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Abstract: In the context of digital economy and low carbon economy, digital technology is an
important tool to achieve the goal of carbon peaking and carbon neutrality. Based on the panel
data of 30 Chinese provinces from 2011–2019, to empirically test the time-lagged effect and spatial
spillover effect of digital technology development on carbon emissions, the entropy method was
used to measure the comprehensive index of digital technology development after applying the
dynamic spatial Durbin model. The research results show that: (1) Carbon emissions have time
inertia and positive spatial correlation, specifically the spatial characteristics of “high in the north
and low in the south”; the overall level of digital technology development is improving; however,
the spatial differences are gradually expanding, showing a spatial layout of east, west and middle
gradient decline. (2) In both the short term and long term, digital technology development has a
significant positive impact on reducing carbon emissions in the region. The long-term inhibitory
effect of digital technology development on carbon emissions is more obvious than the short-term
effect. (3) Unlike the existing studies indicating that digital technology development contributes to
reduce carbon emissions in neighboring regions, digital technology development does not have a
positive spatial spillover effect on carbon emissions in spatially connected regions. Therefore, policy
makers should take into account spatial effects when promoting the penetration and application of
digital technologies in environmental governance.

Keywords: digital technology; carbon emissions; time lag effect; spatial spillover effect

1. Introduction

Climate change has potentially threatened human survival and development. The
massive emission of greenhouse gases has triggered a series of extreme climate phenomena,
such as glacial melt, drought and flood polarization. In the past decades, China’s long-term
high energy consumption and high-pollution crude economic growth model has led to
serious pollution problems [1,2]. The consumption of large amounts of fossil energy has
made China’s carbon dioxide emissions increase yearly [3]. Furthermore, China became the
world’s largest carbon emitter in 2009 [4]. China’s carbon emissions reached 14.093 million
tons in 2019, accounting for about one-third of the total global carbon emissions. In response
to the increasingly serious problem of carbon emissions, at the 75th session of the United
Nations General Assembly in 2020, the Chinese government had committed to peak carbon
emissions by 2030 and strives to achieve carbon neutrality by 2060. This means that China’s
future development will be gradually “decoupled” from carbon, forcing a new round
of energy revolution and industrial structure upgrade. Thus, effective control of carbon
emissions has become a priority.

Humanity has now entered the digital age, whilst digital technology is leading a new
round of global technological revolution and industrial change [5,6]. The new generation
of digital technology with big data, cloud computing, artificial intelligence, etc., as the core
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is deeply integrated with the green low-carbon industry, promoting the transformation
and upgrading of industrial structure from high-carbon to low-carbon and from low-end
to high-end. According to the white paper on “Jointly Building a Community of Destiny
in Cyberspace” released by the Chinese government, China’s digital economy reached
$7.05 trillion by 2021, accounting for 39.8% of annual GDP. The Digital Carbon Neutral
White Paper (2021) released by the China Academy of Information and Communication Re-
search suggested that digital technology is vital in assisting the global process of combating
climate change, bringing a new perspective to environmental governance. Therefore, by
studying the impact of digital technology development on carbon emissions in China, the
insight into the potential role of digital technology in future environmental governance can
be acquired, and an important theoretical basis for the green and sustainable development
of China and the world can also be provided.

With the deep integration and application of innovations in digital technologies in
the fields of resources, energy and environment, digital technologies have received wide
attention from researchers and policymakers for their role in reducing carbon emissions.
Some scholars argued that digital technologies contribute to green and sustainable develop-
ment. Firstly, digital technologies promote the dematerialization of economic activities [7,8],
with a great reduction of the demand for resources and energy for economic activities [9],
following which carbon emissions could be eliminated to a great extent. Secondly, the
advancement and spillover penetration of digital technology can improve energy use effi-
ciency by enhancing innovation efficiency and promoting industrial structure upgrading,
and the improvement of energy use efficiency is beneficial to the reduction of carbon
emissions. Finally, the application of digital technologies in environmental monitoring,
early warning and management is key for reducing carbon emissions [10,11]. The con-
struction of smart cities, intelligent transport systems, smart grids, etc., also rely on digital
technologies to reduce carbon emissions [12,13]. However, other scholars claimed that the
development of digital technology has the potential to worsen environmental pollution.
Zhou et al. [14] found that implied emissions from the information and communication
industry are growing rapidly; meanwhile, the development of digital technology is not
improving the environment. The construction and operation of digital infrastructures con-
sume large amounts of electricity resources [15], resulting in more carbon emissions [16,17].
The electricity leaned on by electronic products and devices would further generate carbon
emissions during the life cycle of production, installation, use and disposal [12,18,19].

It is worth noting that dematerialization, technological innovation output, and indus-
trial restructuring are a dynamic evolutionary process compared to the consumption of
energy and electricity to generate carbon emissions. Over time, the emission reduction
effects of dematerialization, technological innovation output, and industrial restructuring
will continue to increase. Therefore, there may be a lag period for the impact of digital
technology development on carbon emissions [3]. However, most studies are less holistic
in measuring the comprehensive index of digital technology development, and the overall
impact of digital technology development on carbon emissions remains unclear. Further-
more, the trend of the impact of digital technology development on carbon emissions in
the time dimension is not fully reported.

