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Abstract: The world is entering an era of awareness of the preservation of natural energy sustainability.
Therefore, electric vehicles (EVs) have become a popular alternative in today’s transportation system
as they have zero emissions, save energy, and reduce pollution. One of the most significant problems
with EVs is an inadequate charging infrastructure and spatially and temporally uneven charging
demands. As such, EV drivers in many large cities frequently struggle to find suitable charging
locations. Furthermore, the recent emergence of deep reinforcement learning has shown great
promise for improving the charging experience in a variety of ways over the long term. In this
paper, a Spatio-Temporal Multi-Agent Reinforcement Learning (STMARL) (Master) framework is
proposed for intelligently public-accessible charging stations, taking into account several long-term
spatio-temporal parameters. When compared to a random selection recommendation system, the
experimental results demonstrate that an STMARL (master) framework has a long-term goal of
lowering the overall charging wait time (CWT), average charging price (CP), and charging failure
rate (CFR) of EVs.

Keywords: electric vehicle; intelligent recommendation system; electronic vehicle charging; smart
tourism; destination; smart city

1. Introduction

In the digital transformation age, technological changes have created disruptions
in all dimensions with the use of advanced information technology, especially artificial
intelligence (AI) that has been widely used in every industry worldwide. More recently,
electric vehicles (EVs) have been introduced and have received increased attention. This
has resulted in eco-friendly cars, which various countries have been encouraging the use
of as new modes of transportation, thus bringing many advantages [1], Due to their zero
emissions, electric vehicles are considered environmentally benign. They are also less
expensive to operate than conventional gasoline engines and have smooth operation con-
trols [1,2]. Furthermore, it is estimated that over 35 million EVs will be in use worldwide
by 2022 [3]. Nevertheless, a high infiltration by EVs is a significant issue that affects the
electricity-distribution system, leading to problems such as power-quality degradation;
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increased line damming; distribution transformer failure; increased distortion; and a higher
fault current [3–5], which is one of the efficient approaches to integrated local power gener-
ation such as the renewable energy source (RESs) of EVs’ charging infrastructure [3,6–8].
However, the critical issue that the limitation of EVs is their battery capacity the driver can
be awareness [9]. Therefore, the locations of EV charging stations should be conveniently
placed and should supply fast charging (between 20 and 30 min) in order to improve the
quality of service and good experience of using EVs [10]. EV drivers can now choose the
most convenient and appropriate station to use based on their preferences, thanks to the
advancement of charging-station networking [9,10]. The qualities of a charging station,
such as its position and size, would influence an EV driver’s charging behavior with respect
to making the best decisions, which would also have an impact on the charging station’s
performance (such as the length of the queues) [9]. It is crucial to investigate how the
performance of the charging station and the charging behavior of EV drivers are related to
one another. Moreover, intelligent recommendations for EV charging stations in a tourism
city destination should be introduced to support smart tourism [9,11].

The concepts of smart mobility and smart transportation are currently linked to the
concept of sustainable tourism as they affect issues that are related to the local economies
as well as the environment [12]. Moreover, the traditional transport system in tourism
produces the most externalities, with a negative impact on air and noise pollution as well
as traffic congestion [12,13]. Overcrowding on streets, pavement, and public transport, as
well as heavy traffic, are also recognized as important negative factors for the externality
of tourism [12,14]. To reduce the negative impacts and serve tourists more efficiently,
innovative, mobility-related business models and services that encompass electric vehicles
can contribute significantly [12]. Moreover, the seasonality of the transport demand in
touristic areas results in traffic-overcrowding phenomena and extensive air pollution. At
the same time, tourist areas must serve the particular needs of tourists in order to be
competitive and increase their markets. EV cars and services can contribute to tourism
and tourist destinations by reducing the negative impacts of demand and serving tourists
efficiently.

A major problem with using EVs is that drivers still struggle to charge their vehicles
due to the relative lack of filling stations and lengthy wait times. Despite the expansion of
the number of EV charging stations, the publicly accessible charging network is insufficient
to meet the rapidly expanding, on-demand charging requirement. Undoubtedly, such a
poor charging experience increases undesirable charging costs and inefficiency, and could
even worsen range anxiety among EV drivers, which hinders the spread of EVs. Therefore,
it is appealing to offer intelligent charging recommendations to enhance the experience of
charging for EV drivers from a variety of perspectives, such as minimizing the wait time
for charging (CWT), decreasing the cost of charging (CP) and optimizing the failure rate of
charging (CFR) to enhance the effectiveness of the global charging network.

The trend of using EVs is increasing significantly worldwide due to their numerous
benefits, such as cost savings, preserving the environment, improving traffic in smart cities,
and increased user satisfaction, etc. EVs are becoming popular, and the number of users in
Thailand is increasing.

