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Abstract: Significant research has been conducted in recent years to determine crash hotspots. This
study focused on the effects of various traffic parameters, including average traffic speed and traffic
volume, on the spatial distributions of freeway crashes. Specifically, this study analyzed the spatial
distributions of crashes on the Qazvin–Abyek freeway in Iran using four-year crash records. Spatial
crash clustering analysis was performed to identify hotspots and high cluster segments using global
Moran’s I, local Moran’s I, and Getis-Ord Gi*. The global Moran’s I indicated that clusters were
formed under the low range of hourly traffic volume (less than 1107 veh/h) and the high range of
traffic speed (more than 97 km/h), which increased the number of heavy vehicle crashes in the early
morning (time 03–06) around the 52 km segment. The results obtained from kernel density estimation
(KDE), local Moran’s I, and Getis-Ord Gi* revealed similar crash hotspots. The results further showed
different spatial distributions of crashes for different traffic hourly volumes, traffic speed, and crash
times, and there was hotspot migration by applying different traffic conditions. These findings can
be used to identify high-risk crash conditions for traffic managers and help them to make the best
decisions to enhance road safety.

Keywords: spatial distribution of crashes (SDC); spatiotemporal distribution of crashes (STDC);
freeway crashes; crash hotspot

1. Introduction

Road crashes, which cause high rates of casualties, injuries, and financial costs, have
been significant problems for the governments of developing countries, including Iran.
In 2020, there were about 15,400 crash fatalities in Iran and, as reported by the Iranian
Forensics Organization, around two-thirds of them occurred on suburban roads—especially
on freeways.

In the last decade, many studies have been conducted on the spatial distribution of
crashes (SDC) and the temporal distribution of crashes (TDC) to investigate the causes of
crashes and identify crash hotspots [1,2]. Their findings prove that there is no uniform SDC
and TDC (e.g., [3,4]). These results mean that there is a non-uniform distribution of crashes
on different parts of roads for various reasons. Moreover, the distribution of crashes is
not the same at different times, such as months of the year, days of the week, hours of the
day, etc. Many studies have been conducted on the spatiotemporal distribution of crashes
(STDC) [3–7]. For instance, Li and Zhu [2] and Plug and Xia [3] suggest an interaction
between the time and location of crashes based on STDC. Moreover, the spatiotemporal
analysis indicates the variations in the spatial distribution of relative crash risks at different
periods, such as hours of a day, days of a week, months of a year, and different years [8,9].

Many studies explore the influence of certain parameters on road traffic safety, in-
cluding behavioral factors and driver characteristics [10–12]. For instance, Besharati and
Tavakoli Kashani [13] argue that intercity bus drivers’ behavioral characteristics signifi-
cantly affect crash risks. The effects of behavioral factors and drivers’ characteristics on
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SDC and temporal distribution of crashes (TDC) have also been identified [14,15]. More-
over, Toran Pour and Moridpour [16] considered age and gender as parameters that affect
pedestrians’ SDC and TDC. Toran Pour and Moridpour [16] also suggested different spatial
distribution patterns for different human characteristics, whether for drivers or pedestrians.
Anvari and Kashani [17] proved that passenger factors and the rider’s age affect rear-end
motorcycle collisions, and that age and gender have a significant influence on children’s
pedestrian behavior in conflict zones of urban intersections [18]. The effect of weather
conditions on the SDC has also been confirmed [19].

Furthermore, several studies have focused on investigating the effects of traffic pa-
rameters such as speed and traffic volume on crash frequency and severity (e.g., [20–22]).
According to Quddus [23], a 1% increase in average annual daily traffic (AADT) is associ-
ated with a 0.5% increase in the rates of killed and seriously injured (KSI) casualties. An
increase in average traffic speed causes an increase in crash frequency. For example, a 10%
increase in the average speed leads to a 30% increase in fatalities and crash severity [24].

Since the present study focuses on SDC and STDC, another attempt led to investigating
the effects of traffic parameters such as hourly traffic volume and average traffic speed
on SDC. Kashani and Zandi [25] found that there were entirely different TDC patterns
for different hourly traffic volumes and average traffic speeds. In other words, these
parameters had a significant effect on TDC. In addition, Plug and Xia [3,4] highlighted that
speed is a factor that can affect TDC. Salem and Genaidy [26] also found that increasing
the speed variance has an impact on SDC and increases rear-end crashes in the work zone.
However, to the best of the authors’ knowledge, only a few researchers have focused on the
impacts of some other traffic parameters. If the effects of traffic parameters such as average
hourly traffic volume and average point speed on the SDC are proven, they can be used
to identify accident hotspots in different traffic conditions. Hence, they can help traffic
managers to identify conditions that pose a high crash risk. It should be noted that in the
analyses, the point traffic information at the crash location is employed. However, since
at the last stage of the procedure this information is related to a specific origin (and not
separate road segments), it can be regarded as spatial information. This study further tried
to identify the factors leading to crashes at a particular location and time. Additionally, it
aimed at finding the spatiotemporal hotspots.

There are several methods for spatial analysis, including kernel density estimation
(KDE), Getis-Ord Gi*, k-means clustering, and the nearest neighbor method [27]. As there
was point pattern crash analysis, the KDE method was used, because it is a suitable method
for identifying hotspots [27,28]. Meanwhile, KDE is the most common and well-established
method and is one of the most widely used analysis methods for density estimation [1,3].