In addition, digital technology is based on information and communication technology
and uses digital knowledge and information as a production factor. Its important character-
istics are inter-temporality [20], permeability and innovation complementarity [21]. Digital
technology enables the compression of spatio-temporal distances by virtue of efficient data
transmission, enhancing the inter-regional connectivity of digital economic activities [22].
Shao et al. [23] pointed out that the externalities characteristic of environmental pollution
determines environmental problems possessing regional correlation effects on a geospa-
tial scale. Hao and Peng [24] supported this assertion. The implementation of China’s
“coordinated regional development strategy” has revealed a new pattern of comprehen-
sive and interconnected regional development. The breadth and depth of inter-regional
linkages were strengthened [25,26]. However, existing studies are less likely to analyze
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the spillover effects of digital technology development on carbon emissions in a spatial
dimension. Moreover, there is a lack of research on the spatial effects of digital technology
on inter-provincial carbon emissions in China.

This study is therefore vital, because it provides a better understanding of the role
of digital technology on carbon emissions in the digital age from both a temporal and
spatial perspective. Herein, it is meaningful to provide targeted and specific policy rec-
ommendations for China to control carbon emissions and achieve its carbon peak and
carbon neutrality targets on schedule. Furthermore, contributions were displayed in the
existing literature in the following aspects. First, with China, an emerging economy, as the
research target, and using panel data from 30 Chinese provinces for analysis, this study can
provide policy recommendations in the area of digital technology for China and the rest of
the developing countries to reduce carbon emissions. Second, to ensure the accuracy and
reliability of the research results, a comprehensive index of digital technology development
was constructed by using as many relevant proxy variables as possible for the reassess-
ment of the overall impact of digital technology development on carbon emissions. Third,
differing from existing studies without considering the time lag and spatial correlation of
key variables when analyzing the impact of digital technology development on carbon
emissions, this study was explored under the analytical framework of dynamic space,
avoiding the estimation bias of ordinary econometric models and eliminating the problem
of model endogeneity due to two-way causality. Therefore, the results are robust and can
provide an important theoretical basis for government environmental policy formulation.

The remainder of the study is presented below. Section 2 reviews the relevant literature,
Section 3 describes the methodology and data, Section 4 discusses the results, and Section 5
summarizes and provides policy implications.

2. Literature Review

Scholars have researched the influence of different factors on carbon emissions, such
as urbanization, energy consumption, economic growth, etc. [27–31]. With the rapid devel-
opment of digital technologies and the increasing severity of the global climate, scholars
are increasingly focusing on the impact of digital technologies on carbon emissions and
related applications. However, existing studies have not reached consensus conclusions.

Several studies have reported that digital technology development has increased
carbon emissions and poses a serious threat to the environment. For example, Lee and Brah-
masrene [32] explored the impact of ICT (Information and Communications Technology)
on carbon emissions in ASEAN countries from 1991–2009 using cointegration regression
estimation, and the results showed that ICT development would increase carbon emissions
by 0.60% for every 1% increase in development. Park et al. [17] estimated the impact of
ICT, financial development, economic growth and trade development on carbon emissions
using a pooled mean group (PMG), and the empirical results showed that a long-term
relationship was observed between ICT and increased carbon emissions as well as reduced
environmental quality. Raheem et al. [33] studied the role of ICT and financial development
in carbon emissions and economic growth in G7 countries, and the results showed that ICT
has a long-term positive impact on carbon emissions. Salahuddin et al. [34] estimated the
impact of economic growth and ICT on carbon emissions in OECD countries from 1991 to
2012. It was found that a 1% increase in ICT would increase carbon emissions by 0.16%.

Other studies have argued that digital technology development reduces carbon emis-
sions and helps improve environmental quality. For example, Zhang and Liu [35] found
a significant inhibitory effect of the ICT industry on regional carbon emissions in China
based on the STIRPAT model. Asongu et al. [36] studied 44 sub-Saharan African countries
and concluded that ICT can be used to curb environmental pollution’s potential negative
impact on human development. Lu [8] explored the impact of ICT on carbon emissions
using panel data for 12 Asian countries from 1993–2013, and ICT was shown as not threat-
ening the environment and not having a significant negative impact from carbon emissions.
Zhou et al. [2] examined the impact of the digital economy on haze pollution and its spatial
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spillover effects using spatial econometric and threshold models. The results showed that
haze pollution has spatial spillover effects and high emission aggregation characteristics,
and the development of the digital economy has a significant effect on reducing haze
pollution. Iqbal et al. [37] explored the impact of ICT and economic globalization on carbon
emissions in Pakistan. It was found that ICT has a significant negative impact on carbon
emissions and its ability to mitigate climate change. In addition, studies by Ozcan and
Apeigis [38], Khan [39] and Chen [40] also provided relevant evidence for the ability of
digital technologies to reduce carbon emissions from other perspectives or methods.