The Thai government’s EV promotion highlights the importance of EV charging
stations in many countries. Thailand is a country that has just introduced EV cars to the
market, and EV charging stations can be found throughout the capital Bangkok, in the major
provinces of Chiang Mai, Phuket, and Nakhon Ratchasima, as well as in tourist destinations
such as Pattaya and Hua Hin [15]. Additionally, many operators have developed their own
smartphone applications that allow EV users to locate, reserve, and navigate to nearby
charging stations. These applications include iEA Anywhere, MEA EV, Pumpcharge, and
EVolt. However, there is not a single platform that allows users to use the charging ports at
any station at once. Customers of electric vehicles (EVs) claimed that “stations with DC
fast chargers may be near the offices of PEA, EGAT, or MEA, and their placements demand
a diversion from the route plan [16].”
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Despite the fact that many governments are expanding the publicly accessible charging
network to suit the constantly increasing need for on-demand charging, EV drivers are
still having difficulty charging their vehicles due to overcrowded stations and high wait
times [17]. Unquestionably, a poor charging experience increases unfavorable charging
costs and inefficiencies, and may even exacerbate EV drivers’ range anxiety, preventing
the future adoption of EVs. To improve the efficiency of the global charging network,
it is tempting to offer intelligent charging recommendations to enhance the EV driver’s
charging experience in a number of ways, including lowering the charging price (CP),
lowering the charging wait time (CWT), and maximizing the charging failure rate (CFR).
The charging recommendation problem differs from the standard recommendation tasks
in two aspects [18,19]. First, the number of charging stations in each geographic location
may be restricted, resulting in a possible resource rivalry among EVs. Second, depending
on the battery capacity and charging power, the battery recharging process may prevent
the charging place from being used for several hours. As a result, the current proposal
may have an impact on future EV charging recommendations, as well as the worldwide
charging network in the long run.

Although previous studies have provided insight into the impact of EVs in Thailand, a
disruptive technology transition would require new research studies to provide suggestions
and recommendations in accordance with a rapid transition. In the case of charging stations,
EVs support sustainability in smart tourism cities.

Thailand aims to become the main electric vehicle hub in Southeast Asia by 2030.
The current government operate and develop strategy during the nascent stage of EV
adoption [20]. The first major challenges for EVs in supporting tourism include high
investment costs and the high price of selling electricity, especially considering that the
number of EV users in Thailand is still very low [21]. Second, 70% of charging stations are
in central areas such as Bangkok, Nonthaburi, and Samut Prakan [18]. Moreover, charging-
station usage is divided into three types: nighttime users, daytime users, and on-the-go
users. The EV infrastructure in Thailand is not sufficient for purely electric vehicles.

To bridge the gap, the aim of this paper is to study the Spatio-Temporal Multi-Agent
Reinforcement Learning (STMARL) (Master) framework for an intelligent EV-charging
recommendation system for a smart-tourism-city case study in Chiang Mai, Thailand. The
researchers evaluated the EV-charging recommendation system based on the traditional,
random-selected recommendation system and a proposed recommendation system based
on the STMARL (Master) algorithm. This was carried out by building a multi-agent actor-
critic architecture that uses decentralized execution and centralized training to test on a
simulation using real-world EV charging station data in Chiang Mai, a smart tourism city
in Thailand. The results showed that the model outperformed the competition when a
comparison between four indicators, MCWT, MCP, TSF, and CFR, was conducted. The
core contribution of this paper is to apply the Multi-Agent Spatio-Temporal Reinforcement
Learning (Master) framework for intelligent charging recommendations. The recommended
EVs were used to resolve charging problems as a MARL task; MARL was used to provide
recommendations for multi-objective intelligent charging stations. This paper is composed
of an introduction, a literature review, an outline of the methodology, results, discussion,
and a final conclusion.

2. Literature Review
2.1. Electric Vehicles (EVs)

Currently, electric vehicles (EVs) are one of the most energy-efficient vehicle technolo-
gies available and have the greatest potential for lowering energy usage. The history of EVs
is extensive. However, there has been a renewed interest in EVs over the last two decades
owing to environmental issues such as pollution and global warming, as well as economic
problems such as a reliance on foreign fossil fuels. An EV emits fewer greenhouse gases
(GHGs) across its entire life cycle, is quieter, and has no tailpipe emissions. All of these
problems are driving the development of EVs [11,22,23]. There is also a variety of EVs
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currently available. The pure EV, also known as a plug-in electric vehicle (PEV), has an
electric motor that is driven by electricity from a grid-connected battery. The hybrid electric
vehicle (HEV) is the second type, which combines an internal combustion engine (ICE) and
an electric motor to charge the battery. The HEV is not designed to use the power grid
to recharge its battery. The plug-in hybrid electric vehicle (PHEV), which can be charged
externally from the power grid and combines an electric motor with energy from a battery,
is the third type. In addition, there is frequently a second engine, such as an ICE, that runs
on a different fuel. HEV and PHEV technologies allow for smaller battery packs while
preserving the same range [24].