Moran’s I, Geary’s C, and Getis-Ord Gi* can be employed to find spatiotemporal
autocorrelation by providing a single value of spatial autocorrelation, but they do not
present the locations of clusters [16,29,30]. Despite suggesting the Bayesian approach for the
spatiotemporal patterns of relative crash risks [2], several studies (e.g., Plug et al., 2011 [3];
Vemulapalli et al., 2016 [27]) have employed the co-map method for spatiotemporal analysis,
and the present study was no exception. Co-map is an extension of co-plot that is a
visualization tool [4]. Co-plot uses point plots and a spatial distribution pattern map, such
as the KDE, to reveal the effect(s) of changing two variables [28]. Co-map can be used to
investigate the temporal and spatial patterns of an event, including crime, vehicle crashes,
and disease. Soltani and Askari [31] highlighted that the basis of the spatiotemporal
analysis is dividing the overall parameter into subsets, and these subsets are then plotted
to examine the differences among each subset. The significant relationship between SDC
patterns and different conditions could help network administrators to identify specific
situations to adopt proper decisions to reduce the risks of crashes.

2. Methodology

The methodology of the present study is shown as a flowchart in Figure 1. It is worth
mentioning that steps 3 and 4 have been previously performed by the authors and can
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also be followed in the work of Kashani and Zandi [25]; the rest of the steps are reported
in this study. The other steps shown in Figure 1 were the main focus of this research, as
follows: Step 1 is obtaining the crash and traffic datasets, and step 2 is the merging of these
two data series. More explanations of steps 1 and 2 can be found in Section 3 (Case Study
and Data). Step 5 is about spatial analysis, while step 6 is about testing significance and its
methods; both steps are described in Section 2.1 (Spatial Analysis) and Section 2.2 (High-
Frequency Crash Location). Step 7 investigates the spatiotemporal analysis, which explains
the correlation of time and location of the crashes, as described in Section 1 (Introduction).
In the rest of this section, the different parts of the methodology are explained.
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2.1. Spatial Analysis

For spatial analysis, since KDE analysis has been used in many previous analyses, it
was also employed in this research. KDE is a distance-based method generating a smooth
and continuous surface map of the risk target [32]. KDE calculates a density surface within
a circular distance centered at each point across a study area for identifying hazardous road
situations and hotspot point events. The idea is that a crash may occurs not only at a point
but with a pattern around that point, [27,29,33,34]. “Crashes on a plane within the kernels
are weighted based on their Euclidean distance from the kernel center, and the resulting
density value is assigned to that center. The distance is weighted according to a kernel
function” [29].

For spatial analysis, both kinds of KDE—i.e., planar (2D) kernel density estimation
(PKDE) and network kernel density estimation (NKDE)—are useful. PKDE reveals the
density on the surface; on the other hand, NKDE shows the density along a network [35].
“NKDE is an extension of PKDE that calculates the density of point type events on a
linear unit (in a network) rather than on a 2-D homogeneous area unit, as was the case of
PKDE” [34].
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PKDE was analyzed using ESRI ArcMap 10.4.1 software, while NKDE was estimated
using SANET software [36]. Since both methods can help identify clusters, PKDE was
employed more in the present study. PKDE analysis can be written as shown in Equation (1):

λ(s) =
n

∑
i=1

1
πr2 k(

dis
r
), (1)

where λ(s) is the density in the location, s and r represent the radius (bandwidth) of KDE,
and k denotes the weight of point i at the distance dis of location s [34]. On the other
hand, k denotes the population value for each feature; in this research, the k parameter was
defined to the software as the crash number for each point of the path.

Moreover, “the network KDE is very similar to the planar KDE, except that the
normalizing constant is r instead of πr2” [28].

A significant point in the KDE analysis is the consideration of the appropriate hor-
izontal bandwidth value that can change the quality of the kernel estimate. To identify
the optimal bandwidth, the distance increment tests for the global Moran’s I were run for
different conditions and analyzed using ESRI ArcMap 10.4.1 software.

Another objective of the present study was to examine the spatial autocorrelation
of traffic crashes. Strong spatial autocorrelation indicates a spatial relationship between
crashes; otherwise, the crashes will occur randomly, and there is no relationship between
them. As the global Moran’s I method has proven helpful for estimating the spatial
autocorrelation of crashes [29,31], it was employed in this study. The global Moran’s I for
autocorrelation can be written as shown in Equation (2):

I =
n
S0

∑n
i=1 ∑n

j=1 wi,jzizj

∑n
i=1 z2

i
, (2)

where zi is the deviation of an attribute for feature i from its mean (xi- X) (Equation (3)),
wi,j denotes the spatial weight between features i and j, n is the total number of features,
and S0 is the aggregate of all spatial weights (Equation (4)):

zi =
I − E[I]√

V[I]
, (3)

S0 =
n

∑
i=1

n

∑
j=1

wi,j, (4)

where E[I] is the expected value of Moran’s I under the null hypothesis of no spatial
autocorrelation, and V[I] is the variance I (Equations (5) and (6)):

E[I] = −1/(n− 1), (5)

V[I] = E
[

I2
]
− E[I]2 . (6)

The spatial autocorrelation (global Moran’s I) was also estimated using ESRI ArcMap
10.4.1 software. This software measures the spatial autocorrelation based on both locations
and value features to check whether the pattern expressed is clustered, dispersed, or
random. It also calculates Moran’s I index values and p-values to evaluate the significance
of that index. The wi,j could be the crash frequency that was defined for the software as
the input field (i.e., the total number of crashes or the number of crashes in the specific
condition) for each point of the path.