Meanwhile, studies exist where the relationship between digital technology devel-
opment and carbon emissions is non-linear. For example, Higon et al. [41] used a panel
dataset consisting of 142 economies to introduce ICT and its squared term study found
that ICT and carbon emissions show an inverted U-shaped relationship. Shahnazi and
Shabani [42] argued that the direct impact and spatial spillover effects of ICT on carbon
emissions showed an inverted U-shaped relationship. Yang et al. [43] explored the impact
of internet development on haze pollution and its mechanism using the dynamic spatial
Durbin model, and the results showed that there was an inverted U-shaped curve between
internet development and haze pollution. Shobande [44] used 32 African countries as a
study and also reached similar conclusions.

The reason for the controversial results in these literatures may be the difference in the
study period and the study population. NDri et al. [45] found in a survey of 58 developing
countries that ICT was environmentally beneficial for relatively low-income developing
countries, while there was no significant effect for relatively high-income developing coun-
tries. In the inverted U-shaped relationship found by Higon [41], the ICT inflection point is
higher for developing countries than for developed countries. Even in the few studies of
specific countries at the provincial level, the impact of digital technology development on
carbon emissions is not equally consistent. In the case of China, Zhou et al. [14] found that
the ICT sector is not an environmentally friendly industry, and its implied carbon impact
is tens of times higher than the direct impact. The rapid growth of implied emissions is
one of the reasons for the rising carbon emissions. Zhang and Liu [35] found that the ICT
industry has a greater inhibiting effect on carbon emissions in central China than in the
eastern region, and the inhibiting effect is not significant in the western region.

Although these studies have successfully estimated the impact of digital technology
development on carbon emissions using different methodologies, most of these studies have
ignored the temporal and spatial effects of digital technology development on carbon emissions.
In addition, as in the case of the “Solow paradox” [46], the different measures of digital
technology development in these studies may also lead to uncertainty in the results. For
example, Altinoz et al. [6] explored the relationship between ICT, total factor productivity and
carbon dioxide emissions in the top ten emerging market economies for 1995–2014, showing that
internet use and fixed-line subscriptions have a positive effect on carbon emissions, while mobile
phone subscriptions and total factor productivity have a negative effect on carbon emissions.

Therefore, considering the relative lack of research on the carbon reduction effects of
digital technology development in emerging countries, the temporal and spatial effects of
digital technology development on carbon emissions in China are not fully understood. In
this study, panel data of 30 Chinese provinces was utilized and the comprehensive index of
digital technology development was measured using the entropy method to provide a new
reference for decision making for sustainable development in other emerging countries.

3. Methodology and Data
3.1. Spatial Correlation Test

The externality characteristic of environmental pollution and the inter-temporal and
permeability characteristics of digital technology determine the possible spatial effects
between the two. The empirical results of ordinary econometric models would be biased.
Therefore, the study tests the spatial correlation of carbon emissions and digital technology
development before empirical analysis. Spatial correlation can quantitatively describe the
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spatial characteristics of variables. In this paper, the “Global Moran Index” was used to
characterize the degree of spatial correlation between inter-provincial carbon emissions
and digital technology development in China. The calculation formula is as follows:

Moran′s I =

n
n
∑

i=1

n
∑

j=1
Wij(xi − x)

(
xj − x

)
n
∑

i=1

n
∑

j=1
Wij

n
∑

i=1
(xi − x)2

(1)

where xi and xj denote the variable values of the i and j provinces, x denotes the average
of the variable values of all provinces, and Wij is the spatial weight matrix. Moran′s I
takes values in the range of [–1,1], when Moran′s I = 0 indicates no spatial correlation;
when Moran′s I > 0, there is spatial positive correlation; and when Moran′s I < 0, there
is spatial negative correlation. Additionally, the larger its absolute value, the higher the
spatial correlation.

This paper uses the “Local Moran Index” to characterize the spatial clustering of inter-
provincial carbon emissions and digital technology development in China. The calculation
formula is as follows:

Local Moran′s I =

n(xit − xt)
n
∑

j=1
Wjt

(
xjt − xt

)
n
∑

i=1
(xit − xt)

2
(2)

where xit is the variable value of the t year for the i province, xt is the average of the
variable values of all provinces in the t year, and Wij is the spatial weight matrix. When
Local Moran′s I > 0, it means that there is positive spatial agglomeration in the neighboring
areas; when Local Moran′s I < 0, it means that there is negative spatial agglomeration in
the neighboring areas.

3.2. Spatial Econometric Models

To examine the spatial spillover effects of digital technology development on carbon
emissions, a dynamic spatial Durbin model (SDM) based on the STIRPAT model was
constructed [47]. The model took into account the time-lag and spatial correlation of core
variables, which could effectively avoid the problem of model endogeneity caused by
two-way causality and ensure the accuracy and reliability of the model estimation results.
The expression is as follows:

LnCEit = α0 + ρWijLnCEjt + ϕLnCEi,t−1 + θWijLnCEj,t−1 + α1DTit + α2Xit
+α3WijDTit + α4WijXit + µi + γt + εit

(3)

Next, a two-period lag treatment of digital technology development was conducted,
which is meant to further examine the time-lagged effect of digital technology development
on carbon emissions. The following dynamic spatial Durbin model (SDM) was constructed.