2.2. Trend of Using EVs

To help slow down global warming, numerous governments and international or-
ganizations have promoted the use of EVs. The International Energy Agency (IEA) and
the Clean Energy Ministry (CEM) created the “Electric Vehicles Initiative (EVI),” a policy
platform with thirteen country partners, in 2010 to hasten the electrification of the trans-
portation sector [25]. Since 2010, the adoption of electric vehicles has grown exponentially.
The number of electric vehicles worldwide increased from 17,000 to 7.2 million in 2019 [26].
Out of all electric vehicles, 34 million (47%) come from China. Approximately 1.7 million
(or 25%) EVs are produced in Europe, compared to 1.5 million (20%) in the US [26]. As a
result, EVs are growing in acceptance everywhere. Although there are direct incentives for
EV users (such as tax breaks, tax credits, and subsidies for EV purchases), the significance
of EV-charging infrastructure cannot be overstated [27–29]. According to Lim et al. [29]
and Melliger [30], EV users may experience “range stress,” or anxiety, as a result of their
EV battery’s low capacity and the lack of charging stations along their travel routes. In
order to alleviate EV range anxiety, governments have developed regulations and financial
incentives to stimulateinvestment in charging stations. According to China’s goal for its
EV infrastructure, there should be 12,000 centrally located charging stations and 480,000
distributed charging locations by 2020 [31]. With the aim of having seven million charging
stations by 2030, France established an energy transition law for green growth in 2015 [32].

2.3. Elctric Vehicle Charging Station Recommendation Systems

Due to their low carbon emissions and energy efficiency, EVs have become a popular al-
ternative in the modern transportation system in recent years. Some efforts have been under-
taken to recommend charging stations for EVs [33–41]. Most of the research [33,34,36,39,40]
has concentrated on advising EV drivers on where to find charging stations in order to
save time. Guo et al. [40], for example, proposed using a game-theory technique to pro-
vide charging station recommendations in order to save travel and queuing time [42–45].
Additionally, Wang et al. [46] developed a fairness-aware recommendation system to cut
down on idle time based on fairness requirements. In order to facilitate site recommen-
dations, Cao et al. [39] integrated the charging reservation data into a vehicle-to-vehicle
system. A different area of study [41,43–46] looked at how to manage more challenging
situations, particularly when commercial benefits were taken into account. This study
was not limited to the charging site recommendation issue. In order to meet shifting con-
sumer demand, Yuan et al. [43] proposed a charging method that allowed an electric taxi
to be partially charged. To provide charging and relocation suggestions for electric taxi
drivers, Wang et al. [43] developed a multi-agent, mean-field hierarchical reinforcement
learning framework by treating each electric taxi as a separate agent. Through the use
of deep reinforcement learning—which had already become extensively used to address
problems involving sequential decision-making—this maximized the cumulative rewards
of the number of served orders. However, defining each EV driver as an agent was not
appropriate for our task because the majority of charging requests in our work were ad-hoc
and from nonrepetitive drivers.
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2.4. Development of Electric Vehicles in Smart Tourism Cities

In recent years, electric vehicles (EVs) have become a popular alternative in the modern
transportation system due to their low carbon emissions and clean energy efficiency. Several
tourism destinations around the world have started to implement smart city projects with
the aim of improving the standard of living of their citizens, as well as their sustainability.
In order to support smart tourism sustainability, EVs have become an increasingly popular
alternative for public transport and shared mobility, etc. [44]. As has been presented
in previous literature, there are various types of EVs. Pure EVs have an electric motor
that is driven by electricity from a grid-connected battery, while a hybrid electric vehicle
(HEV) combines an internal combustion engine and electric motor with a battery. PHEV
vehicles may also have a second engine, such as an ICE, which runs on a different fuel [24].
However, research has shown that EV buyers may experience “range anxiety”. They may
be concerned about the limited capacity of their batteries and the availability of charging
stations on their driving routes [45,46]. To address this problem, government policies and
incentives have been developed in many countries to promote investment in charging
stations for electric vehicles (EVs). In 2015, France enacted a law on energy transition for
green growth, and it aims to have 7 million charging points by 2030 [47]. Meanwhile, China
set a vision for its EV charging infrastructure, stating that there would be 12,000 centralized
charging stations and 480,000 distributed charging points by 2020. Furthermore, the study
of the development of electric vehicle (EV) charging stations in Thailand between 2015
and 2020 indicated that the high upfront investment costs, small number of EV users, and
high electricity prices make the operators “wait-and-see.” Moreover, charging station usage
is divided into three types: nighttime users, daytime users, and on-the-go users. The EV
infrastructure in Thailand is not sufficient for purely electric vehicles. The government has
tried to address the constraints by setting up a national EV policy committee to accelerate
EV adoption and EV charging stations by 2030 [25]. However, more efforts are needed to
facilitate the charging process as well as to improve batteries. Currently, researchers are
working on improved battery technologies to increase driving range and decrease charging
time, weight, and cost. These factors will ultimately determine the future of electric vehicles
(EVs) in the world [47].

