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Abstract: The WRF-CMAQ (Weather research and forecast-community multiscale air quality) sim-
ulation system is commonly used as the first prediction model of air pollutant concentration, but
its prediction accuracy is not ideal. Considering the complexity of air quality prediction and the
high-performance advantages of deep learning methods, this paper proposes a second prediction
method of air pollutant concentration based on the Kalman-attention-LSTM (Kalman filter, atten-
tion and long short-term memory) model. Firstly, an exploratory analysis is made between the
actual environmental measurement data from the monitoring site and the first forecast data from
the WRF-CMAQ model. An air quality index (AQI) was used as a measure of air pollution degree.
Then, the Kalman filter (KF) is used to fuse the actual environmental measurement data from the
monitoring site and the first forecast results from the WRF-CMAQ model. Finally, the long short-term
memory (LSTM) model with the attention mechanism is used as a single factor prediction model
for an AQI prediction. In the prediction of O3 which is the main pollutant affecting the AQI, the
results show that the second prediction based on the Kalman-attention-LSTM model features a better
fitting effect, compared with the six models. In the first prediction (from the WRF-CMAQ model),
for the RNN, GRU, LSTM, attention-LSTM and Kalman-LSTM, SE improved by 83.26%, 51.64%,
43.58%, 45%, 26% and 29%, respectively, RMSE improved by 83.16%, 51.52%, 43.21%, 44.59%, 26.07%
and 28.32%, respectively, MAE improved by 80.49%, 56.96%, 46.75%, 49.97%, 26.04% and 27.36%,
respectively, and R-Square improved by 85.3%, 16.4%, 10.3%, 11.5%, 2.7% and 3.3%, respectively.
However, the prediction results for the Kalman-attention-LSTM model proposed in this paper for
other five different pollutants (SO2, NO2, PM10, PM2.5 and CO) all have smaller SE, RMSE and MAE,
and better R-square. The accuracy improvement is significant and has good application prospects.

Keywords: second prediction; AQI; Kalman filter; Kalman-attention-LSTM

1. Introduction
1.1. Background Information

The practice of pollution prevention and control shows that it is one of the most
effective methods in reducing the harm inflicted by air pollution on human health and
the environment and for improving the ambient air quality to establish the air quality
forecast model, which allows us to know the possible air pollution process in advance
and to take corresponding control measures. At present, air quality assessment methods
based on simulated meteorological field information and a pollutant emission inventory
include the Community Multiscale Air Quality Model (CMAQ), the Operational Street
Pollution Model (OSPM), the Nested Air Quality Prediction Modeling System (NAQPMS),
etc. Among them, the Weather Research and Forecasting-Community Multi-scale Air
Quality Simulation System (WRF-CMAQ model) is a common method used to predict
air quality.
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However, the existing air quality prediction methods cannot effectively predict the
data with complex affecting factors such as the AQI. Due to the influence of complex
mechanism and spatial diffusion, the accuracy of the first-round prediction based on the
WRF-CMAQ model is not ideal, leading to a large prediction error. In order to improve the
prediction accuracy, we introduced the concept of the second prediction. The essence of
the second prediction is to improve the prediction accuracy and obtain smaller RMSE and
MAE based on the results of the first prediction and other time series information through
reasonable algorithms. Moreover, the effectiveness of the WRF-CMAQ model is limited
by traditional deterministic methods based on the use of default parameters and a lack of
actual observations. Therefore, prediction methods based on time series data came into
being, such as traditional machine learning methods and time series prediction models.

The traditional regression model cannot have an ideal performance in the prediction
of the influence of uncertain factors; however, with the introduction of a hidden layer in
neural network model, this makes it to the mainstream choice for solving the problem
of complex linear prediction, whereas the LSTM network is the mainstream choice for
solving the problem of long sequence, as well as having the effect of the breakthrough.
At present, various LSTM-based models such as the attention-LSTM, the BiLSTM and
the CNN-LSTM are widely used in the prediction of the long time series. Generally, the
pollutant prediction system is a linear, discrete and time-varying system with accurate and
calculable information at each time step. Both the measured value and the first predicted
value of each time step contain white noise. The above two points indicate that the data
characteristics of the system conform to the application standard of the Kalman filter. At
the same time, the most appropriate method in this system is the Kalman filter, because it
can solve the linear filtering problem with a recursive method in order to predict the system
state from the observation signals and external inputs containing noise. Inspired by the
idea of solving the optimal state estimation of the system in cybernetics, we introduce the
classical Kalman filter into the attention-LSTM model, aiming to improve the accuracy and
reliability in dynamic forecast using data correction, which makes the prediction accuracy
and long-term stability of the Kalman-attention-LSTM model in this paper better than the
traditional LSTM model and attention-LSTM model.

What we are presented with are the first-round prediction results (from WRT-CMAQ
system) and the measured data (from monitoring site). Based on the above two sets of
data, the second-round prediction of pollutant concentration is carried out by using the
Kalman-LSTM-attention model proposed in this paper. The second-round prediction makes
up for the low accuracy of the first-round prediction.

1.2. Related Works

LSTM was proposed by Hochreiter and Schmidhuber [1] in 1997 to alleviate the van-
ishing gradient problem of the RNN to a certain extent. Recently, as a result of the rapid
increase in the number of measured data, artificial intelligence techniques have been inten-
sively used in predicting air quality as an alternative to the traditional models in the field of
air quality prediction. Additionally, researchers began to shift their research focus to hybrid
models, hoping to obtain a higher prediction accuracy than with traditional models [2,3].
The deep learning method has achieved ideal results in the regional meteorological data
set, which has also been verified in this paper. Akbal et al. [4] proved that the hybrid
model which consists of the FNN, CNN and LSTM has the best predictive accuracy for
particulate matter (PM). Most of the time series prediction papers based on the RNN model
have the mixed LSTM model [5,6] or introduced a gate mechanism similar to the LSTM
model [7,8], which proves that the LSTM model is successful in relation to the time series
prediction problem. In meteorological applications, Krishan et al. [9] predicted O, PM2.5,
NO and CO concentrations at a site in Delhi based on the LSTM method; Tsokov et al. [10]
proposed a deep spatiotemporal model based on the 2D CNN and LSTM, which used a
genetic algorithm to automatically select input variables and optimize hyperparameters for
air pollution prediction. Qadeer et al. [11] predicted PM2.5 concentration in two big cities
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in South Korea based on the Bi-directional LSTM (BiLSTM), and the results were better
than other traditional gradient tree enhancement models with cyclic and convolutional
neural networks. Jiao et al. [12] used the LSTM model to predict the AQI through temper-
ature, PM2.5, PM10, SO2, wind direction, NO2, CO and O3, proving better than the linear
regression prediction method.

