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Abstract: A precise short-term load-forecasting model is vital for energy companies to create accurate
supply plans to reduce carbon dioxide production, causing our lives to be more environmentally
friendly. A variety of high-voltage-level load-forecasting approaches, such as linear regression
(LR), autoregressive integrated moving average (ARIMA), and artificial neural network (ANN)
models, have been proposed in recent decades. However, unlike load forecasting in high-voltage
transmission systems, load forecasting at the distribution network level is more challenging since
distribution networks are more variable and nonstationary. Moreover, existing load-forecasting
models only consider the features of the time domain, while the demand load is highly correlated to
the frequency-domain information. This paper introduces a robust wavelet transform neural network
load-forecasting model. The proposed model utilizes both time- and frequency-domain information to
improve the model’s prediction accuracy. Firstly, three wavelet transform methods, variational mode
decomposition (VMD), empirical mode decomposition (EMD), and empirical wavelet transformation
(EWT), were introduced to transform the time-domain demand load data into frequency-domain
data. Then, neural network models were trained to predict all components simultaneously. Finally, all
the predicted data were aggregated to form the predicted demand load. Three cases were simulated
in the case study stage to evaluate the prediction accuracy under different layer numbers, weather
information, and neural network types. The simulation results showed that the proposed robust
time—frequency load-forecasting model performed better than the traditional time-domain forecasting
models based on the comparison of the performance metrics, including the mean absolute error
(MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE).

Keywords: distributed network; load forecasting; wavelet transform; neural network; smart grid

1. Introduction

To deal with the severe climate change crisis, 193 countries agreed to adopt a set of
global goals to end poverty, protect the planet, and ensure prosperity for all. Of particular
interest is Goal 7, which aims to provide access to clean and affordable energy. The
distribution network in a power system plays the role of an intermediate that links urban
areas to the transmission/sub-transmission network. The distribution network is influenced
by many factors, such as the power quality; the peak load, resistance, and reactance
of the distribution lines; and the distance between the transformer and the consumers
(including residential, commercial, and industrial consumers). Precise distribution-level
short-term load forecasting (STLF) is a vital process that helps grid operators pursue
this goal since a reliable STLF system provides critical input information for demand-
side management (DSM), state estimation, maintenance scheduling, voltage support, etc.
Moreover, providing the precise and rapid prediction of future demand is the foundation of
hourly based applications, such as electricity market-clearing mechanisms and regulation
bids. However, unlike high-voltage (HV) transmission networks, which are stable and
remain unchanged for long periods, STLF for distribution networks have become more
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challenging in recent years. The reasons for this can be summarized as follows: (1) The
original distribution networks are designed as passive systems, as the electricity can only
be transmitted from power plants to consumers. However, the networks have turned
from passive into active bidirectional systems since more and more distribution generators
(DGs) have penetrated the grid. (2) High uncertainty surrounds the low-capacity load
inside distribution networks and the diversity of users’ characteristics also influences load
prediction accuracy. Compared to the well-developed load-forecasting procedures at the
HYV network level, distribution-level load-forecasting methods are still in the exploratory
stage. Fortunately, a large amount of high-resolution electricity data has been collected with
the widespread installation of smart meters. These aggregated smart meter data represent
a useful data resource on the demand side to more accurately forecast the demand at the
distribution level.