LnCEit = α0 + ρWijLnCEjt + ϕLnCEi,t−1 + θWijLnCEj,t−1 + α1DTi,t−2 + α2Xit
+α3WijDTi,t−2 + α4WijXit + µi + γt + εit

(4)

where i is the province; t is the time; α0 is the constant term; α1 to α4 are the estimated
coefficients; Wij is the spatial weight matrix; µi and γt are the spatial and temporal fixed
effects, respectively; εit is the residual term; ρ is the spatial autoregressive coefficient,
reflecting the impact of carbon emissions from spatially linked areas on carbon emissions
in the region; ϕ is the time-lagged regression coefficient, reflecting the impact of carbon
emissions in the previous period on carbon emissions in the current period; and θ is the
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time-lagged regression coefficient of the spatial lag term, which reflects the impact of the
previous period’s carbon emissions on the current period’s carbon emissions in the region.

3.3. Variables and Data Description

As digital technology is an emerging technology, the statistics of its relevant indicators
is relatively new. Thus, this study chooses to conduct the relevant research at the provincial
level rather than the city level. This study covers all provinces in China as far as possible.
However, the study sample was finally determined to be 30 provinces due to the absence of
digital technology indicators in individual provinces, excluding Tibet, Hong Kong, Macau
and Taiwan. Meanwhile, the temporal and spatial effects of digital technology development
on carbon emissions were empirically analyzed using panel data for 30 Chinese provinces
from 2011 to 2019. The availability and completeness of data measuring digital technology
development was then ensured. The carbon emission data were obtained from the China
Carbon Emission Accounts & Datasets (CEADs), a multi-scale carbon accounting inventory
including socio-economics and trade covering China and other developing economies with the
joint support of the National Natural Science Foundation of China, the Ministry of Science and
Technology of China, and the UK Research Council. The digital inclusive finance index, one
of the digital technology development indicators, uses the aggregate index from the Peking
University Digital Inclusive Finance Index (2011–2020). Other research data were obtained
from the China Statistical Yearbook, provincial statistical yearbooks and the website of the
National Bureau of Statistics. Data processing and model regression were conducted using
Stata16.0 software.

3.3.1. Explained Variable

Since the carbon peak and carbon neutral target are limits on total carbon emissions, it
makes sense to take carbon emissions (CE) as the explained variable. Currently, the two
main methods applied to measure carbon emissions are the sectoral accounting method and
the apparent emissions accounting method. This study uses the apparent carbon emissions
data provided by CEADs for empirical analysis. The dynamic evolution and spatial pattern
of carbon emissions can be seen in Figure 1.
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First, the kernel density plot of carbon emissions (Figure 1a) shows that the center
of the kernel density curve has not shifted significantly, indicating that the overall level
of carbon emissions in China is relatively stable during the sample period. Second, the
wave height is decreasing, and the right tail is elongating, demonstrating that the spatial
gap in China’s carbon emissions is gradually widening. The spatial distribution of China’s
inter-provincial carbon emissions in 2011 and 2019 (Figure 1b,c) drawn by Arcgis10.7 also
shows a gradual increasing in the north, with a decreasing trend in the south. Meanwhile,
it can be observed that China’s carbon emissions show a characteristic of “high in the north
and low in the south”. This is consistent with the reality of dense heavy industrial locates
in the north.

3.3.2. Core Explanatory Variable

The core explanatory variable is the Digt. At present, relevant research has not yet
formed a unified standard for measuring the development of digital technology. Indicators
for measuring digital technology development can be divided into two main categories,
non-monetary type variables reflecting the intensity of use and monetary type variables
reflecting the degree of application [7]. This study considers the comprehensiveness,
accuracy and availability of data to construct a comprehensive index of digital technology
development (Digt) in terms of both the intensity of use and the degree of application
of digital technology. Among them, the indicators of digital technology usage intensity
include mobile phone penetration rate (number of mobile phone subscribers per 100 people),
internet penetration rate (number of internet users per 100 people), and the proportion of
employees in the information and communication industry in urban units; the indicators of
digital technology application degree include total post and telecommunications business
per capita and the digital financial inclusion index.

The entropy value method determines the weights based on the influence of the
relative change degree of each indicator on the system as a whole, which reduces the
influence of subjective factors in the process of weight determination and the possible
problem of multiple covariance among indicators and can reflect not only the differentiation
ability of indicators, but also the change of indicator weights over time. The entropy value
method was used to measure the comprehensive index of digital technology development
on the basis of determining the weights of each indicator. Figure 2 shows the dynamic
evolution and spatial pattern of digital technology development.