The LSTM alleviates the gradient vanishing problem of the RNN to a certain extent,
while the attention mechanism becomes an effective means for solving the vanishing
gradient and gradient explosion problems of the RNN. In the past decade, the attention
mechanism has been applied to the optimization of neural networks [13]. Shi et al. [14]
proposed a long short-term memory network model based on spatial attention (SA-
LSTM), which combined LSTM and a spatial attention mechanism to adaptively use multi-
factor spatio-temporal information in order to predict the concentration of air pollutants.
Yuan et al. [15] designed a multi-attention mechanism based on multi-layer perception,
including monitoring point attention, temporal feature attention and weather attention, in
order to obtain the spatio-temporal and meteorological dependence of PM2.5, and proposed
a hybrid deep-learning method based on a multiple attention LSTM (MAT-LSTM) neural
network for PM2.5 concentration prediction. Liu et al. [16] proposed a wind sensitive atten-
tion mechanism based on the LSTM model in order to predict air pollution by considering
the influence of wind direction and wind speed on spatial and temporal variations of PM2.5
concentration in neighboring areas. The proposed method outperforms the multilayer
perceptron, support vector regression, LSTM neural network and extreme gradient boost
algorithm in predicting PM2.5 concentration. Chen et al. [17] proposed a double LSTM
prediction model based on the attention mechanism. EXtreme Gradient Boosting (XGBoost)
regression was used to construct the optimal promotion tree, and the optimal prediction
results were obtained by combining the single factor model and the multi-factor model.

A Gated Recurrent Unit (GRU) is a common variant of the LSTM. By simplifying the
gate mechanism of the LSTM, it makes the training more convenient with fewer parameters.
Sonawani et al. [18] proposed a GRU model to estimate and monitor the NO2 pollutants
in Pune, India, by evaluating and optimizing the model based on the number of features,
number of neurons, number of retrospections and number of eras. Air pollution forecasts
can provide reliable information on future air pollution conditions, which can facilitate
the effective operation of air pollution control and the development of prevention plans.
Tao et al. [19] proposed a Convolutional Bidirectional Gated Recurrent Unit (CBGRU)
method based on the combination of a one-dimensional convolutional neural network
and a bidirectional GRU neural network, and they used the Beijing PM2.5 dataset in the
UCI machine learning library for example analysis. Zhou et al. [20] took hourly PM2.5
concentration information and weather information from Beijing as their input and based
on the GRU model, trained four models according to the four seasons, spring, summer,
autumn and winter, and verified the feasibility of this method. However, most of the papers
based on the GRU deliberately avoid the effect comparison with the LSTM model, and the
work of Liu et al. [21] shows that the GRU model is slightly inferior to the LSTM model in
terms of long-term accuracy.

As a widely used hybrid model, the CNN-LSTM combines the respective advan-
tages of the CNN and LSTM, with the CNN being able to effectively extract the features
of grid data, and the LSTM being able to effectively process time series data [22]. In
Stefan et al. [10], a neural network is presented based on a two-dimensional convolution
and the long short-term memory network model of time and space, using the genetic
algorithm to automatically choose the input variables and allow the optimization of pa-
rameters; multiple sites in Beijing air quality data sets for the experimental results show
the proposed air pollution prediction model with a good consistency in time and space
prediction results. Wang et al. [23] proposed a CNN-BiLSTM-attention model to predict the
AQI. This model used the CNN to extract the features and influences of the input data and
improved the accuracy of the AQI prediction. Gilik et al. [24] combined the convolutional
neural network with the long short-term memory deep neural network model to predict
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the concentration of air pollutants in multiple locations within the city by using the spatio-
temporal relationship. In terms of transfer learning, as the network was transferred from
Kocali to Istanbul, the model showed a more accurate prediction performance. Li et al. [25]
developed a hybrid CNN-LSTM model for predicting PM2.5 concentration in the next 24 h
in Beijing, making full use of the advantages of the CNN in effectively extracting air quality
related features and the LSTM in reflecting the long-term historical process of the input time
series data.

Inspired by the idea of solving the optimal state estimation of the system in cybernetics,
in order to predict the state of the system from noisy observation signals and external
inputs, some researchers began to introduce the classical Kalman filter into the timing
prediction. Song et al. [26] proposed an air quality assessment method based on the LSTM-
Kalman model, which applied the Kalman filter to the LSTM model and was superior to
the independent Kalman filter and the independent LSTM. Li et al. [27] proposed a KLS
algorithm combining the Kalman filter (KF), LSTM and support vector machine (SVM)
and adopted statistical filtering and deep learning algorithms to achieve the fusion of time
series prediction and variable regression.

In addition, there are many other hybrid models for the LSTM. Wu et al. [28] pro-
posed a VMD-LSTM model combining the VMD and LSTM to predict the AQI, which
has a high prediction accuracy for AQI class, and which is what the BP and LSTM mod-
els cannot achieve. Zhou et al. [29] proposed a deep multi-output LSTM (DM-LSTM)
neural network model, which combined three deep learning algorithms (minibatch gra-
dient descent, dropout neuron and L2 regularization) to extract key factors of complex
spatio-temporal relationships and reduce error accumulation and propagation in multi-step-
ahead air quality prediction. The spatial and temporal stability and accuracy of regional
multi-step-ahead air quality prediction are both significantly improved. Chang et al. [30]
proposed an aggregated LSTM model (ALSTM) on the basis of the LSTM model, which
aggregated the three LSTM models (the local air quality monitoring station, the nearby
industrial area monitoring station and the external pollution source monitoring station)
into a prediction model. Early predictions are based on information from external sources
of pollution and nearby industrial air quality monitoring stations. Qi et al. [31] figured
graph convolutional networks and the LSTM and put forward a model of the GC-LSTM;
the historical observation data of different stations were constructed as a spatio-temporal
map sequence, whilst the historical air quality variables, meteorological factors, spatial
terms and temporal attributes were defined as map signals to model and predict the
spatio-temporal variation of PM2.5 concentration. Zhao et al. [32] proposed a LSTM fully
connected (LSTM-FC) neural network model. In this model, temporal simulators based on
the LSTM model were used to simulate local changes in PM2.5 pollution, and spatial com-
binations based on neural networks were used to capture the spatial correlation between
PM2.5 pollution in central stations and neighboring stations, with the model outperforming
the ANN and LSTM models on the same dataset. At the same time, Cheng et al. [33]
proposed a novel data assimilation (DA) technique intending to incorporate real-time
observations from different physical spaces, which is the one of the current observational
methods used to perform variational DA with a low computational cost. Also, Zhuang and
Cheng et al. [34,35] demonstrated that system efficiency can be improved through the com-
bination of reduced-order modeling and recurrent neural network models. Data assimilation
enables the system to adjust the simulation results according to the observed data.