Load-forecasting methods have been well-discussed in the literature over the last few
decades. Depending on the prediction duration, load forecasting can be further divided
into STLE, mid-term load forecasting, and long-term forecasting. Of all the load-forecasting
categories, STLF plays the most vital role in power systems due to its importance for power
stability and economic performance. STLF methods can be classified into conventional
statistical methods and machine-learning-based methods. Traditional statistical methods
try to establish linear equations to predict the demand load, with linear regression (LR) and
autoregressive integrated moving averages (ARIMA) being the most common statistical
methods. Distribution-level LR-based STLF approaches are presented in [1-4]. As a naive
forecasting approach, LR (or its modification, multivariable LR) aims to identify the linear
correlations between the input features and the future demand load; the loss function
employed by most LR methods is the least squares method, which minimizes the Euclidean
distance between the predicted and true values. ARIMA is another statistical analysis
model that uses time-series data to predict the future trends of datasets. It first applies
lagged moving averages to smooth the demand load data. Then, it predicts the future
demand load based on the assumption that the future trend will resemble the past trends [5].
The ARIMA algorithm is combined with other statistical methods to improve prediction
accuracy. The methods that have been employed in the literature to enhance the accuracy of
the ARIMA model include XGBoost [6], support vector machine (SVM) [7], decision trees
(DTs) [8], and the hidden Markov model (HMM) [9]. However, the characteristics of the
distribution-level demand load are nonlinear and nonstationary. Additionally, due to the
high level of the incorporation of distributed renewable energy sources (such as solar panels
and small wind turbines) and electric vehicles (EVs) into distribution networks in recent
decades, the fluctuation of load curves has become increasingly extreme and unpredictable;
hence, it is difficult to use a linear function to exactly estimate the demand load.

Machine-learning-based STLF methods have shown higher prediction accuracy than
traditional statistical methods, including artificial neural networks (ANNSs), random forests,
and SVM. ANN-based methods have achieved huge success in power system applications,
such as STLF [10], solar energy forecasting [11], energy management [12], and abnormal
data detection [13]. The authors of [14] proposed a three-layer ANN STLF predictive model.
However, the proposed STLF model was just a naive network that could only consider
a single data point at a time and it could not apply the experiences learned from the
historical training process. The improved ANN-based STLF methods can be further divided
into feedforward neural networks [10,15,16], backpropagation neural networks [17-19],
recurrent neural networks [10,16], the restricted Boltzmann machine [20], and convolutional
neural networks [21-23]. RNNs have achieved particularly high accuracy in recent decades.
RNN models contain memory units that can study present input information and data
from the past. This characteristic is very useful for time-series tasks such as forecasting.
RNN models can be further classified as long short-term memory (LSTM) and gated
recurrent unit (GRU) models. In [24], a LSTM-based STLF model is utilized to predict
short-term residential load. Firstly, Density-Based Spatial Clustering of Application with
Noise (DBSCAN) is employed to cluster the load profiles into several groups and an LSTM
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model is developed to forecast the load of each group. Four input vectors—the sequence of
energy consumptions, the series of the time day indices, the corresponding day of week
indices, and the corresponding binary holiday marks—are fed into the model to improve
the accuracy further. Although RNN can map nonlinear features such as conventional
approaches, this approach also has drawbacks: (1) RNN can only analyze information at
the time domain and is insensitive to the frequency information, while the demand load is
a combination of electricity appliances operating with different frequencies. (2) Moreover,
the relevant weather information should also be fed as an important input feature.

Decomposition methods include empirical mode decomposition (EMD) [25], varia-
tional mode decomposition (VMD) [26,27], seasonal and trend decomposition using Loess
decomposition (STL decomposition) [28], and empirical wavelet transforms (EWT) [29,30].
EMD-based STLF methods are introduced in [25]. As an adaptive nonlinear decomposition
method, EMD decomposes the original signal into a series of intrinsic mode functions (IMFs)
using Hilbert-Huang transform and each IMF is an amplitude modulation—frequency mod-
ulation (AM-FM) signal [31]. However, as a purely data-driven method, EMD lacks a
mathematical definition, so it is difficult to understand the decomposition results; secondly,
the decomposed signals will diverge at the endpoints and are highly sensitive to noise [12].
VMD-based STLF methods are presented in [27,32]. As an alternative algorithm to EMD,
VMD is a non-recursive, adaptive decomposition estimation method to decompose the
original signal into several mode functions with specific bandwidths in the frequency do-
main [33]. The latest decomposition algorithm, EWT, combines the strength of the wavelet’s
mathematical definition with the flexibility of EMD [29].