2.5. Spatio-Temporal Multi-Agent Reinforcement Learning (STMARL) (Master)

In order to resolve the EV-charging recommendation problem as a Multi-Agent Rein-
forcement Learning (MARL) job, the Spatio-Temporal Multi-Agent Reinforcement Learning
(STMARL) (Master) method was created. Multiple agents are involved in MARL, a novel
subfield of reinforcement learning. Additionally, it assumes that rather than using tradi-
tional reinforcement learning, agents will learn to cooperate and compete with one another.
Learning agents individually is the easiest way to implement a multi-agent system [48–50].
The independent actors, on the other hand, are unable to coordinate their actions and hence
fail to establish intricate cooperation [51–53]. In addition, learning communication across
numerous agents is a natural way to create agent collaboration [53–57]. However, due to the
massive volume of data transferred, such systems always result in a high communication
overhead. Alternatively, several works [57–59] have made use of a centralized-training,
decentralized-execution architecture to achieve agent coordination and cooperation. In a
large-scale agent system, the advantage of such methods is that the agents can perform
decentralized execution without engaging in any other agents’ knowledge, making them
lightweight and fault-tolerant. Additionally, a few studies have successfully used MARL
for a variety of intelligent transportation tasks in recent years. For example, the MARL
algorithm was used by Wang et al. [60] and Wei et al. [61] for cooperative traffic signal regu-
lation. Likewise, Jin et al. [62], Li et al. [63], Lin et al. [64], and Zhou et al. [65] used MARL to
optimize the long-term benefits of a large-scale ride-hailing business. MARL has also been
employed for the repositioning of shared bikes [66] and the prompt scheduling of delivery
services [67,68]. However, we contend that, because our work is a recommendation, it



Sustainability 2023, 15, 455 6 of 18

differs fundamentally from the aforementioned applications and that the aforementioned
approaches cannot be directly applied to our issue.

In multi-agent reinforcement learning, the agent is the component that decides what
action to take. To make this decision, the agent may use any observation from the envi-
ronment as well as any internal rules that it has. Those internal rules can be anything, but
in reinforcement learning it is typically expected that the environment will provide the
current state and that the state will have the Markov property. It processes that state using
a policy function π(a|s)π(a|s) that decides what action to take. Furthermore, in reinforce-
ment learning, we usually care about how to handle a reward signal (received from the
environment) and will optimize the agent to maximize the expected reward in the future.
To accomplish this, the agent will keep some data that is influenced by previous rewards
and use it to build a better policy. The boundary of agent and environment is usually
considered to be very close to the abstract decision-making unit, which is an intriguing
aspect of the definition of an agent.

2.6. Smart Tourism City

Innovation and information technology are the hallmarks of a smart city, while virtual
cities—which is the notion of a smart city—relate to a city with physical qualities and
complex social and digital aspects by focusing on innovation and information technologies,
respectively [69]. Moreover, a smart tourism city is a new component of utilizing infor-
mation technology to support the tourism industry in the city [69,70]. The Chiang Mai
smart city was developed in 2017 to create smart agriculture, a smart economy, smart safety,
smart health, and smart tourism. In particular, the policy of smart tourism implements
information and communications technology (ICT) infrastructure with the aim to support
and serve the tourism industry of the country. Moreover, Chiang Mai is a smart tourism
destination because tourists who travel within the destination use infrastructure, resources,
and utilities that need to be shared with the local population. If the city has technology
to support good living, there would be applications that could feed useful information to
people in the area.

3. Methodology

In this section, we discuss a few crucial definitions and the EV-charging recommen-
dation problem. We define the charge request by treating the activity of each day. When
looking at a set of N charging stations C = {c1, c2, . . . , cN}, this request for a charge is
described in the first definition as the tth request (i.e., step t) of a day with qt = lt, Tt, and Tc
t. In particular, the terms qt and Tt refer to the current location, the real-world time of step t,
and the charge request completion time, respectively. When a charging request completes
the charging operation or gives up, we call it done (i.e., charging failure). This also refers
to |Q| as the cardinality of Q. The use of qt to signify the comparable EV of the qt inter-
changeably comprises the charging waiting time (CWT) that is calculated by multiplying
the travel time from the charging request location lt to the target charging station c I by
the amount of time needed to wait in line at c I until the charging request is finished. The
charging price (CP) is calculated by the charge price using the unit price per kilowatt-hour
(kWh). The cost of electricity and the service charge are typically combined to create the
charging price. The percentage of charging requests that accepted our recommendation
but did not complete the transaction as opposed to the total number of charging requests
that did so is known as the charging failure rate (CFR). A sample solution for EV charging
as follows: consider a day’s worth of charging requests; our task is to match each request
with the best charging station, or rct, in order to reduce the total CWT over the long term
and average the CP and CFR for the qt Q who accept our recommendation. Finally, the
limitation of this method (Multi-Agent Reinforcement Learning: STMARL) that it is stable
when using a function approximation with a policy that must be implement.
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3.1. Electric Vehicles (EVs) in Thailand