In the previous literature, we noticed that there is no pollutant concentration prediction
model for the second prediction at present. Although many optimization methods based
on the LSTM model have emerged to improve the prediction accuracy, it is still a rare choice
to introduce the Kalman filter and the attention mechanism into the LSTM model. In order
to fill the research gap and further improve the model accuracy, this paper established a
Kalman-attention-LSTM model for predicting air pollution concentration by combining the
Kalman Filter, attention mechanism, and LSTM.
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1.3. Chapters Arrangement

The remaining papers are organized as follows: Section 2 introduces the model build-
ing and optimization method; Section 3 discusses and analyzes the prediction results of the
model; and Section 4 is the research conclusion.

2. Materials and Methods
2.1. Data Collection and Preprocessing

In order to conduct second prediction based on the first prediction, we acquired
the downtown monitoring of air quality forecast basic data for a long period of time in
Chongqing Municipality, China. It includes forecast pollutant concentration data, meteoro-
logical data, forecast-measured meteorological data and the measured data of pollutant
concentration. The time span for all first forecast data is from 23 July 2020 to 13 July 2021,
and the time span for all measured data is from 16 April 2019 to 13 July 2021. The daily
forecast time is fixed at 7 a.m., with the measured data of the day as well as the first forecast
data of the day able to be obtained at 7 a.m. or before (the forecast time range goes up to
11 p.m. on the third day). Due to the limitations concerning the authority of the monitoring
data and the functions of corresponding monitoring equipment, the measured data of some
meteorological indicators cannot be obtained. Due to the high accuracy of the first forecast
in relation to the adjacent date, the accuracy of the second forecast in relation to the adjacent
date is also high.

However, after browsing the daily and hourly measured data, we found the following
in the hourly pollutant concentration of the monitoring site and the measured meteorologi-
cal data: the overall data of some hours (possibly continuous or discontinuous) were lost
from 0:00 to 23:00 in one day; the data pre-processing included data integrity discrimina-
tion and deletion, data vacancy filling, and data normalization; after pre-processing, it is
necessary to check whether daily and hourly data dates can be corresponding and to align
the days.

Due to the unknown working condition of the monitoring site in Chongqing Munic-
ipality, it is difficult to restore the real pollutant concentration using the average value
method of adjacent points. In this case, data vacancies of the hours mentioned above
should be replaced by data calculated using the Lagrange interpolation method. When the
integrity of the data is over 80%, the data will be retained and the Lagrange interpolation
method will be adopted. If the data integrity requirements are not met, delete all rows to
improve data group reliability.

In Missing Completely at Random (MCAR) hypothesis, the cause of missing data is
independent of observed and unobserved variables. In the Missing at Random (MAR)
hypothesis, the reason for missing data depends on fully observed covariates and has
nothing to do with unobserved factors. For the loss of concentration data of one or more
pollutants in a certain hour, Lagrange’s interpolation method is adopted to construct a set
of first functions, represented as

li(x) = (x−x0)···(x−xi−1)(x−xi+1)···(x−xn)
(xi−x0)···(xi−xi−1)(xi−xi+1)···(xi−xn)

= ∏n
j = 0
j 6= 1

x−xj
xi−xj

, (i = 0, 1 · · · , n) (1)

l1
(
xj
)
= f (x) =

{
0, j 6= i
1, j = i

(2)

Ln(x) = ∑n
i=0 yili(x) = ∑n

i=0 yi(
n

∏
j = 0
j 6= i

x− xi
xi − xj

) (3)

where li(x) is the n-degree polynomial, xi is the number of days, and Ln(x) is the concen-
tration of pollutants on a certain day.
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Since the data obtained from the monitoring site contain two kinds of time granularity,
one is daily data and the other is hourly data. When the proportion of missing data with
time granularity is large, the reliability of the corresponding daily data provided by the
monitoring site becomes doubtful. Therefore, we do not use controversial daily data, but
choose to use Lagrange interpolation method to fill up the hourly data and generate more
reasonable daily data. The Lagrange interpolation code was compiled using PyCharm and
interpreted using Python 3.8.2. Figure 1 shows the testing effect of interpolating selected
data. If the curve fitting is carried out on the data, the curve is smooth, and the interpolation
effect meets the requirements of data pretreatment and data filling.
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Figure 1. Lagrange’s interpolation in small quantities.

Data analysis found different concentration of pollutants at the same unit of measure-
ment, but that there are many differences between orders of magnitude. Meteorological
data exist as indicators of difference in the unit of measurement and scales, so it is necessary
to standardize the data processing, using the method of maximum-minimum value for
some orders of magnitude difference during bigger, normalized processing. The purpose
is to eliminate the difference between the orders of magnitude of data in each dimension.
According to (4), xmin represents the minimum value, xmax represents the maximum value
and xk represents the normalization result. It represents as

xk =
(xk − xmin)

xk − xmax
(4)

2.2. Modeling and Optimization
2.2.1. First Forecast Source

WRF-CMAQ (Weather research and forecast-community multiscale air quality) simu-
lation system is commonly used as the first prediction model of air pollutant concentration.
WRF-CMAQ model mainly consists of WRF and CMAQ. WRF is a mesoscale numerical
weather prediction system, which is used to provide weather field data for CMAQ; WRF
structure of the mesoscale numerical weather prediction system is shown in Figure 2.
CMAQ is a three-dimensional Euler atmospheric chemistry and transport simulation sys-
tem; CMAQ structure of air quality prediction and assessment system are shown in Figure 3.
Based on the meteorological information from WRF and the pollution emission inventory
in the field, it simulates the change process of pollutants based on the principle of physi-
cal and chemical reactions and then obtains the forecast results at specific time points or
time periods.
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This WRF-CMAQ model will be used as the first prediction model of this paper,
together with the measured data of monitoring sites, as the data source and research basis.
The meteorological information of Chongqing Municipality, China, which are obtained by
us, has already included the first prediction results of WRF-CMAQ system. We only need
to conduct basic normalization and completion operations on its data.

2.2.2. Correlation Coefficient and Clustering of Variables

Air Quality Index (AQI) is usually used to measure daily pollution. AQI is calculated
based on IAQI; IAQIP is the air quality index of a kind of pollutant P. CP is the mass
concentration value of pollutant P. BPHi and BPLo are high and low values of contami-
nant concentration limit similar to CP. IAQIHi and IAQILo are the air quality sub-index
corresponding to BPHi and BPLo. The maximum value of the AQI is calculated as

IAQIP =
IAQIHi − IAQILo

BPHi − BPLo
· (CP − BPLo) + IAQILo (5)

AQI = max{IAQI1, IAQI2, IAQI3, . . . , IAQIn} (6)

AQImax = max
{

IAQISO2 , IAQINO2 , IAQIPM10 ,
IAQIPM2.5 , IAQIO3 , IAQICO

}
(7)