2.2. High-Frequency Crash Locations

The spatial autocorrelation tools can identify high-frequency crash locations. They
help to simultaneously measure spatial autocorrelation based on feature locations and
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feature values. Given a set of features and their associated attribute values, they evaluate
whether a given pattern is clustered, dispersed, or random. Strong autocorrelation occurs
via the global Moran’s I when the values of geographically close cells are similar. Although
the global Moran’s I is a method to define spatial autocorrelation for a whole path, it
cannot determine the location of the clusters locally and only provides a quick view of the
condition of the spatial dependencies.

Many analysts are interested in knowing clusters’ locations and displaying them on a
map, even if there is no autocorrelation. Even if there is no global spatial autocorrelation,
there may still be spatial autocorrelation on some parts of the way [37]. Various cluster
mapping tools have been employed for cluster analysis. With the help of these tools, places
with statistically significant hot, cold, and unpleasant spatial spots can be determined.

Various cluster mapping tools can help to determine places with statistically significant
hot, cold, and unpleasant spatial spots. Local indicators of spatial association (LISA)
provide a measure for each spatial unit’s association and help identify the type and location
of clusters [7,38,39]. However, KDE is a tool for identifying clusters. Other methods—such
as KDE+, Getis-Ord Gi*, and Anselin local Moran’s I—are also used to determine hotspots.
The KDE+ method, as stated by Bíl and Andrášik [40], is based on the principles of KDE
that can be employed to find significant clusters and hotspot rankings.

The Getis-Ord Gi* is a widespread and valuable method to identify the spatial clusters
of high value (hotspots) and of low value (cold spots) [1]. The Getis-Ord Gi* equation can
be written as shown in Equation (7) [28]:

G∗i =
∑n

j=1 wi,j(D)Xj − X ∑n
j=1 wi,j

S

√ [
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

, (7)

where Gi* is the Getis-Ord Gi* value for feature i, wi,j(D) denotes the weight between
features i and j (i.e., the input field of the software that could be defined as the crash
frequency for the desired condition), D is the distance between features i and j, Xj shows
the frequency at location j, n reflects the number of all features, X represents the average
crash frequency, and S is the standard deviation of Xj.

The Gi* statistic is evaluated with a z-score. A higher positive z-score shows a high
value of clustering, while a smaller negative z-score indicates a low value of clustering or a
cold spot.

“To investigate the spatial variation as well as the spatial associations, it is possible
to calculate local versions of Moran’s I” [30]. The local Moran’s I is another method for
detecting high and low clusters, as well as high and low outliers. The local Moran’s I
statistics of spatial association are given in Equation (8):

Ii =
xi − X

S2
i

n

∑
j=1 j 6=i

wi,j
(
xi − X

)
, (8)

where xi is an attribute for feature i, X represents the mean of the corresponding attribute,
Si is the standard deviation, n is the total number of features, and wi,j denotes the spatial
weight between features i and j (i.e., the input field of the software that could be defined as
the crash frequency for the desired condition). If the value of I is positive, it suggests that
the feature is surrounded by the same feature; thus, the feature is a part of that cluster. At
the same time, the negative value of I indicates that the feature is surrounded by a feature
that is not similar. This type of feature is called an outlier. The Getis-Ord Gi* and the local
Moran’s I index were calculated only within the standard rating framework, where the
p-value can be interpreted and analyzed.
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3. Case Study and Data

This research focused on a 56 km freeway between Qazvin and Abyek in Qazvin
Province. This freeway connects Tehran to four provinces directly and to five other
provinces indirectly. On the other hand, this freeway is also important for international
transit between Iran and its northern and northwestern neighbors (Figure 2). This is a
freeway in Iran with a very high crash rate (nearly 330 fatal crashes annually) and annual
traffic volume (about 31 million vehicles per year). The details of the number of crashes
over the past nine years are shown in Table 1.
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Table 1. Summary of the numbers of deaths and injuries between 2011 and 2020.

Direction Crashes No. of Deaths No. of Injuries

Qazvin to Abyek 1550 204 2165
Abyek to Qazvin 1708 193 1993
Total 3258 397 4158

There were two datasets on this freeway’s crashes and traffic conditions. The first
dataset, obtained from the traffic police of Qazvin Province, detailed the last four years‘
crash data, including the location (the crash segment), time, date, weather conditions
(i.e., normal or abnormal conditions), details of the vehicles involved in the crash, drivers’
and accident victims’ characteristics (including gender and age), and types of crashes.
The second dataset contained hourly traffic volumes and average traffic speeds for all
types of vehicles (including cars, trucks, and trailers) on all parts of the freeway. The
Iran Road Maintenance and Transportation Organization obtained these datasets via the
mounted cameras and loop detectors along the route. More information about each crash
was obtained by merging these two datasets. This means that some traffic data on the
times and locations of crashes were further added to the crash data; thus, each record had
more information about the conditions of the crashes. This study focused on crash fatalities
and injuries.
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4. Results and Discussion
4.1. SDC Analysis

