk ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K

(32)
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Hence, we can transform the inner layer maximization problem into the minimization
problem, and introduce the auxiliary variable η to obtain the robust equivalent model from
Equations (18)–(21).

Similarly, according to the strong duality theory, the dual variables u′ik and v′k are,
respectively introduced for Equation (17), and the inner layer maximization problem is
transformed into the minimization problem. Thus, Equations (25)–(27) are obtained. �

3.3.2. Box Uncertainty Set

Proposition 2. If the uncertain patients’ number is defined as a box set, that is,
Zbox =

{
ζ ∈ RM : ‖ζ‖∞ ≤ ψ

}
, ψ is the level of parameter uncertainty and the robust counterpart

model in Section 3.3 can be constructed as follows:
min ∑

i∈I
fixi+∑

i∈I
∑
j∈J

∑
k∈K

cthijθkdikyij + ψ ∑
i∈I

∑
j∈J

∑
k∈K

cthijθk d̂ikyij+∑
i∈I

∑
j∈J

p(tij)xi

s.t. ∑
i∈I

xi ≤ S

∑
j∈J

yij = 1, ∀i ∈ I

yij ≤ xi, ∀i ∈ I, j ∈ J
∑
i∈I

∑
k∈K

θkdikyij + ψ ∑
i∈I

∑
k∈K

θk d̂ikyij ≤ cj, ∀j ∈ J

p(tij) =


0 , 0 ≤ tij < ET
cp(tij − ET) , ET ≤ tij < LT
+∞ , tij ≥ LT

, ∀i ∈ I, j ∈ J

xi ∈ {0, 1}, ∀i ∈ I
yij ∈ {0, 1}, ∀i ∈ I, j ∈ J

Proof of Proposition 2. Suppose ∑
i∈I

fixi+∑
i∈I

∑
j∈J

p(tij)xi = Q. According to the definition

of the box set, the uncertain patients’ number can be written as:
∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij + ∑
i∈I

∑
j∈J

∑
k∈K

ζcthijθk d̂ikyij+ Q ≤ H, (ζ ∈ RM : ‖ζ‖∞ ≤ ψ)

Then, we can obtain:
∑
i∈I

∑
j∈J

∑
k∈K

ζcthijθk d̂ikyij ≤ H − ∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij −Q, (ζ ∈ RM : ‖ζ‖∞ ≤ ψ)

In the worst case, we have:
max
‖ζ‖∞≤ψ

∑
i∈I

∑
j∈J

∑
k∈K

ζcthijθk d̂ikyij ≤ H − ∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij −Q

Because the maximum value on the left side of the inequality is ψ ∑
i∈I

∑
j∈J

∑
k∈K

cthijθk d̂ikyij,

the explicit constraint form can be obtained:
∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij + ψ ∑
i∈I

∑
j∈J

∑
k∈K

cthijθk d̂ikyij + Q ≤ H

Similarly, the robust counterpart of constraint 12 can be obtained. Therefore, the model
based on the box uncertainty set is proved. �

3.3.3. Ellipsoid Uncertainty Set

Proposition 3. If the uncertain patients’ number is defined as an ellipsoid set, that is,
Zellipsoid =

{
ζ ∈ RM : ‖ζ‖2 ≤ Ω

}
, Ω is the level of parameter uncertainty and the robust coun-

terpart model in Section 3.3 can be built as follows:

min ∑
i∈I

fixi+∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij + Ω

√√√√(∑
i∈I

∑
j∈J

∑
k∈K

cthijθk d̂ikyij

)2

+∑
i∈I

∑
j∈J

p(tij)xi

s.t. ∑
i∈I

xi ≤ S
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∑
j∈J

yij = 1, ∀i ∈ I

yij ≤ xi, ∀i ∈ I, j ∈ J

∑
i∈I

∑
k∈K

θkdikyij + Ω

√(
∑
i∈I

∑
k∈K

θk d̂ikyij

)2
≤ cj, ∀j ∈ J

p(tij) =


0 , 0 ≤ tij < ET
cp(tij − ET) , ET ≤ tij < LT
+∞ , tij ≥ LT

, ∀i ∈ I, j ∈ J

xi ∈ {0, 1}, ∀i ∈ I
yij ∈ {0, 1}, ∀i ∈ I, j ∈ J

Proof of Proposition 3. Suppose ∑
i∈I

fixi+∑
i∈I

∑
j∈J

p(tij)xi = Q. According to the definition

of the ellipsoid set, the uncertain patients’ number can be written as:
∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij + ∑
i∈I