The correlation coefficient is a statistical indicator reflecting the closeness of correlation
between variables. Yet we have five weather variables and six pollutant variables. In
addition to the influence of one meteorological condition on one pollutant, there is also the
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influence of one pollutant on another, and the influence of meteorological conditions on
another. Therefore, it is necessary to independently calculate the influence between the
two variables and predict that the concentration of some pollutants is the main influencing
factor of AQI. In order to achieve this, assume that the observation matrix of the sample
represents as

X =


x11 x12 · · · x1p

x21
· · ·

x22 · · ·
· · ·

x2p
· · ·

xn1 xn2 · · · xnp

 (8)

x∗ij =
xij − xj√
Var

(
xj
) (i = 1, 2, 3 · · · n j = 1, 2, 3 · · · p) (9)

xj =
1
n ∑n

i−1 xij, Var
(
xj
)
=

1
n− 1 ∑n

i−1

(
xij − xj

)2
(j = 1, 2, 3 · · · p) (10)

Thus, the correlation coefficient matrix represents as

R =


r11 r12 · · · r1p

r21
· · ·

r22 · · ·
· · ·

r2p
· · ·

rn1 rn2 · · · rnp

 (11)

rij =
Cov

(
xi, xj

)√
Var(x1)

√
Var(x2)

=
∑n

k=1(xki − x)
(

xki − xj
)√

∑n
k=1(xki − xi)

2
√

∑n
k=1
(
xki − xj

) (12)

The influence of meteorological conditions on pollutant diffusion or settlement should
be analyzed according to the influence of various meteorological features on the rise or
decline of the AQI. K-means clustering algorithm is one of the most common clustering
methods; it calculates the best category based on the similarity of the distance between
points, with the data divided into the same cluster having similarity. All meteorological data
and pollutant concentration data were normalized from between 0 to 1 before clustering.
K-means clustering algorithm needs to randomly select two centroids from the sample of
the same pollutant concentration and meteorological conditions as the initial cluster center;
one center of mass represents a class. µ

(0)
1 and µ

(0)
2 are the center of mass, J(c, u) represent

the clustering effect, xi is the sample point position. This is represented as

J(c, u) = min
M

∑
i=1
||xi − µci ||

2 (13)

The classification is based on the distance from the sample point to the center of
mass of the cluster in which it is located; whoever is closer is in the same category as the
data center. The most common method is to calculate the Euclidean distance from each
remaining sample point to each center of mass, which is ordinary two-dimensional data,
based on the Pythagorean theorem and represented as

d(x, µ) =
√

∑n
i=1(xi − µi)

2 (14)

where d(x, µ) is the Euclidean distance. Start the loop and group them into the cluster with
the center of mass least distant from each other. This is represented as

ct
i < −argmin

∣∣∣∣xi − µt
k
∣∣∣∣2 (15)
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where ct
i represents the classification of sample points. After all the sample data points were

divided into clusters, the centroid of each new cluster was calculated using the average
distance between the sample points and the cluster and represented as

µ
(t+1)
k < −argmin ∑b

i:ct
i=k||xi − µ||2 (16)

where µ
(t+1)
k represents the average distance between the sample point and the cluster.

Repeat the above steps to calculate the Euclidean distance iteratively and re-divide all
sample points. The sum of the squares of the distances from all sample points of a cluster
to the center of mass is ∑m

j=0 ∑n
i=1(xi − µi)

2. When the number of iterations reaches the
maximum or the centroid does not change anymore, it means convergence has been
achieved and the clustering has ended.

2.2.3. Kalman Filter

Now there are two sets of data, one is the predicted pollutant concentration data, and
the other is measured pollutant concentration data. Considering the dynamic characteristics
of the tested system, the data sources are reasonable, but there are also noises and errors
in the acquisition process of variables, so the form of prediction + correction is used to
make the optimal estimation. Kalman filter is essentially an optimized autoregressive data
processing algorithm that does not require all previous data. Kalman filter can predict
the next step of a dynamic system with uncertain information under the interference of
noise information. To put it simply, Kalman filter mainly includes two steps: state variable
estimation and state variable correction. The specific mathematical modeling process is
as follows.

Firstly, the predicted value of the pollutant concentration (this predicted concentration
is not an optimal prediction) at the current time is estimated from the predicted value of
the pollutant concentration in the previous hour combined with the external control. The
state prediction equation presents as

x−t = Axt−1 + But−1 (17)

where xt−1 represents the predicted value of the previous hour and uses the first prediction
result from WRF-CMAQ model as input, ut−1 represents the external control input, x−t
represents the predicted value of the current moment and is also called a prior state estimate.
In Kalman filter design, both state transition matrix A and control matrix B are determined
by the properties of the system. A represents the state transfer matrix from the previous
hour to the current moment. Due to the time series information being one-dimensional, we
use the scalar Kalman filter which means the actual form of state transfer matrix A is the
scalar, A equal to 1. B represents the control matrix, with the control matrix being used to
convert external control inputs into state information. However, in the actual situation, the
update of pollutant concentration status is not controlled by humans, which means gain of
control is not necessary, and therefore B chose 0.

Then, the covariance matrix of the previous hour is used to predict the current covari-
ance matrix, represented as

P−t = APt−1 AT + Q (18)

where Q represents the mean square error matrix of process noise and reflects the error
between the state transition matrix and the actual process, Pt−1 is the posterior estimation
of covariance an hour before, AT is the transpose matrix A, and P−t is the priori estimated
covariance at the current time and also the intermediate calculation result of the filter.

The difference between the current measure concentration value and the predicted
concentration value is used to correct the predicted value of the current time. State update
equation represents as

xt = x−t + Kt
(
zt − Hx−t

)
(19)
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where zt is the real measure value and is also used as the input of real measure results
from monitoring sites, with it being one-dimensional time-serious information with the
time granularity as 1 h. H is observer matrix and it is used to convert the measured
value to correspond to the state variable; H chose 1 due to the one-dimensional time
series information. Furthermore,

(
zt − Hx−t

)
is the residual of actual measurements and

predicted observations, and together with Kalman gain can correct prior predictions. Kt
is Kalman gain. xt is the current optimal state estimate as well as the output value of the
Kalman Filter, which is also known as a posteriori state estimate.

Update the Kalman gain with the optimal state estimate at the current time, and the
expression of Kalman gain under the minimum mean square error criterion is obtained.
This is represented as

Kt = P−t HT
(

HP−t HT + R
)−1

(20)

All the variables in this formula have been described previously. The Kalman gain
determines whether we trust the prediction result more or measure the results more. If we
trust the prediction result more, this residual of

(
zt − Hx−t

)
will have less weight.

Finally, find the relationship between Pt and Kt and then get the noise covariance
matrix at the current time; this step is designed to prepare for next iteration, and uncertainty
of the predicted state is reduced by updating the noise distribution of the best estimator. It
updates the forecast error represents as

Pt = (I − KtH)P−t (21)

where Pt is the current posterior estimation of covariance and I is the identity matrix. The
following time, the new noise covariance matrix Pt is used to make a new prediction, and
the autoregressive operation of the algorithm is realized.