The PKDE method was run for both directions (Qazvin to Abyek and Abyek to
Qazvin), and the results are shown in Figures 3 and 4. The local Moran’s I and Getis-Ord
Gi* methods were employed to locally identify crash clusters and hotspots. The distance
increment test was run for different conditions to determine the optimal bandwidth for the
global Moran’s I. Both very small and very large bandwidths could be useless. Different
bandwidths are suggested for urban areas and freeways [29,41]. The results of the distance
increment test can be seen in Table 2, which also contains the Moran’s I index, z-score,
and p-value with 95% confidence. The results indicated that the optimal bandwidth with
the highest z-score was a distance of about 700 m for Qazvin to Abyek and 800 m for
Abyek to Qazvin. Since the length of the investigated crash segments was 1000 m, the
1000 m bandwidth was tested. The results indicated an acceptable p-value with 95%
confidence. Thus, similar to the findings of other studies, such as the work of Mohaymany
and Shahri [29], the present study’s bandwidth was set to 1000 m.
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For Qazvin to Abyek, as illustrated in Figure 3, the hotspot segments identified by the
Getis-Ord Gi* method with at least 95% confidence are 48, 49, 50, 51, 52, and 53, while the
high clusters identified by the Moran’s I method are 49, 51, and 52. For Abyek to Qazvin,
the hotspot segments obtained from the employment of the Getis Ord Gi* method with
at least 95% confidence are 50, 51, and 52, whereas the high clusters determined via the
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Moran’s I method are 51 and 52 (Figure 4). In segment 6 of the Abyek–Qazvin freeway,
some points seemed to be hotspots in PKDE, while not being high clusters or hotspots in
the Getis-Ord Gi* and Moran’s I. Thus, it can be concluded that these methods did not
necessarily lead to the same results.
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Table 2. Incremental bandwidth test for global Moran’s I.

Direction Direction

Qazvin to Abyek Abyek to Qazvin

Distance (m) Moran’s Index z-Score p-Value Moran’s Index z-Score p-Value

500 0.280477 14.45204 0.00 0.262819 13.56918 0.00
600 0.253837 14.58366 0.00 0.235518 13.48739 0.00
700 0.230517 14.72402 0.00 0.204491 13.1025 0.00

800 0.194255 13.36734 0.00 0.197075 13.54769 0.00
900 0.167901 12.22441 0.00 0.168325 12.33501 0.00
1000 0.152191 11.81901 0.00 0.145903 11.38119 0.00

1100 0.163536 13.45219 0.00 0.12565 10.28813 0.00
1200 0.147651 12.63698 0.00 0.105662 9.085491 0.00
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4.2. STDC Analysis

The spatiotemporal analysis of crashes was carried out by the co-map method. This
method helps to compare temporal crash distribution for different conditions. The temporal
part was performed with the spider plot method, consisting of two parts: one for all crashes,
and the other for Friday as the weekend and Tuesday as a weekday. The data illustrated
on the left side of Figure 5 indicate that the hot times for all crashes are 15, 14, and 18,
while they are 08 for Tuesday and 13, 14, and 20 for Friday [25]. Of course, these times
may be different for urban crashes. As an example, for urban crashes in London, the high
crash times were 8:00–11:59 and 16:00–19:59 for all days of the week [42]. Figure 5 also
demonstrates different TDC patterns for different conditions.
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To estimate the autocorrelation between the locations and times of crashes—i.e., spa-
tiotemporal analysis of crashes—the hours of the days were initially divided into eight
equal parts. The PKDE analysis was then run for the spatial part of the analysis and for
each time and direction. The right side of Figure 5 shows different hotspots for different
parts of the day, i.e., morning, night, midnight, and noon. The local Moran’s I and Getis-
Ord Gi* methods determined high clusters and hotspots (Figure 6). Comparing the local
Moran’s I, Getis-Ord Gi*, and PKDE methods revealed many similarities. Moreover, the
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spatiotemporal autocorrelation analysis of the crashes showed different hotspots and high
clusters for different times and locations.
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4.3. Influence of Traffic Parameters on the SDC

The main objective of this part was to investigate whether there were any significant
differences between hotspots and high clusters for different hourly traffic volumes and
traffic speeds. To examine the effect of hourly traffic volume on the SDC, the entire crash
data were divided into three parts—low, medium, and high hourly traffic volume—so
that the numbers of crashes in them were almost the same. These values and the co-map
results can be seen in Figure 7, including PKDE, local Moran’s I, and Getis-Ord Gi* for both
directions. The results show significant SDC differences among different volume ranges,
proving the effect of hourly traffic volume on the SDC.
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Similarly, the effect of average speed on the SDC was estimated. By investigating
the crash frequency and mean traffic speed, it was found that the highest crash frequency
occurs at nearly 95 km/h speed. In other words, the speed of 95 km/h is a marginal value
at which the rates of crashes before and after it are completely different. Then, the crash
data were divided into two classes: low speed, and high speed. To retain the same terms
of comparison, an average speed divide point was selected to give an almost equal crash
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frequency (97 km/h average speed). Thus, there were two crash data classes: speeds lower
and higher than 97 km/h. As illustrated in Figure 8, the results were almost identical to
those of the previous step. Therefore, there were different shapes of the SDC for different
traffic speeds.
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For more investigating details, the impact of average hourly volume on SDC is pro-
vided in Figure 9, which focuses on the local Moran’s I hotspot migration on the Abyek–
Qazvin freeway for two different conditions: low and high average traffic volume. The
results show the hotspot migration from sections 5, 17, and 24 to sections 49 and 50. More
information on the impact of average traffic speed on the Qazvin–Abyek freeway’s SDC
is provided in Figure 10. There is hot spot migration from sections 12, 13, 14, and 23 to
sections 50, 53, and 54. This proves a significant impact of both traffic volume and average
speed on the SDC.
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Figures 9 and 10 show two examples of crash hotspot migration in different traffic
conditions, which can also be extended to other conditions. Some further crash hotspot
migrations can be found in Appendix A (Tables A1 and A2).