∑
j∈J

∑
k∈K

ζcthijθk d̂ikyij+ Q ≤ H, (ζ ∈ RM : ‖ζ‖2 ≤ Ω)

Then, we can obtain:
∑
i∈I

∑
j∈J

∑
k∈K

ζcthijθk d̂ikyij ≤ H − ∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij −Q, (ζ ∈ RM : ‖ζ‖2 ≤ Ω)

At worst case, we have:
max
‖ζ‖2≤Ω

∑
i∈I

∑
j∈J

∑
k∈K

ζcthijθk d̂ikyij ≤ H − ∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij −Q

Consequently, the explicit form of the above formula can be obtained as:

∑
i∈I

∑
j∈J

∑
k∈K

cthijθkdikyij + Ω

√√√√(∑
i∈I

∑
j∈J

∑
k∈K

cthijθk d̂ikyij

)2

+ Q ≤ H

Similarly, the robust counterpart of constraint 12 can be obtained. Therefore, the model
based on the ellipsoid uncertainty set is proved. �

4. Simulations

In order to verify the proposed method, this section shows an emergency management
example under COVID-19.

4.1. Background and Data Sources

This paper chooses Huanggang City to conduct a numerical experiment, which was
severely affected by the coronavirus. Huanggang has a total of 10 administrative areas.
We took the township as the emergency demand points unit to carry out the detailed
division for a total of 127 demand points. The emergency medical facility point is a large
open area with flat terrain and convenient transportation. A total of 30 points are selected.
Simultaneously, seven large rear hospitals with grades II and above were selected. The
number of people per emergency demand point was obtained from the National Bureau of
Statistics in 2017, while the number of confirmed COVID-19 patients in Huanggang was
obtained from the National Health Commission of the People’s Republic of China released
on 21 March 2020.

The selection of emergency facilities is based on the service capacity (i.e., Hongshan
stadium), that is, ce =

venues beds
venues area × f acilities point area. The attraction factor of the facility

point is calculated by the hospitals’ number within 10 km of each facility point. The
reference attraction factor was one, and the attraction factor increased by 0.1 for each
additional hospital, and so on. The relevant data of the demand points, emergency medical
facility points, large rear hospitals, and the number of patients are shown in Tables 2–5,
respectively. The detailed distribution of the residents’ demand points, candidate facility
points, and large rear hospitals is shown in Figure 2. The color distribution of each
administrative area is determined according to the number of local patients with COVID-19.
The more patients, the darker the color will be.
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Table 2. Latitude and longitude coordinates of demand points and population size.

No. Coordinate Population No. Coordinate Population No. Coordinate Population

1 114.66064,31.45983 80,798 44 115.65594,30.76541 19,731 87 115.69542,30.30748 50,072
2 114.60284,31.27431 119,425 45 115.63523,30.88881 22,065 88 115.85314,30.51451 30,936
3 114.49922,31.28993 39,658 46 115.75470,30.99033 32,412 89 115.82113,30.31645 36,759
4 114.55444,31.15556 50,883 47 115.90135,31.00211 18,108 90 115.56911,29.85114 161,582
5 114.56646,31.05605 32,145 48 115.75740,30.88672 32,279 91 115.56400,29.85043 34,026
6 114.44895,31.30736 35,447 49 115.76842,30.81582 42,325 92 115.42095,29.91312 18,948
7 114.64585,31.02003 30,639 50 115.61337,30.64183 25,045 93 115.70016,29.88795 4083
8 114.64488,30.96300 23,432 51 115.63833,30.83598 19,318 94 115.61056,30.11381 113,247
9 114.70241,31.14612 56,044 52 115.93407,30.90572 7477 95 115.73690,30.08317 50,297