The purpose of Kalman filter is to solve the optimal state estimation between the
one prediction result and the actual measured value, and its principle is to minimize the
covariance of the optimal state estimation and make it get closer and closer to the real value.
The core of the Kalman filter is the computing of Kalman gain, which reflects the model
prediction error during the optimal state estimation process. The Kalman filter gives the
data different proportions according to the accuracy of the data, and the data with higher
accuracy has a higher proportion. The optimal state estimation of Kalman filter is then
output by computing the first prediction values and the actual monitoring data according
to the Kalman gain fusion. The optimal state estimation value of Kalman filter then corrects
the covariance of the previous prediction process and calculates iteratively to obtain the
filtering results.

The input data of Kalman filter contains two groups of time series data. The first
group is the first prediction result generated based on WRF-CMAQ model provided by
the monitoring site and input into xt−1; the other group is the real measure data from the
monitoring site and input into zt. The effect of Kalman filter is to correct the first prediction
pollutant concentration data with real-measure pollutant concentration data. The structure
of the LSTM network with attention mechanism will be introduced later.

2.2.4. LSTM Network

Long Short-Term Memory (LSTM) network is a chain-structure-improved network
based on the RNN model, with the core characteristics of time memory and cyclic adjust-
ment of training feedback. The biggest difference between LSTM and RNN networks is
four neural network layers are used in one cell in LSTM. Furthermore, internal interaction
modes are added and three gate structures are added, including forget gate, input gate, and
output gate. The cell structure of the LSTM is shown in Figure 4, and the LSTM network
model is shown in Figure 5.
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The forget gate contains a sigmoid network layer and a bitwise multiplication opera-
tion. The sigmoid layer is responsible for screening the combined input signals of xt at the
current moment and ht−1 at the last moment. ft represents the forget gate at the time step
t. The function of this gate is to output a signal from 0 to 1 through sigmoid multiplied
using the state Ct−1 at the previous time to describe how much the input signal is through.
The subscripts of W and b indicate, respectively, the weight and the bias for three different
gates. For example, W f is the weight of input xt at the gate ft. This formula is represented as

ft = sigmoid
(

W f [ht−1, xt] + b f

)
(22)

The second gate is the input gate it at the time step t. The input gate is responsible for
screening the reserved part of the combined input signal of xt at the current moment and
ht−1 at the last moment. It contains a sigmoid layer and a tan h network layer. The sigmoid
layer effect is the same as that in the forget gate. Tan h is the hyperbolic tangent function.
In the tanh network layer, the current input xt and the previous output ht−1 are directly
combined at the end to create a new state vector called C̃t, which ranges from −1 to 1. The
output of sigmoid and tahn are multiplied to determine whether new information is added
to the cell state and represents as

it = sigmoid(Wi[ht−1, xt] + bi) (23)

C̃t = tan h(Wc[ht−1, xt] + bc) (24)

where Ct corresponds to the cell unit at the time step t. The output of the forget gate is mul-
tiplied by the state of the last moment to select forgetting and retaining some information,
and then added together with the input gate to obtain the new cell state information, and
the updated cell state will continue to be transmitted to the next moment as the state input
and represents as

Ct = ft ∗ Ct−1 + it ∗ C̃t (25)
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The output gate is responsible for transmitting the output signal to the next neuron.
Ot represents the output gate at the time step t. ht represents the hidden state at the time
step t. The combined input signal of xt at the current moment and ht−1 at the previous
moment passes through the sigmoid network layer and is multiplied by Ct to obtain ht
with the input signal at the next moment represented as

Ot = sigmoid(Wo[ht−1, xt] + bo) (26)

ht = Ot∗ tan h(Ct) (27)

2.2.5. Attention Mechanism

Since the multi-dimensional auxiliary variables have different effects on the output,
they may affect the prediction results. In this paper, the attention mechanism is used
to assign weights to the input of different time steps to improve the prediction effect of
pollutant concentration. The main principle is to save the intermediate results generated by
the LSTM network for the time series input and associate the results with the output values
so that the model learns how to selectively focus on the data and assign more reasonable
weights to the data. The network structure is shown in Figure 6.
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One way to think about the attention mechanism is to think of the elements in the
source as a series of elements about key and values. In this case, an element query in a
given target is constructed. By calculating the similarity or correlation between query and
each key, the weight coefficient of each key corresponding to value is obtained, and then
the weighted sum of values is performed to obtain the final attention value. So essentially,
the attention mechanism is a weighted sum of the values of elements in source, while
query and key are used to calculate the weight coefficients of the corresponding values. As
for the specific calculation process of attention mechanism, if most current methods are
abstracted, it can be summarized into two processes: the first process is to calculate the
weight coefficient according to query and key, and the second process is to weight and sum
the value according to the weight coefficient. The first process can be subdivided into two
phases. The first phase calculates the similarity or correlation between query and key; the
most common method is to take the dot product of the two vectors and can be represented as

et,i = ST
t−1 ∗ ht,i (28)

where ST
t−1 is the query, ht,i is the key and et,i represents the similarity between query and key.

In the second phase, the original scores of the first stage are normalized. The score
of the first phase is numerically converted using a calculation method similar to SoftMax,
and the original calculated score is sorted into the probability distribution with the sum
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of the weights of all elements equal to 1. The weight of important elements is highlighted
through the internal mechanism of SoftMax and represented as

αt,i = So f tmax(et,i) =
exp(et,i)

∑T
k=1 exp(et,i)

(29)

The LSTM hidden state obtained at time t is [ht,1, ht,2, · · · ht,i, · · · ht,T ]
T ; the dot product

form is used to calculate the attention weight αt,i of the hidden layer state hi in accordance
with the output at time t. Then add the weights to get the attention value St, represented as

St = ∑T
i=1 αt,iht,i (30)

The attention mechanism is added into LSTM neural network, aiming to calculate
the weight of each hidden layer state of the network, and the measurement model of
Kalman-attention-LTSM is established to predict pollutant concentration.

2.2.6. Kalman-Attention-LSTM Network

The complete prediction model is Kalman-attention-LSTM which contains two groups
of time series data input. The first group is the first prediction result generated based on
WRF-CMAQ model provided by the monitoring site, and the other group is the actual
monitoring data of the monitoring site. The input data of the Kalman-attention-LSTM are
the two temporal data groups mentioned above. The two temporal data groups mentioned
above are also taken as the training and prediction sample of Kalman-attention-LSTM. The
network layer structure based on the Kalman-attention-LSTM is shown in Figure 7, which
mainly consists of four parts.
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Figure 7. Architectures of the Kalman-attention-LSTM network.