However, as discussed above, it is vital to create a precise prediction for the distribution
network. The high uncertainty of the distribution network and the strict limitation of the
traditional time-domain STLF model are the main barriers for researchers to improve
the accuracy further. Hence, this paper proposes a hybrid STLF method that can extract
both time-domain and frequency-domain features with high adaptivity. Time—frequency
transformation approaches, such as the Fourier transform, wavelet transform (WT), and
least-squares wavelet (LSW) [34], can effectively convert the data from the time domain
into the frequency domain. The literature proposes a hybrid STLF approach that combines
the WT and ANN [25,27,29-31]. In these works, the original time-series demand load is
transferred into the frequency-domain data, then a series of neural networks are trained
simultaneously to forecast each frequency component. Finally, the predicted values of all
the components are combined to create the overall prediction of the demand load. However,
there is a lack of work to take advantage of all the WT algorithms, which can improve the
prediction accuracy further. As illustrated, a wealth of work is available in the literature
and the existing STLF models still have some knowledge gaps that can be filled.

(1) Although STLF has been fully investigated in transmission networks and at the
household-level, distribution-level STLF is a relatively weak segment in current
power systems.

(2) A new hybrid STLF that takes advantage of Variational Mode Decomposition (VMD),
Empirical Mode Decomposition (EMD), and Empirical Wavelet Transform (EWT)
should be proposed.

The remaining paper is organized as follows: The relevant knowledge regarding
datasets, wavelet transform, recurrent neural networks, and the model structure is intro-
duced in Section 2. In Section 3, three case studies are implemented, which compare the
proposed load forecasting algorithm and other methods and evaluate the parameters that
achieve the best performance. Section 4 discusses the result obtained from Section 3. The
conclusion and final discussion are provided in the last section.

2. Materials and Methods
2.1. Data Description

The dataset employed in this paper includes distribution-level electricity data, which is
constructed by combining household-level smart meter data and weather and temporal data.



Sustainability 2023, 15, 296 40f17

2.1.1. Distribution-Level Electricity Data

In this paper, the distribution network level data are obtained from the physical/
informatic aggregator and the individual household-level smart meter data from Pecan
Street Dataport (Dataport) are added up to match the capacity of the feeder model. The
geographical location of the elasticity data is N 30°15'59.9976", W 7°43/59.9880" (Austin,
TX, USA). The feeder models used for this research are selected from standard feeder
models provided by GridLAB-D 4.3. In this work, 976 houses are aggregated to match
the R5-12.47-2 feeder model, indicating a moderate suburban area (demand capacity is
4500 kW). To reach the defined aggregation size, household smart meter data are picked up
randomly from the Dataport dataset; an example of the demand load is shown in Figure 1.

Jan A}I'w Jul Oct Jan r’\;ljr Jul Oct Jan
014 W15 W16

Date and Time

Active Power /KW

Figure 1. Active power of the distribution-level electricity data.

2.1.2. Weather and Temporal Information

The corresponding weather and temporal information at the same location are ob-
tained from the National Solar Radiation Database (NSRDB). An example of the dataset is
shown in Table 1 and Figure 2; the weather parameters include Dew point (°C), Tempera-
ture (°C), Pressure (Pa), and Relative Humidity (%RH). As for the temporal information,
four variables are introduced, which are: Holiday (1 for holiday days and 0 for non-holiday
days), Hour of the Day (HOD) (index range from 0 to 23), Day of the Week (DOW) (index
range from 0 to 6), and Month of the Year (MOY) (index ranges from 1 to 12). As categorical
variables, DOY, HOD, DOW, and MOY should be pre-processed by one-hot encoding.

Table 1. Shows the weather and temporal dataset.