4.4. Spatial Autocorrelation between Crashes in Different Conditions

The global Moran’s I method was employed to determine the global spatial autocorre-
lations of crashes for both directions. As highlighted in Table 3, there is spatial autocorre-
lation of crashes in the Qazvin-to-Abyek direction, with more than 95% confidence, and
the crashes are clustered. However, there is a random form for the opposite direction. The
global Moran’s I autocorrelation method could also be conducted for different conditions,
including spatiotemporal conditions, and test the effects of some parameters—namely,
hourly traffic volume and traffic speed—on the SDC. This method would show global
spatial autocorrelation for different traffic volumes, speed ranges, and times of the day.
According to the results provided in Table 4, there are spatial clusters in some conditions.
For instance, in the Abyek-to-Qazvin direction, there is a spatial crash clustering only in
the high range of hourly traffic volume, whereas there is a random spatial autocorrelation
of crashes for other conditions.

In the Qazvin-to-Abyek direction, there is a spatial crash clustering with 95% con-
fidence for the low range of hourly traffic volume, high range of speed, and time from
03 to 06, while for other conditions the crashes occur randomly. The location of the crash
clusters for all conditions was the same and close to 52 km. To further investigate the
causes of these conditions, the geometric characteristics of this path—such as curves, slopes,
cross-sections, and vertical alignment—were reviewed. The results indicated that the only
specific observed case in that segment was a high downhill (3%) slope.
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Table 3. The global Moran’s I for spatial crash frequency.

Direction Moran’s I Z p-Value Spatial Distribution
(95% Confidence)

Qazvin to Abyek 0.436746 2.553551 0.010663 Clustered
Abyek to Qazvin 0.155543 0.991892 0.32125 Random

Table 4. The Global Moran’s I for spatial crash frequency in different conditions.

Condition Moran’s I Z p-Value Spatial Distribution
(95% Confidence)

D
ir

ec
ti

on

Q
az

vi
n

to
A

by
ek

Volume (V)
(veh/h)

V < 1107 0.489669 2.846972 0.004414 Clustered
1107 < V < 1982 0.153117 0.912806 0.361345 Random

V > 1982 0.124857 0.823357 0.410305 Random

Speed (S)
(km/h)

S < 97 0.074382 0.527389 0.597924 Random
S > 97 0.698778 3.989106 0.000066 Clustered

Time
(hours)

00–03 0.066896 0.492272 0.622527 Random
03–06 0.524641 3.042979 0.002342 Clustered
06–09 0.177791 1.094382 0.273788 Random
09–12 0.045235 0.352046 0.724804 Random
12–15 −0.203112 −1.036415 0.300009 Random
15–18 0.181377 1.109924 0.267032 Random
18–21 0.089734 0.621703 0.534137 Random
21–24 0.003544 0.12394 0.901363 Random

A
by

ek
to

Q
az

vi
n

Volume (V)
(veh/h)

V < 1378 0.102881 0.703368 0.481827 Random
1378 < V < 1982 0.055929 0.417969 0.67597 Random

V > 2067 0.393178 2.33552 0.019516 Clustered
Speed (S)
(km/h)

S < 97 0.202809 1.347552 0.177802 Random
S > 97 −0.114638 −0.5438 0.586579 Random

Time
(hours)

00–03 0.153025 0.985104 0.324573 Random
03–06 −0.141334 −0.700012 0.48392 Random
06–09 −0.010544 0.044112 0.964815 Random
09–12 −0.045932 −0.159563 0.873225 Random
12–15 −0.151469 −0.75118 0.452544 Random
15–18 0.063173 0.464509 0.642283 Random
18–21 0.160602 0.778682 0.436167 Random
21–24 0.057169 0.443945 0.657082 Random

According to Iran’s Highway Geometric Design Code, this slope, with a length of
about 5.5 km, is located at the upper limit of the allowable slope. The long length and
high percentage of the downhill slope are influential factors in increasing the number of
heavy vehicle crashes [43]. Therefore, in the next step, the effect of the percentage of heavy
vehicles on the SDC was investigated. The average percentage of heavy vehicles was 16%
for the whole condition. To examine the impact of heavy vehicles, the SDC was analyzed
in two modes: the lower percentage (>16%) and the higher percentage than the average
of heavy vehicles (>16%). The output of the analysis is shown in Figure 11. The results
showed that when the percentage of heavy vehicles was high, the highest crash frequency
occurred around the 52 km segment; meanwhile, in the case of the low percentage of
heavy vehicles, some other parts had a greater crash frequency. Then, the effect of the
heavy vehicles in crashes (responsible and non-culpable) was analyzed (Table 5). The
investigation of the effect of the percentage of heavy vehicles involved in crashes indicated
that, in general, the percentage of heavy vehicles responsible for crashes was approximately
13.7%. The percentage of non-culpable heavy vehicles involved in accidents was about
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18.5%. However, these values, which differed from the average values, were equal to 18.4%
and 25% between 03 and 06 in the morning. Thus, the effect of the heavy vehicle percentage
on the clustering of accidents in the above conditions was confirmed.
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Table 5. Crash number and percentage details for heavy vehicles.