Kalman layer: input is auxiliary variable time series and pollutant concentration data
processed using Kalman Filter. Set T as the number of time-step smoothing windows, then
the input sequence at time t is [xt−T+1, xt−T+2, · · · xt−T+i · · · xt]

T .
The most important hyperparameter selections of Kalman filter are matrix Q and

matrix R, which are usually given by manual experiments. In order to update parameters
in the training process accompanied by LSTM, Kalman filter is required to have adaptive
filtering effect. So, we introduced a time-varying weighting factor to update matrix Q and
matrix R in each batch to help the parameters converge stably, which was also helpful to
deal with the time series data of pollutant concentration with different changing trends.

LSTM layer: LSTM layer is used to learn the input sequence X, and the hidden layer
state of LSTM is recorded as ht at time t. The formula represents as
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ht = [ht,1, ht,2, · · · ht,i, · · · ht,T ] i ∈ [1, T] (31)

ht,i = LSTM(xt,i, ht−1,i) i ∈ [1, T] (32)

Attention layer: the input of the attention layer is the output ht of the previous layer,
attention weight is αt,i and the output of this layer is St. The formula represents as

St = ∑T
i=1 αt,iht,i (33)

Output layer: The fully connected layer whose activation function is sigmoid was
selected to output the predicted value Y of pollutant concentration at t + 1 moment. It is
the result of second prediction of air quality and is represented as

y = sigmoid(ωSt + b) (34)

In the training process of the model, the new Kalman gain Kt and the new noise
covariance matrix Pt set off the backpropagation of LSTM according to the gradient descent
direction of LSTM and to update the Kalman gain. The noise covariance matrix Pt will
update according to the new Kalman gain as formula (21) describes to help Kalman filter to
prepare for the next batch of training. The update of the Kalman gain will be placed after
the backpropagation (gradient-descent algorithm) and is presented as follows

dPt

dKt
=

d((I − Kt H)P−t (I − KtH)T + KtrKt
T)

dKt
= 2(I − KtH)P−t

(
−HT

)
+ 2KtR (35)

According to the idea of optimization, we set dPt
dKt

= 0; in this case, the error value
of the optimal estimation is minimum, and the Kalman gain is updated according to
Formula (20), which will be updated with each LSTM parameter update. As a submodule
of Kalman-LSTM-attention model, the change in parameters update order of Kalman filter
have no effect on the state optimal estimation and model prediction results.

This chapter introduces the principle and structure of the main model in this paper.
Dynamic filtering of Kalman filter is introduced as a highly reliable data fusion, which
effectively combines the pollutant concentration monitored by sensors with the first forecast
data of WRF-CMAQ system. By adding the attention mechanism to the classical LSTM
structure, the ability of the Kalman-attention-LSTM system to capture temporal information
features is improved.

3. Results
3.1. Analysis of Correlation Coefficient and Cluster Characteristics of Pollution Data

The data of five meteorological conditions (temperature, humidity, air pressure, wind
direction, and wind speed) and six pollutants (SO2, NO2, PM10, PM2.5, O3 and CO) obtained
by hourly measurement were preprocessed. The linear fitting of correlation coefficients of
two variables in horizontal and vertical coordinates of each other is shown in Figure 8. Each
small figure in Figure 8 is drawn using the distribution of sample points corresponding to
two different variables (from five meteorological conditions or six pollutants) at the same
time. The linear fitting results of the variation trends of these sample points are shown in the
small figure with red lines. The respective data sets of both of the two variables were used
to construct the covariance matrix, and 121 correlation coefficients were finally calculated
as shown in Figure 9. The correlation coefficient in Figure 9 is essentially the slope of the
linear fitting in Figure 8. The correlation coefficient can reflect the degree of independent
influence between two variables. The symbol before the value of correlation coefficient
r represents the direction of influence between two variables, the plus sign represents
positive correlation and the minus sign represents negative correlation. The absolute value
of the correlation coefficient is between 0 and 1. Generally speaking, the closer r is to 1, the
stronger the correlation degree between the two variables will be. Conversely, the closer r
is to 0, the weaker the correlation degree between the two quantities will be.
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After clustering the data of the concentration of six pollutants (SO2, NO2, PM10, PM2.5,
O3 and CO), they are shown in Figure 10a.

The clustering of measured meteorological data (temperature, humidity, air pressure,
wind direction and wind speed) are shown in Figure 10b.

The cluster centers of K-means are selected as two centers according to the two changed
states in the AQI, showing either increase or decrease, which are distinguished by red dots
and green triangle points in Figure 10.
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effect of measured meteorological data. Red dots represent the increase status of AQI, green triangle
points the decrease status of AQI.

We use the contour coefficient to measure the clustering effect of the K-means cluster-
ing algorithm. The formula of the contour coefficient represents as

s =
y− x

max(x, y)
(36)

where x is the distance of the vector from all the other points in the cluster to which it
belongs, and represents the minimum average dissimilarity of the vector compared with
the other clusters; y is the average distance of a vector from all points in a cluster that do
not contain it and represents the average degree of dissimilarity between a vector and other
points in the same cluster; the s range is limited to (−1, 1); the plus sign means more similar
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to samples in the cluster; and the minus sign means more similar to samples outside the
cluster, with |s| representing the degree of similarity.

The contour coefficient of the sample cluster for the concentration data of six major
pollutants was 0.369. The contour coefficient of the clustering effect of measured meteoro-
logical data samples is 0.096.

The closer the contour coefficient is to 0, the lower the impact of the current clustering
features on the AQI. The coefficient of 0.096 and 0.369 indicates that meteorological features
(temperature, humidity, air pressure, wind direction, and wind speed) have a low impact on
the AQI; however, six pollutant concentrations (SO2, NO2, PM10, PM2.5, O3 and CO) have a
high impact on the AQI. Therefore, the determinants of the AQI should be found out via the
interaction of pollutant concentrations. Based on the calculation results of Equations (5)–(7),
the IAQI value of O3 is the maximum and is much larger than other pollutants for most
days, meaning that the concentration of O3 has the greatest determining effect on the
value of the AQI. Moreover, in Figure 9, the correlation coefficient between O3 and other
pollutant information is the smallest, which means that O3 will not be affected easily by
other pollutants. Therefore, O3 is selected as the most important variable concerning
pollutant concentration information.

3.2. Kalman Filter Fitting Effect

The output result of the Kalman filter is the data fusion result of a pollutant con-
centration predicted for the first time and measured using pollutant concentration. The
construction of a one-dimensional array, which contains data on the AQI and six pollution
indicators (SO2, NO2, PM10, PM2.5, O3 and CO), has seven characteristics.

The data fusion effect of the Kalman filter with six different pollutant concentrations:
(a) SO2, (b) NO2, (c) PM10, (d) PM2.5, (e) O3 and (f) CO are shown in Figure 11. The Kalman
filter has a time granularity of one day. In Figure 11, the abscissa represents the daily sample
points and the ordinate represents the pollutant concentration value. Furthermore, the
blue curve represents the real measurement curve from the monitoring site, the black dots
represent the first prediction curve from the monitoring site and the red curve represents
the fitting result output of the Kalman filter on the two groups of input data. The output
results proved that the Kalman filter with appropriate parameters can provide an ideal
data fusion effort for Kalman-attention-LSTM network prediction.