10 114.53016,31.45716 43,804 53 114.86957,30.63203 71,185 96 115.71488,30.01275 64,690
11 114.64299,31.28841 86,479 54 114.88533,30.74325 57,183 97 115.62547,29.93993 44,857
12 114.66770,31.38754 2049 55 115.07828,30.69643 24,063 98 115.61438,29.99534 35,921
13 114.99998,31.16661 55,601 56 115.19036,30.76037 41,226 99 115.55408,30.02849 32,203
14 115.02587,31.18524 68,485 57 115.09952,30.64720 29,827 100 115.47552,29.94930 47,311
15 115.04128,31.17716 80,722 58 115.02658,30.65196 19,640 101 115.70678,29.86632 37,082
16 114.80704,31.06828 50,109 59 114.98275,30.60512 32,134 102 115.93927,30.07392 141,488
17 115.12917,31.20715 31,297 60 115.08718,30.79427 19,117 103 115.92131,29.88258 98,543
18 115.01422,31.03803 61,839 61 115.05516,30.79163 18,816 104 115.98622,29.75636 97,956
19 114.88605,31.12271 42,918 62 114.93149,30.67896 22,811 105 116.00873,30.05003 21,945
20 114.98878,31.35650 47,632 63 115.26651,30.43888 193,988 106 115.84793,30.08979 59,759
21 115.09380,31.47408 36,169 64 115.02802,30.42591 113,356 107 115.98671,30.21229 33,323
22 115.18852,31.07276 36,567 65 115.34092,30.55166 71,852 108 115.94173,30.17009 13,971
23 115.17771,30.96000 32,079 66 115.12536,30.59354 66,860 109 115.89000,30.00755 65,122
24 115.31886,31.04682 37,066 67 115.17918,30.61747 49,785 110 115.80776,29.87894 71,168
25 115.23286,31.32758 40,083 68 115.23300,30.72709 78,925 111 115.82248,29.81693 55,883
26 115.07628,31.37152 34,513 69 115.44597,30.59109 14,885 112 116.03935,30.07820 27,127
27 114.83977,31.33245 43,233 70 115.41237,30.56442 35,562 113 115.90764,29.78591 47,872
28 114.75598,31.01214 20,520 71 115.47997,30.46645 49,312 114 115.95513,30.27099 12,357
29 115.03054,30.96647 26,470 72 115.27209,30.38250 35,922 115 115.98193,30.10304 34,299
30 115.37487,31.18694 37,992 73 115.11897,30.23280 60,655 116 115.90153,30.13119 27,634
31 114.84998,31.03664 40,457 74 115.14533,30.35013 48,792 117 116.10982,29.83206 15,919
32 115.27363,30.83227 57,980 75 115.53676,30.52150 22,214 118 114.88374,30.44167 156,011
33 115.46262,31.12651 59,219 76 115.44136,30.25094 150,600 119 114.90441,30.47002 21,939
34 115.67112,31.14024 30,041 77 115.33968,30.07489 67,040 120 114.88198,30.47291 22,977
35 115.60163,31.00290 29,204 78 115.38161,30.30637 68,543 121 114.97287,30.45216 16,593
36 115.47994,30.84096 30,825 79 115.50228,30.36850 30,920 122 114.94966,30.48861 21,550
37 115.19510,30.81844 35,918 80 115.61687,30.38513 42,447 123 114.91279,30.54566 25,416
38 115.39093,30.98976 50,823 81 115.79129,30.41924 42,065 124 115.03657,30.59585 25,856
39 115.55835,30.69722 59,270 82 115.80244,30.49354 19,624 125 114.98103,30.53740 19,654
40 115.40694,30.68214 33,132 83 115.42998,30.20307 49,666 126 115.00178,30.58077 4753
41 115.39610,30.78371 114,890 84 115.28774,30.14920 20,547 127 114.91652,30.44885 52,020
42 115.67654,30.74001 121,669 85 115.28122,30.27222 35,569
43 115.61889,30.59068 16,027 86 115.58902,30.29642 67,756
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Table 3. Coordinates, service capacity, and attraction factors of candidate facility points.