Dew. Point Temperature Pressure Relative
Timestamp Holiday HOD DOW MOY . g Humidity
O Q) (Pa) u
(%RH)
1 Ianggf)}(l)zm 1 0 3 1 125931 1801934814  1001.035 80.1306
1 Iangla%}(’) o 1 1 3 1 —1.25199  1.385064697 1000.496 82.60188
1 Iang;' B}(I) o 1 2 3 1 —1.25886  1.022241211 999.9987 84.73964
1 Iang;' B}(’) o 1 3 3 1 —1.26002  0.723382568 999.3622 86.57533
1 Iang:' Ig(’) o ! 4 3 1 —1.23658  0.513696289 998.8751 88.04627
1 Iang;' B}(’) o 1 5 3 1 —1.19007  0.407220459 998.4365 89.02894
1 Iangg'lg(’) o 1 6 3 1 —1.09016  0.479547119 998.138 89.215
i S ! 7 3 1 —0.80314  1.532342529 998.006 84.46244

07:00
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Figure 2. Visualization of the weather variables.

2.2. Methods
2.2.1. Empirical Mode Decomposition

EMD is a self-adoptive mode decomposition method and it can decompose the signal
in temporal space directly without transferring it into frequency space (see Figure 3). The
characteristic of EMD is that it does not rely on any mathematical functions but adopts the
signal f(t) accordingly; f(t) is decomposed into N + 1 Intrinsic Mode Functions (IMFs)
fx(t) and a residuum r(t), see (1).

FB) =Yoo filh) +r(b) (1)

An IMF is an AM—FM function and can be expressed as follows:

fi(t) = Fi(t) cos(g(t)) where Fe(t), g (t) > 0Vt €

The main assumption is that Fi(t) and ¢, (t) varies much slower than ¢ (t). The
detailed process is presented in Algorithm 1. An IMF should satisfy two conditions: (1) the
number of extrema and the number of zero crossings must be the same or differ at most
by one; (2) at any point, the mean value of upper (defined by local maxima) and lower
envelope (defined by local minima) is zero. The detailed process of EMD is demonstrated
in Algorithm 1.
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Figure 3. (a) EMD: basic IMF detection; (b) the first IMF candidate.

Algorithm 1: Empirical Mode Decomposition (EMD).

Input: Real-world signal f(¢).
Output: IMFs f;, wherek=1,2,..., N+ 1.
Initialization: n := 1, ro(t) = f(¢).
Step 1: Extract the nth IMF as follows:
(a): Initialize ho(t) :=r, 1(t) and k := 1.
(b): Detect the maxima and minima of hj_1 ().
(c): Compute the upper and lower envelope, Uy 1 (t) and L;_1(#) by a cubic spline
interpolation from the maxima and minima (See Figure 3a).
(d): Compute the mean envelope: my_1(t) = w
(e): Obtain the candidate component: hy(t) := hy_1(t) — my_1(t) (See Figure 3b).
(f): If r (¢) satisfies conditions of an IMF:
@z xy(t) := e (t) and 7, () := 7,1 () — xn(F).
(g): Else:
@@: k:=k+1.
(ii): Repeat steps b)-g) until ki (¢) is an IME
Step 2: If r,,(¢) is a residuum, stop the process.
Else n := n + 1 and start from Step 1.

2.2.2. Variational Mode Decomposition

VMD was proposed by K. Ragomiretskiy in 2014 [33]; it is a non-recursive, adaptive
decomposition estimation method to decompose the original signal into K mode functions
u(t) with specific bandwidth in the frequency domain. Additionally, each u(t) is con-
centrated near the central frequency wy. The nature of the VMD method is an optimal
process to look for K modes that cause the overall bandwidth to be the smallest, as shown
in Algorithm 1:

Already modified by Figure 3a,b.

omin AEE 0 (0004 L) | P st T w=p0 0
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where f(t) is the original signal, 6(¢) represents the Dirac distribution function; ((5 (t) + i) *

Ttk
ug(t) is the corresponding unilateral spectrum of u(t) by implementing the Hilbert trans-
formation; u; and wy represents the kth mode and corresponding central frequency; and
e~J«rt is the exponent term to adjust the frequency spectrum to the corresponding base
frequency band.