3.3. Experimental Environment and Parameter Settings

After data pre-processing of the first prediction result generated using the WRF-
CMAQ model and the actual monitoring data from monitoring site, the pre-process results
(including the two input groups mentioned above) are made into a data set for second
prediction; next, the data set was divided into a training set (70%), a validation set (10%)
and a test set (20%). This data set will be used as the training and prediction material for
the Kalman-attention-LSTM model. The training sets and validation sets are generated
using random sampling, rather than partitioning, to ensure data consistency.

The input and output time granularity of the Kalman-attention-LSTM is one day,
so the time granularity of the corrected sample data used for training and prediction is
one day.

We adopted PyTorch on Windows as our experimental environment. Some other de-
velopment tools, such as Python, NumPy and the d2l library were used in our experiments.
The detailed hardware configurations and software versions are shown in Table 1.

The training parameter settings of the model are shown in Table 2. Input size represents
the characteristic dimension of the input data. Hidden size represents the dimension of the
hidden layer in LSTM. Num layer represents the number of layers in a recurrent neural
network. Batch size represents the number of samples used in one iteration. Loss function
use L2 loss. Learning rate represents the magnitude of each parameter update. Epoch
ensures all training samples in the training set are trained and learned once. Each time
step is run, the parameter weight is updated once, which means that learning is carried
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out. Each parameter update requires batch size samples for operation learning, and the
parameters are adjusted and updated once according to the operation results.
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Table 1. The detailed hardware configurations and software versions.

Hardware and Software Details

CPU AMD Ryzen 9 5950X
GPU Nvidia GeForceRTX3090
RAM 64 G

Hard disk 1 TB
Operating system Windows 10 Professional

Development tools VSCode (Jupyter Notebook)
Development language Python 3.8.12

Deep learning framework PyTorch
Other libraries NumPy, d2l

Table 2. The training parameter settings for the model.

Hyperparameter Details

Input size 11
Hidden size 16
Num layer 1
Batch size 128

Loss function L2 loss
Learning rate 0.01

Epoch 50
Time step 48

Bias True
Batch first True
Dropout 0.1

Bidirectional False
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During the experiment, we noticed that the LSTM model had a certain degree of
gradient disappearance in the training process for some datasets. For this problem, usually
the LSTM-forgetting gate value can be selected between 0 and 1 (sigmoid activation func-
tion). We chose to make this value close to 1 to saturate the forgetting gate. At this point,
the long-distance information gradient does not disappear, and the gradient can be well
transmitted in the LSTM, which greatly reduces the probability of gradient disappearing.
In addition, we tried to use the Softsign activation function to replace Tanh, which is faster
and helpful to overcome the vanishing gradient problem in the LSTM. Furthermore, we
used the L2 regularization algorithm to prevent overfitting of the LSTM network. The
L2 constraint usually imposes a large penalty on sparse weight vectors with spikes while
preferring uniform parameters. This will encourage neural units to make use of all inputs
from the upper layer, rather than just some of them. Therefore, after the addition of the L2
regularization algorithm, weight decay makes the network prefer to learn relatively small
weights. θ is the parameter of the network layer to be learned, λ controls the size of the
regular term, and is presented as

L(θ) = L(θ) +
λ

2
||w||2 (37)

3.4. Second Prediction Results

The comparison between the second prediction results, first prediction values and the
real measure values for O3 data is shown in Figure 12.
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The second prediction results for SO2 data are shown in Figure 13. The second
prediction results for PM10 data are shown in Figure 14. The second prediction results for
PM2.5 data are shown in Figure 15. The second prediction results for NO2 data are shown
in Figure 16. The second prediction results for CO data are shown in Figure 17.
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In Figures 12–17, the abscissa represents the passage of time every day and the ordi-
nate represents the concentration value of pollutants in this figure. Each figure contains
three curves: real measure values, first prediction values and second prediction results.
According to the analysis and conclusion above, O3 has a major impact on the AQI, and
the prediction curve of O3 is equivalent to the prediction curve of the AQI.
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3.5. Model Performance Evaluation and Algorithm Comparison

Performance analysis and evaluation of linear regression algorithm model usually rely
on the standard error (SE), root mean squared error (RMSE), mean absolute error (MAE)
and the R-square.

The standard error (SE) is used to predict the accuracy of the sample data. The smaller
the standard error is, the smaller the gap between the sample mean and the population
mean is and the more representative the sample data is of the population. ŷi represents
the predicted value, yi represents the real measure value and n represents the number of
samples, and its calculation method is shown in Equation (38):

SE =

√
∑n

i=1(ŷi − yi)
2

n(n− 1)
(38)

The RMSE is the square root of the ratio of the square of the deviation between
the real measure value and the predicted value, and its calculation method is shown in
Equation (39). The RMSE is more sensitive to outliers in the data. The use of the RMSE as
an evaluation index magnifies the gap between large errors, and the smaller the value of
the RMSE in the measurement, the greater the model’s ability to fit data is. ŷi represents
the predicted value, yi represents the real measure value and n represents the number
of samples.

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(39)

The RMSE has the same dimension as the MAE, but the RMSE is larger than the MAE.
The MAE reflects the true error. The MAE calculation method is shown in Equation (40). ŷi
represents the predicted value, yi represents the real measure value and n represents the
number of samples.

MAE =
1
n ∑n

i=1|yi − ŷi| (40)

The best indicator to measure the linear regression method is R-square, which rep-
resents the size of the model fitting ability. The R-square calculation method is shown in
Equation (41). The larger the value, the better fitting effect. ŷi represents the predicted
value, yi represents the real measure value, yi represents the average value of yi and n
represents the number of samples.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (41)

In order to compare the effects of the Kalman-attention-LSTM model and other tradi-
tional time series prediction models, such as the RNN, GRU, and LSTM, we use the original
O3 pollutant concentration data set to train the above four prediction algorithms respec-
tively, and calculate the values of the RMSE, MAE, and R-square. At the same time, we
consider that O3 has a decisive influence on the AQI, and that the pollutant concentration
value of O3 has the most predictive value.