In Thailand, EVs have recently been proposed and are becoming popular; therefore,
the government is also keen to increase the use of EVs and to build an EV manufacturing
industry. As a result, the Thailand Board of Investment has offered a number of incentives
to entice foreign direct investment in the EV industry, including a zero-percent import
charge on EV-related machinery and tax benefits lasting up to eight years. A pilot project to
construct charging stations and provide funding to support the installation of 150 charging
stations for both public and private businesses has been established by the Ministry of
Energy and the Electric Vehicle Association of Thailand (EVAT) in terms of EV charging
infrastructure. Thailand’s number of charging stations has continuously expanded since
2015, reaching 2285 in September 2021 [33]. Moreover, the Thai government has attempted
to solve the EV-related issues by creating the National Electric Vehicle Policy Committee to
encourage the use of EVs and the construction of charging stations. The Committee also
established a reduced and fixed price for power for charging stations [20,30].

Chiang Mai is Thailand’s second largest province. It is situated in the country’s
Northern area and is a business and cultural center with a population density of 1533
people/km2 [30]. Additionally, Chiang Mai is a fascinating travel destination. Tourists in-
flate the population of the main city area, thus necessitating an efficient mass-transportation
infrastructure. Regarding the government’s EV promotion initiative, Bangkok and other
important regions including Chiang Mai, Phuket, and Nakhon Ratchasima all have EV
charging stations [20]. Chiang Mai has also been selected as the research location for a pilot
study for other projects. GridWhiz assisted PEA-Encom with its EV charging operation
and took part in the Chiang Mai electric tuk-tuk project. This start-up was founded in 2013
and created the pump-charge EV-charging-management software, which could discover
and reserve charging outlets as well as guide EV users to appropriate charging stations [33].
The second start-up was Evolt, which made an effort to install EV chargers in locations such
as government and business buildings, colleges, retail centers, and residences. Whizdom
101, Thammasat University, and the Department of Industrial Promotion (in Bangkok,
Chiang Mai, and Khon Kaen) are some of their charging stations [34]. Evolt also created its
own charging station locator and reservation application. They give registered users a free
charge to encourage them to use their charging stations.

3.2. Research Framework

There are two ways that the charging recommendation challenge is different from
conventional recommendation jobs. First, there may be a shortage of charging stations
in a particular area, creating rivalry for EV resources. Second, the battery-recharging
method may restrict the charging spot from being used for several hours, depending on
the battery capacity and charging power. As a result, the current idea might have an effect
on recommendations for EV charging in the future and, eventually, the global charging
network. The second recommendation system in this study was implemented by applying
MARL, which is known as the STMARL (Master) framework, for an intelligent charging
recommendation for a smart tourism city. The first recommendation system in this study
was implemented by random selection, which was a traditional method. Furthermore, the
current development of deep reinforcement learning has great potential for the long-term
improvement of the charging experience in a number of ways. Four parameters—the
mean charging wait time (MCWT), mean charging price (MCP), total saving fee (TSF), and
charging failure rate (CFR)—that could improve the effectiveness of the global charging
network were examined between two random selection algorithms and a master algorithm.
The research framework is displayed in Figure 1.
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Figure 1. Research framework.

The EV-charging recommendation problem differs from conventional recommenda-
tions. First, there may be a shortage of charging stations in the target location, which
could lead to EVs competing for limited spots and other resources. Second, the battery
recharging process may obstruct the charging place for several hours depending on the
battery capacity and charging power. As a result, the current recommendation might affect
suggestions for EV charging in the future and have a long-term impact on the world’s
charging infrastructure.

In the past, certain efforts were made to recommend the best charging station for
the current EV driver for each step of a single objective, such as minimizing the overall
CWT. From a global viewpoint, however, such an approach ignores the long-term conflict
between the space-constrained charging capacity and the spatio-temporally unbalanced
charging demands, which results in less-than-ideal recommendations (e.g., longer overall
CWTs and higher CFRs). Recent studies on order dispatching for ride-hailing and shared
bike rebalancing demonstrate the enormous benefits of reinforcement learning (RL) in
improving sequential decision problems in a dynamic environment. The agent in RL
learns the strategy to obtain the overall, ideal, long-term reward by interacting with the
environment. Consequently, it can enhance RL-based charging suggestions with long-term
objectives like lowering the total CWT, the average CP, and the CFR.