No. Coordinate Capacity Attraction
Factor No. Coordinate Capacity Attraction

Factor

1 114.63284,31.31431 27,840 1.3 16 114.89070,30.64937 4478 1.3
2 115.00939,31.16563 17,043 1.2 17 115.70328,30.81313 90,032 1.1
3 114.73256,31.10384 9100 1.1 18 114.95961,30.52801 29,708 1.2
4 115.95857,30.09049 118,450 1 19 115.41705,30.79636 49,879 1.3
5 115.55704,30.00018 6998 1.2 20 115.78056,30.90014 5282 1.2
6 115.10718,31.31427 10,989 1.4 21 115.38103,30.49740 73,502 1
7 114.62315,31.29476 104,917 1.1 22 115.20200,30.48535 8220 1.1
8 114.93146,30.62063 73,426 1.2 23 115.62718,30.00019 64,520 1.1
9 115.08277,30.23464 30,964 1.3 24 114.98103,30.53740 7598 1.2

10 115.02813,31.18019 35,097 1.1 25 115.05760,30.52585 45,008 1.4
11 115.93927,30.11392 9320 1 26 115.02813,31.18019 2890 1
12 115.01814,31.17779 3233 1.2 27 115.09380,30.96408 5354 1.1
13 114.90714,30.43954 52,560 1.1 28 115.41122,30.23686 6210 1.2
14 115.16036,30.64037 39,088 1 29 114.89070,30.64937 10,879 1.2
15 115.43629,30.23262 8352 1.4 30 115.55681,29.85051 4877 1.1

Table 4. Coordinates and number of beds in the large rear hospitals.

No. Coordinate Number of
Beds No. Coordinate Number of

Beds

1 114.62522,31.28687 810 5 114.89880,30.47378 600
2 115.03035,31.18547 560 6 115.59644,29.87249 400
3 115.66802,30.73284 780 7 115.95089,30.08262 350
4 114.88141,30.45194 1050

Table 5. The number of cases in each region.

Region Number of Patients Region Number of Patients

Huangzhou District 968 Xishui County 303
Tuanfeng County 173 Qichun County 265
Hongan County 316 Huangmei County 284
Luotian County 69 Macheng County 243

Yingshan County 62 Wuxue County 224

The distance between the two points was calculated according to the longitude and
latitude coordinates. Equation (33) can be utilized to convert the coordinates of longitude
and latitude into the actual traveling distance hij between the two nodes i and j.

hij = k ·

√
(xi − xj)

2 + (yi − yj)
2

180
· π · 6370 (33)

Here, (xi, yi), (xj, yj) is the longitude and latitude coordinates of the two points. The

radius of the earth is 6370 (km). The formula

√
(xi−xj)

2+(yi−yj)
2

180 · π · 6370 is used to calculate
the linear distance between the two points. The linear distance of the two points for
50 groups was extracted, and we compared this with the actual driving distance obtained
from the Baidu map. The error value was obtained.
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Figure 2. Distribution of demand points, candidate facility points, and base hospitals.

4.2. The Alternative Facilities Selection Based on EWM

The initial index data matrix of the candidate emergency medical facility points
is composed of the following factors: the construction cost of facilities, transportation
convenience, the patients’ number that can be accommodated, regional population density,
the accessibility of patients, and the number of hospitals within 10 km. Among them,
the construction cost of the facility point is calculated at 1000 yuan per square meter.
Transportation convenience is determined by the distance between the facility point and
the nearest provincial or national highway. The accessibility of patients is determined based
on the maximum time it takes for the demand point to reach the candidate facility point.
The regional population density (10,000 people per square kilometer) is obtained according
to the area and population of the region.

According to Equations (5) and (6), the information entropy value and weight vector of
the six evaluation indexes for the normalized matrix are obtained, as shown in Table 6. Mean-
while, the comprehensive evaluation score of each candidate emergency medical facility is
calculated, si = (0.3395;0.3860;0.1694;0.8913;0.1325;0.4670;0.7570;0.6649;0.4847;0.6181;0.2177;
0.2641;0.6105;0.6263;0.2178;0.1831;0.6789;0.4127;0.5967;0.1523;0.6507;0.0876;0.6078; 0.1077;
0.3519;0.1659;0.1309;0.2888;0.2024;0.1601).