Then, by introducing a quadratic penalty « and Lagrange multiplier operator A(t), the
constrained problem mentioned in (3) is transformed into a non-constrained problem, the
augmented Lagrangian expression is expressed as:

L({m} Ak, M= & T 110 [ (808) + £ ) () |ent
L) = S w13 @)
A, £(8) = T me(8)

where « is adopted to ensure the accuracy of the reconstruction; A(t) is employed to
tighten the constraint; and || f(t) — Y&, ux(t)|)3 is a quadratic penalty term to speed up
the convergence. The expression (4) can be solved by employing the alternate direction
method of multipliers (ADMM) to compute the saddle point of the equation. According to
the ADMM optimization method, u; and are updated as follows:

1 ; 1
= argminl ({230}, {ul} (e}, (17)) ®
1 1 1
= argmint {uf* } { P Ak ) ©
AT = A 4 (f Ek Lupth @)
Y ||”"Jrl upla/uilz < ®)
Finally, u ™! and w]'*! are solved as:
A

yiH1 () = F(@) = B tie) + 2457 o

K 1+ 2a(w — wy)?

f n+l dw
;{z+1 0 ’ (10)

2
w1 (w)‘ dw

JoJu

where f(w), A(w), uj(w), and u”“( w) represent the Fourier transform of f(t), A(t), u;(t),
and u "1 (t).

2.2.3. Empirical Wavelet Transforms (EWT)

After the data are denoised via DWT, the denoised data f(t) are decomposed into N
sub-layers via EWT. The EWT aims to extract multiple sub-layers by constructing adaptive
wavelets. The EWT decomposition process is performed in the following steps. In EWT
decomposition, the number of sub-layers N is defined at the beginning.

Step 1: Apply fast Fourier transform (FFT) to the denoised data f(t) to obtain the
frequency spectrum F(w).

Step 2: Search the F(w) to find the N local maxima d = {9,},_;, ) and the corre-
sponding frequencies w = {wn },_; , .y by using the magnitude threshold o and frequency
distance thresholds 5. ot is set as 3% of the fundamental magnitude to detect the significant
frequencies and 6 is set as 8 Hz to avoid overestimation.
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Step 3: Segment the frequency spectrum [0, fosp10 /2] into N segments and the bound-
aries (), is the center line between two neighboring local maxima (see Figure 4), which can

be calculated as: n
Q, = Wn T W41 (11)

o i
1 ] i

[} ]
b 271 fepl 273 —27T3 2T, 2Tp4q

| |
T T
@g w2 w3 W, Wnt1 /i1

Figure 4. Segmenting Fourier spectrum into N contiguous segments (Adopted from [35]).

Step 4: Build N wavelet filters, including one low-pass filter and N — 1 band-pass
filters based on the defined boundaries. The scaling and wavelet functions are defined
in (12) and (13), respectively. A comparison between the demand load data at the time-
and frequency-domain is shown in Figure 5; from the figure, it is observed that the power
spectrums of the load demand not only contain time information but also indicate the
frequency components.

60,000
55,000
45,000
S
S 40,000
=
]
2 35,000
)
o
30,000
25,000
20,000
2011 2012
Year
(a)
1
0.5
0.25
0.031"
0.014
kel
o
-
&
Jan Jun Dec
Year

Figure 5. (a) Load demand curve; (b) Power spectrums of the load demand.

2.2.4. Recurrent Neural Network

The LSTM model was first proposed in 1997. As shown in Figure 6, in LSTM, the
hidden state in traditional RNN is replaced by the memory cell C; and three gates, i.e., the
input gate I;, the forget gate F;, and the output gate O;. The output of the previous time
step h;—1 and the input sequence of the current time step X; are adopted as the input of
the gates. The sigmoid activation function ¢ controls these gates (-): the information is
preserved when the activation output is close to 1 and the information is eliminated when
the activation output approaches 0. As for the memory cell C;, a candidate memory cell C;
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is computed at first. The only difference between C; and the gates are that C; utilizes a Tanh
activation function tanh(-) ranging from —1 to 1. Finally, the memory cell C; is generated
by combining C; and I; and then the previous memory cell C;_; with I; and F;, where I;
decides how many data from C; are useful and F; decides how much information from the
old memory cell is retained. The detailed formulas are presented as follows:

I; = o(Wyi Xt + Wiihy_1 +b;) (12)
F = U(foXt + Wigh 1+ bf) (13)
Ot = 0(Wyo Xt + Wioh_1 + by) (14)

Ct = tanh(WyeXs + Wiehy_1 + be) (15)
CG=FO0C 1+L0oC (16)
hy = O © tanh(Cy) (17)

where X;,® represents element-wise multiplication; W,;, W, fr Wio, Wxe; Whi, Wy, fr Who, Whe
are the weight matrices; and b;, b iz b,, b are the bias parameters.

Vi
T
oo &) @ 1, .
Cand
ﬁ 7 I C; Oy Q
[0 ]| O | [tann] [ O]
B, —tsl I [ ,
X, 1

Figure 6. Block diagram of LSTM model.

2.2.5. Proposed Wavelet Transform-Based Forecasting System
As presented in Figure 7, the proposed method is divided into five steps and described
as follows.

Original Load Demand

Y TT—T ¥ —r

. il .. it .. oo sl

Wavelet Decomposition )

|

Sub-layer 1 Sub-layer 2 Sub-layer 3 Sub-layer N
(1] [ -

[Prediction] [Prediction] [Prediction] ______ Prediction
11 2 31 l N
[ Wavelet Reconstruction ]

Final Forecasted
Load

Figure 7. The overall process of the proposed spectral load forecasting model.
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Step A: Data pre-processing is implemented in the first stage. The original input
dataset, which includes data cleaning, is applied to the original dataset to populate the
missing features. Then, a max—min scaling function is applied to the original dataset to
limit the range of data between 0 and 1.

Step B: The denoised electric load is decomposed into N sub-layers via the WT decom-
position algorithm. An example with nine sub-layers shows the decomposed components
from the original load curve.

Step C: Then N LSTM prediction models are constructed and each BLSTM neural
network model is trained for one sub-layer.

Step D: In the final step, the prediction results for all the sub-layers are reconstructed
to present the final load forecasting results. Repeat Steps A-D until reaching the end of the
testing dataset.

2.2.6. Performance Metrics

To assess the performance of the proposed predictor, four performance metrics are
adopted, which are the mean absolute error (MAE), mean absolute percentage error
(MAPE), rooted mean squared error (RMSE), and R?. The detailed formulas are shown
as follows:

(1) MAE:
_ Zzl\il lyi — il
MAE = =000 (18)
(2) MAPE:
N (s — ) /e
MAPE = Zf:”(y'N vl 1009, (19)
(3) RMSE:
RMSE — (Zfi1 lvi — l?z']z) 2
- ~ (20)
(4) R%:
ss Lilyi — 9:)°
RE=1-—2RES g =iMJi Ji 21
SSror iy —9)° D

where SSggs is sum squared regression error and SStor is sum squared total error.

3. Results

This section evaluates the proposed robust wavelet transform-based STLF model by
implementing three case studies. The first case study investigates the sub-layer number of
the WT, the second case investigates the influence of weather information on forecasting
accuracy, and the last compares different algorithms.

3.1. Sub-Layer Number

Referring to the EWT decomposition technique introduced in Section 2, the original
time-varying load demand is decomposed into N sub-layers by the EWT, which is defined
as S1—Sy in this study. The number of N has a significant impact on the final forecasting
performance. In this study, the range of N increases from 5 to 13. The performance of
the proposed model with different numbers of N is summarized in Table 2 and Figure 8.
From these tables, it is observed that the MAE, MAPE, and RMSE are relatively large
when N is too tiny (near 5) or too large (near 13) (see Figure 8). Among all N values, the
dominant value is N = 10, followed by N = 9, where the RMSE values are 101.089 kW and
102.900 kW, respectively.
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MAPE (%)

Table 2. Day-ahead prediction performance of the proposed model with different sublayer numbers.