For the EV charging recommendation task, the researchers described the concept of
the MASTER Algorithm. The agent involved each charging station as an individual agent.
Each agent would make timely recommendation decisions for a sequence of charging
requests that would be constant throughout the day with multiple long-term optimization
goals.

The observation of the agent was a combination of the index of the real-world time,
the number of current available charging spots, the number of imminent charging requests
(future demand), the charging power, the estimated time of arrival (ETA) at the location,
and the CP at the next ET. Each agent would make timely recommendation decisions
for a sequence of charging requests that would be constant throughout the day with
multiple long-term optimization goals. In our MASTER Algorithm, we provided a reward-
settlement mechanism (i.e., incentives were returned after completing a billing request).
The multi-agent actor–critic system was developed with a centralized attentive critic for
learning deterministic rules to encourage the agents to offer recommendations together.
The goal of the work on recommended electric vehicle charging was to concurrently lower
the total CWT, average CP, and CFR.
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4. Results

The researcher put the Master to the test on the data sets in Chiang Mai. The informa-
tion on the charge requests was gathered using the Google Maps API. Grids of 1 km× 1 km
were used to measure the total number of potential 10-min charging requests in the vicin-
ity. The station was in Chiang Mai, and there were eight nearby grids in addition to an
anticipated future demand for charging stations. The first ten days of the data were used
for training, the following three days for validation, and the final five days for testing. All
of the real-world data were put into an EV-charging recommendation simulator for the
experiment. All tests were performed on an Intel(R) I5 processor clocked at 2.50 GHz. We
chose d = 30 min, temperature = 0.2 for the updated weight modification, and discount
factor = 0.99 for learning all the RL algorithms while charging the competition modeling.
Three linear network layers with 64 and hidden levels that made use of the ReLU activation
function were present in both the actor and critic networks. The target network’s soft
update was set at 0.001, the replay buffer size was 1000, and the batch size was 32. We
utilized the Adam optimizer for all programmable algorithms to train our model with the
learning rate set to 50,000. We adjusted each baseline’s major hyperparameters using a grid
search methodology. With the best iteration chosen by the validation set for testing after
fifty iterations, the RL algorithms were trained to recommend the top ten nearby charging
stations.

Moreover, the researchers developed four indicators to assess how well our strategy
and recommendation systems performed. Qa was defined as the number of charge requests
that agreed to our suggestions. We defined Qs ⊆ Qa as the set of charging requests that
accepted our advice and were charged successfully. The cardinalities of Qa and Qs were
|Qa| and |Qs|, respectively. In order to assess the overall charging wait time of our
recommendations, we also defined the mean charging wait time (MCWT) over all charging
requests qt ∈ Qa (Equation (1)) [71].

MCWT =
∑ qt ∈ QaCWT(qt)

|Qa| (1)

The researchers calculated the mean charge price (MCP) over all charging requests,
where CWT (qt) represented the charging request’s wait time (in minutes). We determined
the mean charging price (MCP) over all the charging requests in order to assess the average
charging price qt ∈ Qs (Equation (2)):

MCP =
∑ qt ∈ QsCP(qt)

|Qs| (2)

where CP (qt) was the charge price of qt (in CNY).
By comparing our recommendation algorithm with the ground-truth billing activities,

we developed the total saving fee (TSF) to evaluate the average of total fees saved every
day.

RCP (qt) represented the real-world charging action charging rate, CQ (qt) represented
the qt electric charging amount, and Nd represented the number of evaluation days. Addi-
tionally, it was important to keep in mind that the TSF could have a negative value, which
would show how many fees were overspent in comparison to the actual billing actions.
Finally, we established the charging failure rate to assess the ratio of the charging failures
in our recommendations (CFR) (Equation (3)):
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TSF =
∑ qt ∈ Qs(RCP(qt)− CP(qt)) × CQ(qt)

Nd
(3)

where CQ (qt) is the qt electric charging quantity, Nd is the number of assessment days, and
RCP (qt) is the ground-truth charging-action charging price. It was important to remember
that the TSF may have a negative value, which would show how many fees were paid in
excess of what was actually charged. Finally, we created the CFR (Equation (4)) to assess
the percentage of charging failures in our recommendations:

CFR =
|Qa| − |Qs|
|Qa| (4)

4.1. Overall Performance

Table 1 shows the overall outcomes of our methodology as well as all the baselines
that were compared in two data sets in terms of our four metrics. Overall, the Master
delivered the most well-rounded performance out of all the baselines. When compared
to the ground-truth charge activities in Chiang Mai, the Master was reduced (58.9%, 9.3%,
and 95.4% for the MCWT, MCP, and CFR, respectively).