Table 6. Information entropy and entropy weight.

1 2 3 4 5 6

Information entropy εj 0.86431 0.96559 0.83973 0.95249 0.91932 0.94877
Entropy weight wj 0.26617 0.06749 0.31439 0.09319 0.15826 0.10049

According to the comprehensive evaluation value Si, ten emergency medical facilities
with high evaluation values were selected: 4, 7, 8, 10, 13, 14, 17, 19, 21, and 23.
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4.3. Robust Solution Process

After the alternative emergency medical facilities are selected by EWM, large rear
hospitals should be configured rationally to ensure that severe patients can receive timely
treatment. According to Equation (33), the distance hij between each facility point and the
base hospital is obtained, as shown in Table 7. Other relevant parameters are set as: ct = 10,
cp = 6, vj = 35 km/h, ET = 120 min, LT = 480 min, θ1 = 1, θ2 = 0.5, θ3 = 0.1. When the uncertain
level Γk is considered, it is assumed that the variation amplitude of the corresponding
constraints is equal (i.e., Γk = Γ) and Γ is an all integer. In this paper, MATLAB R2016a
was utilized for programming, and CPLEX was called to solve the problem under the
experimental environment of 8 GB memory and 1.60 GHz CPU with Intel Core i5.

Table 7. The distance between each facility points and the large rear hospital.

Facility
Points

Large Base Rear Hospital

J1 J2 J3 J4 J5 J6 J7

I4 199.1641 319.1826 235.1414 505.2721 626.4589 281.9618 8.558354
I7 0.906985 93.74792 395.6967 392.0141 481.4094 1149.629 1399.142
I8 81.52122 127.5054 248.5002 78.25099 46.62485 667.7027 897.0696
I10 46.33759 1.272584 260.4087 330.3708 399.213 951.1418 1115.944
I13 99.2809 168.108 271.98 12.69828 19.58887 595.4059 858.4737
I14 93.30548 124.6055 172.1071 149.7007 72.38121 589.0629 752.9345
I17 130.9173 171.0052 29.24747 399.2292 485.3551 631.5039 600.2825
I19 103.5559 121.9797 86.34575 283.1968 339.3343 627.7912 693.6411
I21 121.5096 171.719 63.80801 223.1036 268.3869 440.9306 548.5269
I23 181.3071 295.079 244.7432 387.752 482.9592 87.61668 259.9675

4.4. Result Analysis

When the disturbance ratio is 2%, and the uncertain level is Γ = 5, the configuration
scheme is (4-7,7-1,8-5,10-2,13-4,14-5,17-3,19-3,21-5,23-6). The specific configuration scenario
is shown in Figure 3. The green dot is the demand point of the residents, the blue square
is the selected emergency medical facility point, and the red five-pointed star is the large
rear hospital. The connecting line indicates the service relationship between the demand
point, the facility point, and the base hospital. As can be seen from Figure 3, the needs
of residents in each township have been met. The alternative emergency medical facility
points (4,7,8,10,13,14,17,19,21,23) have corresponding large base hospitals to provide first-
aid support to ensure the further transfer and treatment of critically ill patients. In addition,
the optimal facility points are evenly distributed. One emergency medical facility has been
established in each of the 10 administrative regions of Huanggang to ensure that the needs
of the residents in each administrative region can be effectively covered by the emergency
medical facility points. Additionally, the total traveled distance can be reduced. Similarly,
we can obtain configuration plans in other scenarios. Due to space limitations, these will
not be displayed here

The change in the optimal configuration scheme with a different uncertain level Γ and
disturbance proportions is shown in Table 8. The optimal configuration scheme between
the large base hospital and emergency medical facilities has also changed with the presence
of uncertain patient numbers.



Sustainability 2023, 15, 624 16 of 23Sustainability 2023, 15, 624 18 of 26 
 

 
Figure 3. Configuration scenario with 2% disturbance ratio and Γ = 5. 

The change in the optimal configuration scheme with a different uncertain level Γ  
and disturbance proportions is shown in Table 8. The optimal configuration scheme 
between the large base hospital and emergency medical facilities has also changed with 
the presence of uncertain patient numbers. 