First, Figure 2a shows an overall rightward shift of the kernel density curve from
2011–2019, indicating that the level of digital technology development in China is in-
creasing. Second, the peak of the kernel density curve keeps decreasing, and the width
increases, indicating that the regional differences in digital technology development in
China are widening. These can be observed visually in the spatial distribution of China’s
inter-provincial digital technology development in 2011 and 2019 (Figure 2b,c) drawn by
Arcgis10.7. In addition, the level of digital technology development in China is highest in
the eastern coastal region, followed by the western region and lowest in the central region.
It is reasonable that the eastern coastal region of China has the highest level of digital
technology development, and it has the advantage of greater capital, policy and digital
infrastructure. The level of digital technology development in the western region has been
greatly enhanced. The superior natural conditions and policy support are possible reasons
for the good development of digital technology in the western region. Currently, the eight
national computing hubs and ten national data center clusters of China’s “East Digital West
Computing” strategy are all located in the eastern and western regions.
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3.3.3. Control Variables

Considering that there are many factors affecting carbon emissions, this paper in-
troduces some important control variables to ensure the accuracy of the research results.
The EKC curve suggests that carbon emissions may decrease when economic growth ex-
ceeds a certain inflection point. The level of economic development (eg) was measured
by regional GDP per capita. Technological innovation is a key factor in achieving green
development, and the level of technological innovation (ti) was measured by the intensity of
R&D investment reflecting the innovation process. Rapid urbanization is also an important
factor affecting environmental pollution. The level of urbanization (urb) was measured
by the share of urban year-end population in the total regional population. Foreign direct
investment is the use of capital by investors in one country for production or operations
in another country, and in the process, it also affects socio-economic activities and car-
bon emissions. Foreign direct investment (fdi) was measured by the amount of actual
foreign direct investment. There is a high correlation between industrial structure and
environmental pollution. The industrial structure (is) was measured by the share of value
added in the secondary industry in regional GDP. A rational energy mix will help to reduce
carbon emissions. However, China’s economic development still has a strong reliance on
traditional energy, and coal-based fossil energy is still the main source of carbon emissions.
The energy consumption structure (es) was measured by the share of coal consumption in
total energy consumption.

To avoid the effect of possible heteroskedasticity in the data, the data was logarithmi-
cally processed using Stata16.0 software. Table 1 shows the results of descriptive statistics
of the variables.
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Table 1. Descriptive statistics of the variables.

Variable Unit of Measurement Mean Std. Dev. Min Max

lnCE Million Tons 5.647 0.774 3.785 7.438
lnDigt −1.575 0.702 −4.169 −0.103
lneg RMB/Person 10.811 0.435 9.706 12.009
lnti Percent 0.308 0.595 −0.892 1.842

lnurb Percent 4.033 0.201 3.554 4.495
lnfdi Billion RMB 5.463 1.727 −1.220 9.259
lnis Percent 3.757 0.235 2.785 4.078
lnes Percent 4.081 0.570 0.573 5.169

4. Results and Discussion
4.1. Results of the Spatial Correlation Test

Stata16.0 software was used to calculate the global Moran index of carbon emissions
and digital technology development from 2011 to 2019 based on the adjacency spatial
weight matrix (bin), geographic distance spatial weight matrix (geo), and economic distance
spatial weight matrix (eco). From Table 2, the Moran s I index for carbon emissions and
digital technology development was shown to be always greater than 0 under bin matrix
and statistically significant at the 5% level.

Table 2. Carbon emissions and digital technology development index global Moran (2011–2019).

Year
Carbon Emissions Digital Technology Development Index

Bin Geo Eco Bin Geo Eco

2011 0.266 ***
(2.476)

0.200 ***
(2.484)

−0.015
(0.209)

0.248 ***
(2.502)

0.188 ***
(2.535)

0.413 ***
(5.166)

2012 0.253 ***
(2.378)

0.204 ***
(2.545)

0.003
(0.403)

0.240 ***
(2.385)

0.169 **
(2.289)

0.421 ***
(5.170)

2013 0.251 ***
(2.566)

0.212 ***
(2.862)

−0.046
(−0.130)

0.113 *
(1.285)

0.067
(1.141)

0.389 ***
(4.813)

2014 0.227 ***
(2.376)

0.197 ***
(2.714)

−0.033
(0.023)

0.155 **
(1.567)

0.048
(0.935)

0.365 ***
(4.559)

2015 0.231 ***
(2.359)

0.201 ***
(2.706)

−0.032
(0.030)

0.172 **
(1.785)

0.083 *
(1.310)

0.330 ***
(4.112)

2016 0.218 **
(2.212)

0.187 ***
(2.504)

−0.029
(0.060)

0.215 **
(2.136)

0.125 **
(1.759)

0.341 ***
(4.200)

2017 0.201 **
(2.093)

0.166 **
(2.302)

−0.030
(0.054)

0.233 **
(2.237)

0.116 *
(1.624)

0.307 ***
(3.732)

2018 0.182 **
(1.945)

0.167 ***
(2.333)

−0.007
(0.318)

0.185 **
(1.836)

0.083
(1.268)

0.256 ***
(3.171)

2019 0.172 **
(1.846)

0.161 **
(2.244)

0.007
(0.479)

0.215 **
(2.087)

0.122 **
(1.692)

0.238 ***
(2.975)

Notes: (i) z statistics are in parentheses. (ii) *, **, *** represent significance at 10%, 5%, and 1% level, respectively.