Table 1. Overall performance evaluated by MCWT, MCP, TSF, and CFR in Chiang Mai.

Algorithm MCWT MCP TSF CFR

Random 37.64 1.728 −349 48.3%
MASTER 15.46 1.567 15761 2.2%

The impact of the top-k active agent concentration on the Cheang Mai suggestions was
investigated by the researchers. We increased k from 25 to the overall number of agents. As
can be observed, lowering the recommendation restriction k increased the MCWT while
increasing the MCP and TSF, illustrating how the best solutions for the various goals
diverge. This made sense because a larger pool of applicants would indicate farther-flung,
more affordable charging stations. The MCWT and MCP were 9.98; 1.649 and 11.72; 1.491,
respectively, which were not severe and still adequate for online recommendation. However,
the performance with the toughest constraint (i.e., k = 20) and without constraint differed
only marginally. In terms of the candidate numbers, the previous statistics suggested that
our model was well-balanced (Figure 2). This also motivated us to consider how, in the
future, we could be able to deliver a variety of recommendations that would be slanted
toward different aims in order to meet the specific preferences.

Each actor is a charging station
(
ci) which is an individual agent. Each agent will

decide on recommendations for a series of charging requests. The observation oi
t of agent(

ci) is a combination of the index of
(
ci), the number of current available charging station

(ci) and the number of charging requests around
(
ci) for future charging demand. Each

agent (ci) offers a bid value for qt as its action (ai
t) that is the joint action, and qt will be used

to suggest for the agent with the highest bid value. The parameter pi
t represents upcoming

information about the billing and competitive future of each
(
ci) for qt, so the parameter pt

is the future knowledge of active agents that each agent’s policy (ci) can be updated by the
gradient ∇θi

b
J(bt).
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4.2. Implication of EVCs

When the EVC system was implemented in Chiang Mai, the charging stations with
high action values were visible to the researchers, who paid close attention to them (Fig-
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ure 3). This was evident, given that there were many bidders for these charging stations.
The most active charging station would receive the charging request, and the ecosystem
would reward this recommended station in kind. Additionally, we observed that the action
was strongly correlated with the supply, future supply, demand, ETA, and CP. A charging
station with a high action value had a low ETA and CP and had enough available charging
places (supply). Charging stations with a low number of available charging spots but a
high future demand, on the other hand, typically had a poor action value for avoiding
future charging competition. Therefore, the above findings supported our model’s ability
to manage the conflict between space-constrained charging capacity and spatially and
temporally unbalanced charging requests.
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4.3. User’s Evalutuion of EVCs

Following the implementation of the EVC system in Chiang Mai, the system satisfac-
tion has been evaluated by users, both Thai and international tourists. The data collection
results on the satisfaction of 200 tourists using the smart charging stations service were
divided into 100 Thai and 100 foreign tourists. Table 2 shows that Thai tourists were
satisfied at the highest level (X = 4.26, S.D. = 0.70). The number one demand for the EVC
system had the highest average level of agreement (X = 4.34, S.D. = 0.64). On the second,
the utilization of EVCs had the highest average level of agreement (X = 4.32, S.D. = 0.74),
and the third place evaluated user confidence in EVCs to promote a sustainable smart city.
The mean had the most agreeable level (X = 4.21, S.D. = 0.75), and the fourth regarded
developing the EVC system to promote tourism. The mean values were at the high level of
agreement level (X = 4.18, S.D. = 0.65), respectively.

Moreover, the overall foreign tourists were satisfied at a high level (X = 4.18, S.D. = 0.85).
The number one demand for the EVCs system had an average level of agreement at the
highest level (X= 4.28, S.D. = 0.91). The second rank—the utilization of EVCs—had the
highest average level of agreement (X= 4.21, S.D. = 0.88), and the third rank regarded the
development of the EVC system to promote tourism. The average level was very agreed
(X = 4.18, S.D. = 0.75). Finally, the fourth place reported confidence in EVCs to promote
smart cities towards sustainability. The average scores were at the very high agreement
level (X = 4.04, S.D. = 0.86), respectively.
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Table 2. User evaluation of EVCs.

Item
Thai Tourist (n = 100) International Tourist

(n = 100)

X S.D. X S.D.

The demand for the EVC system 34.4 0.64 4.28 0.91
The utilization aspect of EVCs 4.32 0.74 4.21 0.88
EVC system development to

promote tourism 4.18 0.65 4.18 0.75

Confidence in EVC to promote
sustainable tourism 4.21 0.75 4.04 0.86

Total average 4.26 0.70 4.18 0.85

Table 3 demonstrates the ANOVA test comparing the services of intelligent charging
stations between Thai and foreign tourists. By testing with a t-test, it was found that Thai
and foreign tourists exhibited no difference in satisfaction levels with using EV smart
charging stations.