Table 8. Configuration scheme with different disturbance proportions and uncertainty levels. 

Γ  

Disturbance in Proportion 
2% 5% 10% 20% 

0 4-7,7-1,8-5,10-2,13-4,14-5,17
-3,19-3,21-3,23-6 

4-7,7-1,8-5,10-2,13-4,14-5,17
-3,19-3,21-3,23-6 

4-7,7-1,8-5,10-2,13-4,14-5,17
-3,19-3,21-3,23-6 

4-7,7-1,8-5,10-2,13-4,14-5,17
-3,19-3,21-3,23-6 

2 4-7,7-1,8-5,10-2,13-4,14-5,17
-3,19-3,21-5,23-6 

4-7,7-1,8-5,10-2,13-4,14-5,17
-3,19-3,21-5,23-6 

4-7,7-1,8-4,10-2,13-5,14-5,17
-3,19-3,21-5,23-6 

4-7,7-1,8-4,10-2,13-5,14-5,17
-3,19-3,21-5,23-6 

4 
4-7,7-1,8-5,10-2,13-4,14-5,17

-3,19-3,21-5,23-6 
4-7,7-1,8-5,10-2,13-4,14-5,17

-3,19-3,21-5,23-6 
4-7,7-1,8-4,10-2,13-5,14-5,17

-3,19-3,21-5,23-6 
4-7,7-1,8-4,10-2,13-5,14-4,17

-3,19-2,21-5,23-6 

6 4-7,7-1,8-4,10-2,13-5,14-5,17
-3,19-3,21-5,23-6 

4-7,7-1,8-4,10-2,13-5,14-5,17
-3,19-3,21-5,23-6 

4-7,7-1,8-4,10-2,13-5,14-4,17
-3,19-2,21-5,23-6 

4-7,7-1,8-4,10-2,13-5,14-4,17
-3,19-2,21-5,23-6 

8 4-7,7-1,8-4,10-2,13-5,14-4,17
-3,19-2,21-5,23-6 

4-7,7-1,8-4,10-2,13-5,14-4,17
-3,19-2,21-5,23-6 

4-7,7-1,8-4,10-2,13-5,14-4,17
-3,19-2,21-5,23-7 

4-7,7-1,8-4,10-2,13-5,14-4,17
-3,19-2,21-5,23-7 

10 
4-7,7-1,8-4,10-2,13-5,14-4,17

-3,19-2,21-5,23-6 
4-7,7-1,8-4,10-2,13-5,14-4,17

-3,19-2,21-5,23-7 
4-7,7-1,8-4,10-2,13-5,14-4,17

-3,19-2,21-5,23-7 
4-7,7-1,8-4,10-2,13-5,14-4,17

-3,19-2,21-5,23-7 
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Table 8. Configuration scheme with different disturbance proportions and uncertainty levels.