Further, Moran scatter plots were drawn to visualize the local spatial correlation of
carbon emissions and digital technology development. Figure 3 consists of four Moran
scatterplots showing the spatial heterogeneity of inter-provincial carbon emissions and
digital technology development in China in 2011 and 2019, respectively. The trend lines in
Figure 3 are all located in the first and third quadrants, indicating that carbon emissions
and digital technology development have significant spatial clustering characteristics.
Specifically, provinces with high (small) carbon emissions cluster together, and provinces
with high (low) levels of digital technology development cluster together. In summary,
the global Moran index and the Moran scatter plots indicate that carbon emissions and
digital technology development have a significant positive spatial correlation. Therefore, it
is necessary to construct a spatial econometric model for empirical analysis.
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4.2. Results of Spatial Econometric Model Selection

Ignoring the spatial correlation between variables, regression results using classical
econometric models may be biased [48]. In this paper, spatial econometric models were
conducted to explore the impact of digital technology development on carbon emissions.
Currently, there are three main spatial econometric models commonly used: the spatial
autoregressive model (SAR), spatial error model (SEM), and spatial Durbin model (SDM).
The spatial Durbin model includes the effects of both spatially lagged dependent variables
and spatially lagged independent variables, which is more broadly applied. First, the
Lagrange multiplier (LM) tests in Table 3 are all significant at the 1% level, meaning that
it is reasonable to construct a spatial econometric model. Second, both the LR likelihood
ratio test and the Wald test reject the original hypothesis at the 1% level of significance,
proving that the spatial Durbin model is therefore more suitable in this study. Finally, the
Hausman test rejects the original hypothesis at the 1% level, indicating that the fixed effects
are better than random effects. Based on the above tests, this research would use the fixed
effects dynamic spatial Durbin model to empirically test the impact of digital technology
development on carbon emissions.

Table 3. Diagnostic tests for spatial econometric models.

Test Statistic p-Value

LM—Spatial lag 135.873 0.000
Robust LM—Spatial lag 17.533 0.000

LM—Spatial error 143.120 0.000
Robust LM—Spatial error 24.781 0.000

LR—SDM—SLM 58.020 0.000
LR—SDM—SEM 57.960 0.000

Wald 27.190 0.000
Hausman 43.540 0.000
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4.3. Empirical Results on Time Lag Effects

Column (1)–column (4) in Table 4 present the estimation results of the static spatial
Durbin model and three dynamic spatial Durbin models. The regression coefficients of
digital technology development in columns (1)–(4) are all significantly negative at the
1% level. This indicates that digital technology development can effectively suppress
carbon emissions in Chinese provinces when spatial effects are considered. Meanwhile, the
regression coefficients of the time-lagged terms in columns (2) and (4) are positive at the 1%
level of significance. It can be inferred that carbon emissions have significant “time inertia”,
which is manifested as the “snowball effect”. The regression coefficients of the spatial and
temporal lags are significantly positive at the 5% level. Hence, the carbon emissions of the
previous period in the spatially related regions can suppress the carbon emissions of the
current period in the region, which is a “warning effect”.

Table 4. Results of parameter estimation for the spatial Durbin model.

Variable (1) (2) (3) (4) (5) (6) (7) (8)

CEt-1
0.668 ***
(0.046)

0.669 ***
(0.046)

0.737 ***
(0.062)

0.710 ***
(0.061)

W × CEt−1
−0.228 **

(0.147)
−0.266 **

(0.120)
−0.469 ***

(0.170)
−0.319 **

(0.148)

W × CE 0.041
(0.094)

0.017
(0.089)

0.036
(0.105)

0.054
(0.095)

0.058 *
(0.102)

0.019 *
(0.099)

0.043 *
(0.077)

0.058 **
(0.081)

W × Digt 0.278 ***
(0.056)

0.110 **
(0.058)

0.262 ***
(0.071)

0.115 **
(0.058)

0.063
(0.048)

0.054
(0.064)

0.064
(0.073)

0.059
(0.063)

Digt −0.235 ***
(0.047)

−0.071 ***
(0.050)

−0.161 ***
(0.061)

−0.064 ***
(0.049)

−0.287 **
(0.041)

−0.086 *
(0.050)

−0.170 **
(0.058)

−0.083 *
(0.049)

eg −0.110
(0.104)

−0.013
(0.080)

−0.126
(0.099)

−0.017
(0.080)

−0.079
(0.090)

0.015
(0.082)

−0.019
(0.095)

0.039
(0.081)

ti −0.051
(0.063)

0.116 **
(0.051)

−0.008
(0.062)

0.132 ***
(0.051)

0.061
(0.059)

0.064
(0.051)

0.084
(0.060)

0.093 *
(0.051)

urb 0.699 **
(0.312)

−0.336
(0.268)

0.239
(0.329)

−0.324
(0.266)

−0.264
(0.316)

−0.728 **
(0.318)

−0.721 **
(0.365)

−0.731 **
(0.313)

fdi 0.026 **
(0.013)

−0.001
(0.010)

0.027 **
(0.012)

0.001
(0.010)

0.021 *
(0.012)

−0.020 **
(0.010)

0.015
(0.011)

−0.016
(0.010)

is 0.222**
(0.103)