Crash Percentage
for Heavy Vehicle

Non-Culpable

Crash Number for
Heavy Vehicle
Non-Culpable

Crash Percentage
for Heavy Vehicle

Responsible

Crash Number for
Heavy Vehicle
Responsible

Crash
Frequency Time

0.185507246 128 0.137681159 95 690 0–24
0.25 19 0.184210526 14 76 03–06

Several techniques are available to investigate the correlation between these different
parameters. Among them, Pearson’s correlation test is one of the simplest and most
well-known methods. Hence, this study used Pearson’s correlation test technique. It is
noteworthy that the correlation coefficients near 1 denote high correlations, while those
parameters with correlation coefficients near 0 are non-correlated. According to the results
shown in Table 6, there is very strong correlation between low traffic volume and high
heavy vehicle percentage, as well as between low traffic volume and high traffic mean
speed (Pearson’s correlation > 0.8). There is a strong correlation between high heavy vehicle
percentage and high traffic mean speed (0.8 > Pearson’s correlation > 0.6). All correlations
between parameters were significant with 95% confidence. The results indicated that these
parameters had similar crash patterns for parts, i.e., the segments had almost the same
crash conditions for high average traffic speed, low hourly traffic volume, and high heavy
vehicle percentage. The time 03–06 had a medium correlation with the other parameters.
Since this result was not just for hotspot segments but for whole parts of the road, it can
be concluded that these parameters have a practical simultaneous effect on the number
of crashes.

Table 6. Pearson’s correlation for different conditions.

LV HS T0306 HVP

LV 1 0.801 ** 0.568 ** 0.891 **
HS 0.801 ** 1 0.487 ** 0.701 **
T0306 0.568 ** 0.487 ** 1 0.565 **
HVP 0.891 ** 0.701 ** 0.565 ** 1

**. Correlation is significant at the 0.01 level (2-tailed). LV: low hourly traffic volume (veh/h); HS: high mean
traffic speed (km/h). T0306: time 03–06; HVP: heavy vehicle percentage > 16%.
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5. Conclusions

The main objective of this study was to investigate a method for a freeway in Iran
to help traffic managers identify the high-risk times, locations, and conditions to make
proper decisions. The primary step of this study was to conduct spatial, spatiotemporal,
and density analyses of the crashes. Various methods, including PKDE, local Moran’s I, and
Getis-Ord Gi*, were employed to identify the hotspots and high-crash-density segments
along the route. The results revealed different hotspots and high clusters for different times.
Then, the effects of some traffic parameters—namely, hourly traffic volume and speed—on
the SDC were investigated globally by global Moran’s I and locally by the PKDE, local
Moran’s I, and Getis-Ord Gi* methods. The findings revealed different hotspots and high
clusters for different traffic conditions, and some sections were found to be more likely to
experience a crash.

Moreover, according to the findings, the combination of high mean traffic speed, low
traffic volume, and high downhill slope in the early morning could increase the odds of
crashes, especially for heavy vehicles. These conditions caused crash clustering. These
results could help traffic managers to make a suitable decision when these conditions
occur. Such management could be developed into real-time traffic management systems
that predict real-time crashes and estimate the crash risk using high-resolution detector
data [44,45]. For these conditions, further attention is required, namely, specific speed
limitations, more police control, prohibition of the entry of heavy vehicles on special
days and situations, and increasing drivers’ awareness of high-risk states through VMS or
other on-trip information systems. Such a real-time traffic management system could be
developed in future studies.

This study focused only on fatality- and injury-related crash data because the damage-
only crash data were not accessible, which was one important limitation of this research.
Access to the above information could increase the accuracy of future studies.

In addition, further studies investigating the impact rates of different factors via
modeling could help us to learn more about the factors affecting the clustering of crashes.
Modeling based on investigating the role of geometric road characteristics could also be
beneficial. Determining the extent to which these factors affect STDC could be the focus
of future studies. The influence of factors other than SDC and STDC, including human
characteristics and weather conditions, could be further examined. Although the present
study could be extended in many ways, the analyses developed in this paper are applicable
to other similar freeways and provide useful information for traffic management.
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Local Moran’s I output for SDC crashes:
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Table A1. Local Moran’s I output for Qazvin-to-Abyek SDC crashes.
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7 0.0076 2.04 0.0417 LL 0.0039 1.07 0.2848 0.0027 0.74 0.4610 0.0010 0.29 0.7746 0.0014 0.40 0.6873 0.0036 0.97 0.3324
8 0.0078 2.10 0.0353 LL 0.0042 1.15 0.2508 0.0028 0.76 0.4467 0.0010 0.29 0.7747 0.0014 0.41 0.6843 0.0033 0.89 0.3739