Γ
Disturbance in Proportion

2% 5% 10% 20%

0 4-7,7-1,8-5,10-2,13-4,14-
5,17-3,19-3,21-3,23-6

4-7,7-1,8-5,10-2,13-4,14-
5,17-3,19-3,21-3,23-6

4-7,7-1,8-5,10-2,13-4,14-
5,17-3,19-3,21-3,23-6

4-7,7-1,8-5,10-2,13-4,14-
5,17-3,19-3,21-3,23-6

2 4-7,7-1,8-5,10-2,13-4,14-
5,17-3,19-3,21-5,23-6

4-7,7-1,8-5,10-2,13-4,14-
5,17-3,19-3,21-5,23-6

4-7,7-1,8-4,10-2,13-5,14-
5,17-3,19-3,21-5,23-6

4-7,7-1,8-4,10-2,13-5,14-
5,17-3,19-3,21-5,23-6

4 4-7,7-1,8-5,10-2,13-4,14-
5,17-3,19-3,21-5,23-6

4-7,7-1,8-5,10-2,13-4,14-
5,17-3,19-3,21-5,23-6

4-7,7-1,8-4,10-2,13-5,14-
5,17-3,19-3,21-5,23-6

4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-6

6 4-7,7-1,8-4,10-2,13-5,14-
5,17-3,19-3,21-5,23-6

4-7,7-1,8-4,10-2,13-5,14-
5,17-3,19-3,21-5,23-6

4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-6

4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-6

8 4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-6

4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-6

4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-7

4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-7

10 4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-6

4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-7

4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-7

4-7,7-1,8-4,10-2,13-5,14-
4,17-3,19-2,21-5,23-7

The change in the total cost with a different uncertainty level Γ and disturbance propor-
tions is shown in Figure 4. When Γ = 0, the robust model is equivalent to the deterministic
model, and the total cost is 4.47009 × 109. Compared with the robust configuration model,
the emergency medical facilities configuration deterministic model (EMFC) is not robust
because it does not take into account the uncertain number of patients at the emergency
medical points, so it has a certain deviation from the actual situation. As can be seen from
Figure 4, the total cost increases with the increase in the uncertainty level Γ when the distur-
bance proportion remains unchanged. Additionally, the higher the disturbance proportion
is, the higher the total cost will be when the uncertainty level remains unchanged. Simulta-
neously, the uncertainty level Γ can measure the risk preference of decision-makers to some
extent. Accordingly, decision-makers can choose the optimal combination of uncertainty
levels and the disturbance proportion according to their preference degree to the uncertain
risk. If the decision-maker pursues a preference for risk, he can choose a small level of
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uncertainty and disturbance ratio. However, he must bear the possible losses caused
by uncertainty in mind. If the decision-maker has a preference for risk aversion, he can
select a large uncertainty level and disturbance proportion to provide a large probability
guarantee for the effectiveness and feasibility of the configuration scheme. However, the
total cost of the system operation will increase. If the decision-maker is risk neutral, he can
choose a compromise.
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It is worth mentioning that although the total cost varies with different disturbance
proportions and uncertainty levels, there are only six configuration schemes. This further
indicates that the model has good robustness, and the optimal scheme is not sensitive to
parameter perturbation. Among them, the solution of the deterministic model is (4-7,7-1,8-
5,10-2,13-4,14-5,17-3,19-3,21-3,23-6), as shown in Figure 5. The former number represents
the emergency medical facility point, and the latter number indicates the large rear hospital
that serves it when a patient is in an emergency. The blue dot in the figure represents the
whole emergency medical facility, the red five-pointed star represents the large rear base
hospital, and the black dotted line shows the service relationship between the emergency
medical facility and the base hospital. When the disturbance proportion and uncertainty
level Γ are small, the configuration scheme is (4-7,7-1,8-5,10-2,13-4,14-5,17-3,19-3,21-5,23-6),
as shown in Figure 6. Additionally, the decision-maker with a risk preference can choose
this scheme. When the disturbance proportion and uncertainty level Γ are large, the
configuration scheme is (4-7,7-1,8-4,10-2,13-5,14-4,17-3,19-2,21-5,23-7), as shown in Figure 7.
Additionally, the decision-maker with a risk aversion can choose this scheme. The rest of
the configuration schemes are (4-7,7-1,8-5,10-2,13-5,14-5,17-3,19-3,21-5,23-6), (4-7,7-1,8-4,10-
2,13-5,14-5,17-3,19-3,21-5,23-6), and (4-7,7-1,8-4,10-2,13-5,14-4,17-3,19-2,21-5,23-6). In this
case, the decision-maker with risk neutrality can choose this solution. We will not show the
configuration scheme figures here.
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The calculation time of each scheme is shown in Figure 8. The shortest time is 1.9127 s,
and the longest time is 11.6776 s. Additionally, the average time is 7.54 s, which meets the
actual demand. As can be seen from Figure 8, compared with the robust configuration
model, the deterministic EMFC model is not robust because it does not take into account
the uncertain number of patients at the emergency medical points. Therefore, the solution
time of the EMFC model is not sensitive to uncertain level parameters Γ. When the Γ is
small, the solution time is relatively short. When the Γ is large, the solution time increases.
This is because the increase in the uncertainty level leads to an increase in the search range
of the solution, which in turn leads to an increase in the solution time. However, the longest
solution time is only about 12 s, which fully meets the actual demand.
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To sum up, this paper takes Huanggang City as an example to provide the optimal
emergency medical facilities location and configuration scheme under COVID-19. More-
over, the impact of uncertain parameters on the total target cost, configuration scheme, and
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solution time of the model is deeply analyzed. Additionally, the feasibility and robustness
of the proposed method are verified.