0.123
(0.087)

0.345 ***
(0.106)

0.123
(0.086)

0.308 ***
(0.103)

−0.017
(0.096)

0.224 **
(0.108)

−0.032
(0.095)

es 0.267 ***
(0.036)

0.099 ***
(0.030)

0.240 ***
(0.035)

0.102 ***
(0.029)

0.197 ***
(0.033)

0.091 ***
(0.031)

0.215 ***
(0.034)

0.106 ***
(0.031)

sigma2_e 0.006 ***
(0.001)

0.004 ***
(0.000)

0.006 ***
(0.000)

0.004 ***
(0.000)

0.004 ***
(0.000)

0.003 ***
(0.000)

0.003 ***
(0.000)

0.002 ***
(0.000)

R-squared 0.393 0.574 0.357 0.580 0.338 0.505 0.370 0.521
Log-likelihood 299.778 340.246 292.650 341.709 287.794 289.085 269.943 291.790
Observations 270 240 240 240 210 180 180 180

Notes: (i) standard errors are in parentheses. (ii) *, **, *** represent significance at 10%, 5%, and 1% level, respectively.

However, the spatial autoregressive coefficients are not statistically significant; the
spatial correlation of carbon emissions is therefore insignificant, which is inconsistent with
the results of the spatial correlation test. This phenomenon may be caused by the problem
of identification of the spatial Durbin model itself and the problem of endogeneity of the
model due to the two-way causality between variables.

This study re-runs the model regression by replacing the core explanatory variable
with the digital technology development index with a two-period lag. Then, the above
issues can be addressed and the time-lagged impact of digital technology development on
carbon emissions can be explored. The results in Table 4 column (5)–column (8) demonstrate
that the spatial autoregressive coefficient is significantly positive, suggesting that carbon
emissions exhibit a significant spatial correlation. The result is consistent with the findings
of Kang et al. [49] and Zhang et al. [50]. More importantly, the impact of digital technology
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development on carbon emissions in China does have a time lag effect. The absolute values
of the regression coefficients of the two lagged periods of digital technology development
in column (5)–column (8) in Table 4 increase compared to column (1)–column (4), indicating
that there is a trend of increasing marginal effect of the inhibitory effect of digital technology
development on carbon emissions.

4.4. Empirical Results of Spatial Spillover Effects

According to the theory of Lesage and Pace [51], simple point estimates cannot unbi-
asedly capture the impact of digital technology development on carbon emissions when
carbon emissions are significantly spatially correlated. In this paper, we decompose the
impact into direct, indirect and total effects based on the micro-bias method. The direct
effect is the local impact of digital technology development on carbon emissions in the
region, the indirect effect is the impact of digital technology development in spatially corre-
lated regions on carbon emissions in the region, and the total effect is the overall impact
of digital technology development in all regions on carbon emissions in the region. The
direct, indirect and total effects of the dynamic spatial Durbin model can be decomposed
into short-term and long-term effects.

Table 5 gives the results of the decomposition of the spatial spillover effects of the
impact of digital technology development on carbon emissions. Column (1)–column (8)
have significantly negative direct effects and positive indirect effects on carbon emissions for
both short-term and long-term effects of digital technology development, indicating that the
empirical test results of this study are robust. Additionally noting the time lagged shocks
of the impact of digital technology development on carbon emissions, column (5)–column
(8) compared to column (1)–column (4), the direct inhibitory effect of digital technology
development on carbon emissions in the region is enhanced to different degrees in both the
short and long term. The indirect promotion effect of digital technology development in
spatially linked regions is weakened to different degrees in both the short and long term,
and all regression coefficients become insignificant.

Table 5. Results of the decomposition of spatial spillover effects.

Effect (1) (2) (3) (4) (5) (6) (7) (8)

Short-term effect

direct effect −0.072 **
(0.047)

−0.162 ***
(0.058)

−0.057 **
(0.046)

−0.087 **
(0.047)

−0.171 **
(0.055)

−0.076 *
(0.046)

indirect effect 0.114 **
(0.057)

0.270 ***
(0.071)

0.114 *
(0.061)

0.053
(0.067)

0.063
(0.075)

0.051
(0.069)

aggregate effect 0.042
(0.040)

0.108 **
(0.052)

0.057
(0.043)

−0.034
(0.061)

−0.107
(0.067)

−0.024
(0.061)

Long-term effect

direct effect −0.231 ***
(0.048)

−0.215 **
(0.145)

−0.177 ***
(0.061)

−0.245 **
(0.183)

−0.288 **
(0.044)

−0.374
(1.157)

−0.181 **
(0.061)

−0.322 *
(0.222)

indirect effect 0.275 ***
(0.058)

0.358 *
(0.196)

0.264 ***
(0.069)

0.347 *
(0.201)

0.266
(0.049)

0.276
(6.472)

0.090
(0.070)

0.276
(0.249)

aggregate effect 0.043
(0.037)

0.143
(0.163)

0.087 **
(0.042)

0.102
(0.078)

−0.022
(0.029)

−0.098
(6.585)

−0.091
(0.044)

−0.046
(0.123)

Notes: (i) standard errors are in parentheses. (ii) *, **, *** represent significance at 10%, 5%, and 1% level, respectively.