In Table 3, the Kalman-attention-LSTM model improved significantly, compared with
the six models. In the first prediction (from the WRF-CMAQ), for the RNN, GRU, LSTM,
attention-LSTM and Kalman-LSTM, the SE improved by 83.26%, 51.64%, 43.58%, 45%, 26%
and 29%, respectively; the RMSE improved by 83.16%, 51.52%, 43.21%, 44.59%, 26.07% and
28.32%, respectively; the MAE improved by 80.49%, 56.96%, 46.75%, 49.97%, 26.04%and
27.36%, respectively; and the R-square improved by 85.3%, 16.4%, 10.3%, 11.5%, 2.7% and
3.3%, respectively. As shown in Table 3, the SE, RMES, MAE and R-square indicate that the
results of the first prediction (from the WRF-CMAQ) do not reflect the value of pollutant
concentration, but only reflect the general trend of pollutant concentration. The reason for
the inaccurate prediction is also due to the unique mechanism of the WRF-CMAQ model,
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which is subject to the uncertainty of the simulated meteorological field and emission
inventory, as well as the incomplete clarity of the generation mechanism of pollutants. The
results of the WRF-CMAQ prediction model are not ideal. Therefore, a second prediction
has special significance for improving the accuracy of weather forecast.

Table 3. O3 prediction error comparison of different models.

Network Model SE RMSE MAE R-Square

First prediction (from WRF-CMAQ) 2.63 50.19 37.42 0.115
RNN 0.91 17.43 16.96 0.804
GRU 0.78 14.88 13.71 0.865
LSTM 0.80 15.25 14.59 0.853

Attention-LSTM 0.60 11.43 9.87 0.941
Kalman-LSTM 0.62 11.79 10.05 0.935

Kalman-attention-LSTM 0.44 8.45 7.30 0.968

In addition, we used different models to predict six different major pollutants, and
the prediction results are respectively shown in Tables 3–8. By comparing the SE, RMSE,
MAE and R-square, we can draw the following conclusions: The second prediction method
proposed in this paper (by using the Kalman-attention-LSTM model) has significantly
improved the prediction accuracy compared with the classical time series prediction and
primary prediction results. The WRF-CMAQ model, which provides the first prediction
result, is far from meeting the prediction demand. There is no doubt that the second
prediction is necessary for the prediction of pollutant concentration, and the combined
effect of the Kalman filter and attention mechanism improves the accuracy of this model.

Table 4. SO2 prediction error comparison of different models.

Network Model SE RMSE MAE R-Square

First prediction (from WRF-CMAQ) 3.27 62.38 45.41 0.063
RNN 2.16 19.65 17.83 0.785
GRU 0.86 16.37 14.71 0.843
LSTM 0.79 15.12 13.88 0.856

Attention-LSTM 0.67 12.74 11.39 0.923
Kalman-LSTM 0.68 12.95 11.64 0.909

Kalman-attention-LSTM 0.58 11.14 9.74 0.944

Table 5. PM10 prediction error comparison of different models.

Network Model SE RMSE MAE R-Square

First prediction (from WRF-CMAQ) 2.92 55.89 41.57 0.092
RNN 0.91 17.54 15.65 0.828
GRU 0.78 15.02 13.32 0.863
LSTM 0.76 14.76 13.12 0.874

Attention-LSTM 0.62 11.78 10.11 0.931
Kalman-LSTM 0.64 12.25 10.92 0.922

Kalman-attention-LSTM 0.53 10.09 8.77 0.951

Table 6. PM2.5 prediction error comparison of different models.

Network Model SE RMSE MAE R-Square

First prediction (from WRF-CMAQ) 3.36 64.22 48.31 0.056
RNN 0.88 16.83 15.97 0.832
GRU 0.80 15.34 13.93 0.851
LSTM 0.79 15.21 14.04 0.854

Attention-LSTM 0.68 12.99 11.51 0.916
Kalman-LSTM 0.70 13.40 12.11 0.903

Kalman-attention-LSTM 0.61 11.69 9.98 0.935
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Table 7. NO2 prediction error comparison of different models.

Network Model SE RMSE MAE R-Square

First prediction (from WRF-CMAQ) 3.13 59.82 47.11 0.077
RNN 0.9 17.21 16.84 0.814
GRU 0.77 14.66 12.90 0.875
LSTM 0.78 14.93 13.50 0.868

Attention-LSTM 0.62 11.76 10.11 0.933
Kalman-LSTM 0.58 11.15 9.77 0.941

Kalman-attention-LSTM 0.47 8.98 8.03 0.962

Table 8. CO prediction error comparison of different models.

Network Model SE RMSE MAE R-Square

First prediction (from WRF-CMAQ) 3.04 58.03 39.98 0.083
RNN 1.08 20.61 18.26 0.771
GRU 0.86 16.51 16.09 0.833
LSTM 0.89 16.94 15.88 0.838

Attention-LSTM 0.68 13.06 12.11 0.906
Kalman-LSTM 0.73 14.11 12.96 0.884

Kalman-attention-LSTM 0.65 12.33 11.01 0.927

4. Conclusions

In this paper, we proposed the innovative Kalman-attention-LSTM model, aiming to
further improve the prediction accuracy of pollutant concentration and AQI on the basis of
the traditional time series prediction model. The specific realization process of the model
was as follows:

(1) First of all, data pre-processing is required. We filled in random gaps in weather data
and normalized weather data of different orders of magnitude.

(2) Secondly, a cluster analysis was conducted on normalized pollutant concentration
data and meteorological data. We determined the correlation coefficient between
different pollutants and meteorological information, and identified the pollutant
concentration information with the greatest influence on the AQI as O3.

(3) Then, we chose the appropriate parameters for the Kalman filter to fuse the measured
and first-prediction meteorological data, which intended to make the prediction more
accurate and reliable in dynamic.

(4) Finally, the attention mechanism is used to set the weights of the inputs of different
time segments in the traditional LTSM model and was intended to improve the
prediction accuracy.

(5) In comparison with the traditional RNN, GRU, LSTM, attention-LSTM and Kalman-
LSTM, the Kalman-attention-LSTM model shows better effort from the perspective
of the SE, RMSE, MAE and R-square evaluations, which indicates that our Kalman-
attention-LSTM model has a higher prediction accuracy in a single pollutant concen-
tration prediction.

Compared with other models, our Kalman-attention-LSTM model has better indicators.
In order to further evaluate the generalization ability of this model, we will use this model
to predict and analyze cities under different spatio-temporal backgrounds in future. In
addition, other pollutants in the air that cannot be ignored are aerosol pollutants, biological
sources of aerosols in the air with a spatio-temporal distribution that is relatively complex
and to a large extent influenced by other contaminants in the air. The existence of the air
pollution index in a numerical prediction method will play an important role for subsequent
research. We will also make predictions for aerosol pollutants, discussing the value of the
model in the broadest possible context.

In addition, we still believe that hybrid models such as the Kalman-attention-LSTM
model play a positive role in improving the prediction accuracy. In future works, more
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focus will be laid on how to expand the range of application for the integrated model and
to improve the accuracy of various data prediction due to the integration of the advantages
of hybrid models, for example, integrating CNN into our model to extract more reliable
spatial distribution for forecasting, or expanding the range of application for the integrated
LSTM and Kalman filter in order to improve the accuracy of various data prediction.
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