12 −0.0007 −0.68 0.4943 0.0005 0.49 0.6220 0.0002 0.21 0.8352 0.0063 6.52 0.0000 HH 0.0031 3.17 0.0015 HH 0.0007 0.72 0.4725
13 −0.0018 −1.29 0.1982 0.0008 0.60 0.5472 0.0001 0.07 0.9453 0.0045 3.35 0.0008 HH 0.0061 4.52 0.0000 HH 0.0016 1.14 0.2525
14 −0.0011 −1.12 0.2627 0.0003 0.35 0.7259 −0.0001 −0.11 0.9108 −0.0018 −1.83 0.0676 0.0031 3.17 0.0015 HH 0.0009 0.89 0.3761
23 0.0004 0.45 0.6499 0.0000 0.00 0.9963 −0.0005 −0.47 0.6368 0.0036 3.83 0.0001 HH 0.0019 2.02 0.0431 HH 0.0000 0.01 0.9916
24 0.0000 0.06 0.9558 0.0001 0.07 0.9451 −0.0004 −0.24 0.8072 0.0034 2.55 0.0108 HH 0.0017 1.24 0.2141 −0.0001 −0.04 0.9644
27 −0.0001 −0.08 0.9372 0.0000 0.03 0.9757 0.0020 2.05 0.0405 HH −0.0001 −0.06 0.9527 0.0011 1.16 0.2461 0.0000 −0.03 0.9752
30 −0.0001 −0.01 0.9915 −0.0001 −0.06 0.9536 0.0000 0.01 0.9909 0.0005 0.42 0.6724 0.0026 1.97 0.0491 LL 0.0003 0.27 0.7890
33 0.0005 0.40 0.6881 −0.0003 −0.19 0.8524 0.0028 2.05 0.0406 HH 0.0001 0.12 0.9073 −0.0002 −0.11 0.9126 −0.0001 −0.06 0.9549
34 0.0013 1.01 0.3143 −0.0008 −0.57 0.5693 0.0036 2.61 0.0089 HH −0.0002 −0.09 0.9308 −0.0001 −0.04 0.9684 0.0006 0.47 0.6407
41 −0.0002 −0.14 0.8900 0.0044 3.22 0.0013 HH −0.0007 −0.46 0.6471 0.0003 0.26 0.7986 0.0000 0.03 0.9751 0.0008 0.60 0.5476
49 0.0027 1.99 0.0462 HH 0.0045 3.29 0.0010 HH −0.0010 −0.69 0.4907 0.0001 0.12 0.9044 −0.0008 −0.57 0.5659 0.0020 1.48 0.1395
50 0.0019 1.94 0.0529 0.0033 3.37 0.0008 HH −0.0014 −1.37 0.1699 0.0002 0.27 0.7849 0.0003 0.31 0.7528 0.0031 3.13 0.0017 HH
51 0.0022 2.22 0.0262 HH 0.0022 2.22 0.0264 HH 0.0001 0.11 0.9140 −0.0005 −0.54 0.5887 −0.0001 −0.08 0.9387 −0.0001 −0.09 0.9255
52 0.0050 3.67 0.0002 HH 0.0043 3.17 0.0015 HH 0.0007 0.55 0.5823 −0.0033 −2.43 0.0152 LH 0.0008 0.62 0.5325 −0.0002 −0.13 0.8938
53 0.0000 0.04 0.9702 0.0006 0.35 0.7228 −0.0014 −0.77 0.4412 −0.0051 −2.99 0.0028 HL −0.0046 −2.67 0.0077 HL 0.0087 5.04 0.0000 HH
54 −0.0028 −1.93 0.0530 −0.0016 −1.07 0.2828 −0.0020 −1.37 0.1699 −0.0023 −1.64 0.1016 −0.0055 −3.84 0.0001 LH 0.0088 6.09 0.0000 HH
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Table A2. Local Moran’s I output for Abyek-to-Qazvin SDC crashes.
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4 −0.0010 −1.03 0.3026 −0.0010 −1.04 0.2975 0.0005 0.56 0.5784 0.0001 0.13 0.8990 0.0004 0.49 0.6240 −0.0022 −2.20 0.0275 LH
5 0.0016 1.19 0.2335 0.0031 2.33 0.0196 HH 0.0045 3.25 0.0012 HH −0.0002 −0.10 0.9205 0.0043 3.38 0.0007 HH −0.0013 −0.89 0.3711
6 −0.0014 −0.80 0.4258 −0.0036 −2.10 0.0357 HL 0.0009 0.53 0.5927 −0.0009 −0.47 0.6380 0.0004 0.28 0.7780 −0.0009 −0.50 0.6145