It can be concluded that digital technology development has a significant dampening
effect on carbon emissions in the region, and the long-term dampening effect is significantly
strengthened. This is consistent with the previous empirical results on the time lag effect.
The digital technology development in spatially connected regions has a positive spatial
spillover effect on carbon emissions in the region. Our results are inconsistent with the
findings of Shahnazi and Shabani [42], which can be explained mainly from two aspects.

On the one hand, the development of digital technology has driven industrial change
marked by digital industrialization and digitization of industries. Regions with higher lev-
els of digital technology development usually choose to move out high-energy-consuming
and high-emission industries when carrying out industrial restructuring [52], achieving
industrial upgrading while also solving energy and environmental problems. However,
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the undertaking of these high-energy and high-emission industries by spatially connected
regions is inevitably not conducive to their low-carbon development. Therefore, as men-
tioned above, China’s long-standing unbalanced economic development pattern has not
only exacerbated the spatial disparity in digital technology development, but has also
created a spatial pattern of “high in the north and low in the south” in carbon emissions.
Compared to the technology dividend caused by technology spillovers in the environ-
mental field, the environmental pollution problem caused by taking over high-energy and
high-emission industries is more serious.

On the other hand, digital technology development is highly significantly spatially
correlated in terms of economic distance, and the spillover effects of emerging technologies
depend heavily on the learning, imitation and absorption capabilities of the technology
absorbers [23]. The empirical test of this study is partly carried out based on the neighboring
spatial weight matrix, and the uneven economic and social development of China at the
geospatial scale makes digital technology not synergistic between spatially connected
regions. Therefore, insignificant technology penetration leads to the positive externality
effect of digital technology development on energy saving, and emission reduction in other
regions is not reflected.

5. Conclusions and Policy Implications
5.1. Conclusions

Digital technology development in the digital era is an important pathway to reaching
the goal of carbon peaking and carbon neutrality. However, current studies on the impact of
digital technology development on carbon emissions rarely take into account the time and
spatial effect. This study is based on inter-provincial panel data in China from 2011–2019.
Firstly, the entropy method was used to comprehensively and accurately measure the
comprehensive index of digital technology development. Secondly, the temporal evolution
and spatial correlation of carbon emissions and digital technology development were
explored using kernel density analysis and exploratory spatial data analysis methods.
Finally, the time lag effect and spatial spillover effect of digital technology development on
carbon emissions were examined using dynamic spatial Durbin model.

The main conclusions are as follows: (1) China’s carbon emissions show a spatial
characteristic of “high in the north and low in the south”, while its digital technology
development shows a spatial layout of decreasing in the east, west and middle. In addition,
both carbon emissions and digital technology development have a significant positive
spatial correlation. (2) In both the short and long term, digital technology development has
a significant positive impact on the reduction of carbon emissions. (3) The test results of the
time lag effect show that the long-term inhibitory effect of digital technology development
on carbon emissions is more obvious than the short-term effect. (4) The test results of the
spatial spillover effect distinguish that the digital technology development of neighboring
regions did not have a positive spatial spillover effect on the reduction of carbon emis-
sions in the region. This is different from the conclusions of existing studies that digital
technology development helps reduce carbon emissions in neighboring regions.

5.2. Policy Implications

First, the role of digital technology as a new driving force for energy conservation and
emission reduction should be effectively brought into play. Furthermore, the penetration
and application of digital technology in environmental governance should be accelerated.
The government should strengthen the development of basic, cutting-edge and applicable
technologies; use digital technology to empower various industries to reduce carbon; and
promote the enhancement of innovation using digital technology to manage carbon and
reduce carbon. Second, considering the widening spatial gap in digital technology devel-
opment, local governments must implement dynamic and differentiated digital technology
development strategies based on local conditions. The central and western provinces
of China should seize the opportunity of the “East Digital West Computing“ project to
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vigorously develop cutting-edge technologies and promote a more ecological development
model of digital industrialization and industrial digitization. Third, digital technology will
function more significantly in supporting green and sustainable development in the future.
The government should lay out the digital technology supply chain in advance in its de-
velopment planning and increase R&D investment of cloud computing, big data, artificial
intelligence, etc. Finally, the lack of positive impact of digital technology development
on reducing carbon emissions in neighboring regions shows the importance of regional
synergy mechanisms. Carbon reduction policies should take into account the spatial bound-
aries of administrative regions, while based on the actual geographical location, resource
endowment, economic level, and strategic positioning characteristics of each province.

Notably, the statistical limitations of indicators related to digital technology have
resulted in a sample period of only nine years for this study and even fewer years for the
analysis of time effects. Therefore, the findings of this study are significantly limited. In the
future, as more statistics become available, it will be possible to investigate the spatial and
temporal effects of digital technology development on carbon emissions in greater depth.
In addition, exploring the relationship between digital technology and carbon emissions at
the city and even enterprise level is an important direction for further research, which will
help to capture the key role of digital technology in environmental governance in a more
detailed and microscopic way.
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