5. Conclusions
5.1. Discussions

This paper investigates a hierarchical diagnosis and treatment system for emergency
medical facilities’ location-allocation under uncertain circumstances. Firstly, taking into ac-
count the ease of the centralized utilization of medical resources, we adopted EWM to select
alternative facilities from the whole of the facilities. Secondly, three uncertainty sets were in-
troduced to describe the uncertainty of the patients’ number. A robust optimization model
with capacity and time window constraints was constructed to configure the large rear hos-
pital to ensure the timely treatment of patients. The comparison between Figures 4 and 8
shows that although the total cost and solution time of the deterministic location-allocation
model is lower, the deterministic model is not robust and cannot effectively describe the un-
certain number of patients under the epidemic situation. However, the robust optimization
model proposed in this paper not only considers the actual uncertain number of patients
but also does not need to know the probability distribution of the number of patients
in advance. Additionally, the solution time of the robust model is less than 12 s, which
is very consistent with the actual situation. Finally, numerical simulation experiments
were conducted to solve the emergency medical facilities’ location and configuration in
Huanggang City under COVID-19. The results show that the location-allocation decision
method proposed in this paper is scientific and effective. The proposed method can meet
the treatment needs of patients after public health emergencies and effectively reduce
driving time.

During the epidemic period, the hierarchical diagnosis and treatment mode avoids
the paralysis of large hospitals caused by the concentration of a large number of patients.
It significantly improves the use efficiency of medical resources. This study proposes a
hybrid approach of emergency medical facility location-allocation. We have a two-step plan
for post-outbreak isolation and treatment. In the first stage, 10 facilities with the highest
scores are selected from 30 facilities by EWM, which are regarded as community emergency
medical points. When there are critical patients who cannot be handled by community
medical centers, the second stage is to send the critical patients to large base hospitals
for treatment.

The hierarchical diagnosis and treatment mode plays an obvious role in reversing the
unreasonable pattern of medical resource allocation and solving the problem of unbalanced
medical resource allocation during the epidemic period. Based on the construction of
a coordinated medical and health service network between urban and rural areas, the
hierarchical diagnosis and treatment mode has rationally allocated medical resources,
effectively revitalized the stock of medical resources, and improved the allocation and
use efficiency of medical resources by relying on the majority of hospitals and grassroots
medical and health institutions. The most economical and effective measures to deal with
the epidemic are to improve the level of community medical care and complete the system.
Therefore, this study has a certain practical significance for public health authorities to
improve the scientific level of epidemic prevention and control.

5.2. Future Directions

The proposed method in this paper can provide a scientific and reasonable reference
for decision-makers to choose the optimal facility layout plan. In order to further improve
the practical application value of the proposed model, future research work will refine the
factors affecting the location decision. Additionally, we could consider the existence of
various factors, such as the traffic time uncertainty under different road congestion condi-
tions and resource constraints, and isolation from the public, so as to further investigate the
robust optimization model. In future research directions, we can also consider the impact of
facility interruption on the hierarchical diagnosis system, which will make the emergency
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medical location-allocation model more realistic. Meanwhile, this paper only studies the
budgeted uncertainty model. The next work can be compared with the box uncertainty
model and ellipsoid uncertainty model, which can further illustrate the effectiveness of the
proposed method.

In addition, group consensus plays an important role in decision-making [55–58]. In
future studies, we can invite experts from different fields to help emergency management
departments make better decisions through the consensus-building process. There are
various methods for facility location. This paper only studies the impact of the robust
optimization method on facility location. In the future, we can extend the fuzzy rough
decision-making approach [59] and multi-criteria decision-making [60] to the emergency
medical facilities location. Supply chains have become a hot research field in recent
years [61]. In the future, we can study how to improve the fairness and efficiency of supply
chains in the transportation of emergency medical supplies. In the future, we can consider
adding machine learning [62] methods to the location of emergency medical facilities.
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