Table 3. ANOVA test.

User n X S.D. t p

Thai tourist 100 4.26 0.70 −0.068 0.946
International tourist 100 4.18 0.85

p < 0.05.

The analysis of the results concerning the comparison of international and domestic
tourist satisfaction found that there was no significant difference in using EV smart charging
stations in Chiang Mai in terms of the demand for using EVC stations, the EV car utilization
aspects, EVC system promotion in tourism, and the confidence in using EVCs to promote
sustainable tourism. This can create a new business model to provide mobility services as
well as more EVC stations to serve tourists at tourist destinations, creating positive tourism
experiences and value that can lead to revisiting.

Moreover, as a result of tourists using EVC recommendation systems in Chiang Mai,
electric vehicle charging stations have become convenient for tourists, provide easy access
to tourist attractions, and provide a means to travel safely and efficiently. They also increase
the efficiency of urban planning in the smart city to support smart tourism, which will
create satisfaction, positive impressions and the desire to return to travel again. EVCs will
generate income and to conserve the environment, which eventually leads to sustainable
tourism and enhances the sustainable development of the SDG goals.

5. Conclusions & Discussion

This paper aims to improve the efficiency of the global charging network. It would be
beneficial to offer intelligent charging recommendations to enhance the charging experience
of EV drivers in a number of ways, including lowering the charging price (CP), lowering
the charging wait time (CWT), and maximizing the charging failure rate (CFR).

The EV is a disruptive technology transition that has been become widespread world-
wide in order to reduce pollution and traffic congestion while increasing cost savings and
preserving the good image of a tourist destination [12–14]. The research gap is the lack of
innovation and prototypes for the EVC system to support smart tourism. To bridge the
gap, this paper aims to study the Spatio-Temporal Multi-Agent Reinforcement Learning
(STMARL) (Master) framework for an intelligent, EV-charging recommendation system
using a smart tourism city case study in Chiang Mai, Thailand.

This study added to the understanding of the STMARL (Master) framework for
spatial-temporal, multi-agent reinforcement learning for an intelligent electric vehicle (EV)
charging recommendation system for the smart tourism city case study of Chiang Mai,
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Thailand. The researchers examined the intelligent EV-charging recommendation system
with the long-term objective of lowering the total CWT, average CP, and CFR. In this study,
several parameters were optimized. A STMARL (Master) framework was suggested, and
this subject was defined as a multi-objective MARL challenge. By considering each charging
station as an autonomous agent, the creator of the multi-agent actor–critic framework with a
centrally attentive critic hoped to encourage the agents to learn coordinated and cooperative
policies.

Each agent would act as an EV charging station and attempt to find an optimal
solution for the maximum reward to help the recommendation solve the problem effectively
when compared to random selection. The results show an intelligent EV-charging station
recommendation for tourist cities.

To increase the efficacy of the recommendation, the researchers also created a delayed-
access technique to incorporate knowledge about future charging competitions during
the model training. This was possible by integrating the model with a dynamic gradient-
reweighting technique to adaptively influence the optimization direction of numerous
diverging recommendation targets, which also expanded the centralized attentive critic
to include multiple critics. The recommendation system could help individual electrical
vehicles find an optimal charging station in terms of distance and charging cost.

Additionally, based on the locations of the current EV charging stations in Chiang Mai,
the researchers developed the STMARL (Master) framework for intelligently suggesting
publicly accessible charging stations to reduce the waiting time and charging cost. This
would be undertaken effectively compared to the random selection of an EV charging
recommendation that could be applied to other smart tourism cities. The proposed recom-
mendation system was capable of electricity pricing management in order to save the cost
of charging, which was an objective in the STMARL framework.

The EV charging recommendation system could thus support the increasing number
of EVs and charging stations in other smart tourism cities in the future [69,70], especially
after the post COVID-19 period, for which tourism would have developed resilience.
Consequently, EVs would be another choice for rental and travel by a free, individual
traveler (FIT) [70–76].

Moreover, the EVC system has been implemented and evaluated by both international
and domestic tourists. The results found that there was no significant difference in using
EV smart charging stations in Chiang Mai in terms of the demand for using EV stations,
the EV car-utilization aspects, the EVC system promotion in tourism, and the confidence
of using EVCs to promote sustainable tourism [12–14]. Moreover, it leads to the creation
of a new business model [13] and the generation of income as well as the conservation
of the environment, which leads to sustainable tourism and enhancement of sustainable
development [77,78].

The limitation of this study is that the sample size is not large enough because the
amount of EVs in Thailand is much less than in other countries, such as China. Finally,
further research of this work could be extended to include energy-network management to
sustain energy for Thailand and with a comparison with other optimization algorithms to
improve our system [77,78].
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