13 0.0003 0.35 0.7298 0.0003 0.30 0.7656 0.0010 1.03 0.3029 −0.0005 −0.45 0.6521 0.0023 2.49 0.0126 HH −0.0005 −0.44 0.6583
17 −0.0003 −0.16 0.8729 0.0031 2.33 0.0197 HH 0.0000 0.01 0.9918 0.0008 0.59 0.5538 0.0011 0.89 0.3743 0.0003 0.21 0.8365
24 0.0016 1.21 0.2269 0.0039 2.97 0.0030 HH −0.0011 −0.76 0.4489 −0.0001 −0.04 0.9651 0.0002 0.19 0.8500 0.0012 0.92 0.3558
32 0.0000 0.01 0.9887 0.0003 0.34 0.7333 0.0022 2.28 0.0229 HH −0.0001 −0.11 0.9128 0.0000 0.00 0.9988 0.0009 0.95 0.3408
36 0.0005 0.41 0.6801 0.0008 0.65 0.5131 0.0015 1.13 0.2578 −0.0004 −0.23 0.8162 0.0026 2.04 0.0412 LL −0.0026 −1.86 0.0625
39 0.0000 −0.03 0.9762 −0.0004 −0.36 0.7179 0.0004 0.41 0.6836 0.0009 0.91 0.3603 0.0000 0.03 0.9793 0.0024 2.45 0.0142 HH
43 −0.0006 −0.42 0.6779 −0.0010 −0.71 0.4767 −0.0030 −2.12 0.0340 HL 0.0001 0.13 0.8969 −0.0004 −0.27 0.7845 −0.0040 −2.83 0.0046 HL
44 −0.0008 −0.85 0.3961 −0.0006 −0.64 0.5236 −0.0026 −2.59 0.0097 LH −0.0007 −0.74 0.4594 −0.0007 −0.71 0.4795 −0.0020 −1.98 0.0473 LH
49 0.0008 0.61 0.5402 0.0011 0.82 0.4141 −0.0008 −0.58 0.5641 0.0060 4.38 0.0000 HH 0.0002 0.16 0.8706 0.0010 0.72 0.4721
50 0.0033 2.46 0.0140 HH 0.0000 0.06 0.9501 −0.0035 −2.49 0.0126 LH 0.0059 4.28 0.0000 HH 0.0007 0.58 0.5623 0.0016 1.14 0.2527
51 0.0048 3.55 0.0004 HH −0.0005 −0.32 0.7502 −0.0010 −0.73 0.4660 −0.0008 −0.55 0.5827 0.0000 0.00 0.9985 0.0018 1.36 0.1738
54 0.0042 2.65 0.0081 LL 0.0027 1.72 0.0855 0.0007 0.46 0.6442 0.0024 1.50 0.1342 0.0026 1.74 0.0819 0.0018 1.13 0.2585
55 0.0041 3.17 0.0015 LL 0.0025 1.96 0.0503 0.0006 0.47 0.6406 0.0022 1.70 0.0886 0.0017 1.37 0.1707 0.0030 2.28 0.0224 LL



Sustainability 2023, 15, 493 19 of 20

References
1. Prasannakumar, V.; Vijith, H.; Charutha, R.; Geetha, N. Spatio-temporal clustering of road accidents: GIS based analysis and

assessment. J. Transp. Geogr. 2011, 21, 317–325. [CrossRef]
2. Li, L.; Zhu, L.; Sui, D.Z. A GIS-based Bayesian approach for analyzing spatial–temporal patterns of intra-city motor vehicle

crashes. J. Transp. Geogr. 2007, 15, 274–285. [CrossRef]
3. Plug, C.; Xia, J.; Caulfield, C. Spatial and temporal visualisation techniques for crash analysis. Accid. Anal. Prev. 2011, 43,

1937–1946. [CrossRef] [PubMed]
4. Xia, J.C. Data mining of driver characteristics to spatial and temporal hotspots of single vehicle crashes in Western Australia. In

Proceedings of 19th International Congress on Modelling and Simulation; Modelling and Simulation Society of Australia and New
Zealand: Perth, Australia, 2011.

5. Eckley, D.C.; Curtin, K.M. Evaluating the spatiotemporal clustering of traffic incidents. Comput. Environ. Urban Syst. 2013, 37,
70–81. [CrossRef]

6. Kulldorff, M.; Hjalmars, U. The Knox Method and Other Tests for Space-Time Interaction. Biometrics 1999, 55, 544–552. [CrossRef]
7. Matkan, A.A.; Mohaymany, A.S.; Shahri, M.; Mirbagheri, B. Detecting the spatial–temporal autocorrelation among crash

frequencies in urban areas. Can. J. Civ. Eng. 2013, 40, 195–203. [CrossRef]
8. Li, X.; Liu, J.; Zhang, Z.; Parrish, A.; Jones, S. A spatiotemporal analysis of motorcyclist injury severity: Findings from 20 years of

crash data from Pennsylvania. Accid. Anal. Prev. 2021, 151, 105952. [CrossRef]
9. Bíl, M.; Andrášik, R.; Sedoník, J. A detailed spatiotemporal analysis of traffic crash hotspots. Appl. Geogr. 2019, 107, 82–90.

[CrossRef]
10. Abdulhafedh, A. Road crash prediction models: Different statistical modeling approaches. J. Transp. Technol. 2017, 7, 190.

[CrossRef]
11. Zhao, X.; Xu, W.; Ma, J.; Li, H.; Chen, Y. An analysis of the relationship between driver characteristics and driving safety using

structural equation models. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 529–545. [CrossRef]
12. Shirmohammadi, H.; Hadadi, F.; Saeedian, M. Clustering Analysis of Drivers Based on Behavioral Characteristics Regarding

Road Safety. Int. J. Civ. Eng. 2019, 62, 529–545. [CrossRef]
13. Besharati, M.M.; Kashani, A.T. Factors contributing to intercity commercial bus drivers’ crash involvement risk. Arch. Environ.

Occup. Health 2018, 73, 243–250. [CrossRef] [PubMed]
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