N MAE (kW) MAPE (%) RMSE (kW) R?
5 146.721 5.959 202.909 0.725
6 121.614 4.965 159.892 0.837
7 93.622 3.878 124.382 0.928
8 90.313 3.762 116.665 0.936
9 80.222 3.416 102.900 0.954
10 79.948 3.398 101.089 0.956
11 83.153 3.517 106.233 0.947
12 84.610 3.604 105.636 0.949
13 100.364 4318 122.169 0.931
\
5 7 9 11 13

Number of Sub-layers

Figure 8. MAPE:s of the proposed model with different sub-layer numbers.

Once the optimal number of the decomposition layers is determined, the load demand
data are decomposed by EWT to obtain the sub-components. Then, N LSTM predictors
are trained simultaneously to predict each sub-component. The predictions for the decom-
posed sublayers regarding the validation set are shown in Figure 9. The load demand is
decomposed into N sub-layers by the EWT, which provides the best performance of the
selected datasets (N = 10). Sub-layers (5;—S3) capture the low-frequency oscillation of
the baseline and the curves of these sub-layers vary smoothly and change steadily. The
predicted curves of these four layers achieve higher accuracy from the prediction results.
Because the Sub-layers (Sg—S19) capture high-frequency components with a high fluctu-
ation range and include the most noise, most of the prediction errors come from these
components’ predictions.

3.2. Case Study 2: Influence of Weather/Iemporal Information

The weather information, such as temperature, humidity, and pressure, has a sig-
nificant impact on the prediction accuracy of the load forecasting model. The relevant
work has demonstrated that the model with weather information as inputs achieves a
higher accuracy than the model with such information. However, whether this conclusion
still stands in the proposed robustness time—frequency model is unclear. In addition,
the consumer’s electricity activity is strongly correlated with temporal information. For
instance, the electricity consumption is high during peak times (7-10 am and 4-10 pm)
every day, while the electricity usage is significantly low during the off-peak times (such as
midnight). Hence, in this case study, the model with weather/temporal information input
is compared with the model without weather/temporal information. In addition, relevant
weather variables are employed as the input variables of the proposed STLF model. A
comparison is created among STLF without external data, STLF with weather information,
and STLF with both weather and temporal information, see Table 3. From the table, it
is observed that the model without external information achieves the lowest prediction
accuracy. When the weather information, e.g., temperature, humidity, and the dew point,
is added as input variables, the prediction accuracy improves RMSE by 6.34%, MAE by
7.94%, and MAPE by 7.89%, respectively. While introducing the temporal information, e.g.,
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DOY, HOD, DOW, and MOY, the prediction performance improves further, demonstrating
that the relevant variables can enhance the prediction accuracy.
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Figure 9. Validation for each sublayer in the validation set.

Table 3. Comparison of methods with/without weather information.

Method MAE (kW) MAPE (%)  RMSE (kW) R?
Model + Weather Information 73.602 3.130 94.676 0.962
Model + Weather Inforrpatlon + 70.666 3.004 91.084 0.966
Temporal Information
Model without External 79.948 3.398 101.089 0.956
Information

3.3. Case Study 3: Comparision of Different Algorithms

In this case, study, the one-step forecasting performance of the proposed method is
compared with relevant forecasting approaches. A detailed description of the models
adopted in this study is listed below: 1D CNN-LSTM STLF model; 1D CNN-GRU STLF
model; EMD-LSTM STLF model; VMD-LSTM STLF model; and proposed model.

For models 1 and 2, the original time-varying load demand is adopted as the input of
neural network models. However, for models 3, 4, and 5, the actual load demand data are
decomposed via EMD/VMD/EWT, respectively, and then the neural network is trained
for each sub-layer.
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Table 4 shows the performance of five models considering the performance metrics,
i.e., MAE, MAPE, RMSE, and R?, of the predicted load demand regarding the distribution-
level dataset. As shown in the table, the proposed ND-EWT-LSTM-BHO outperforms other
models. Moreover, the spectral load forecasting methods, including ND-EWT-LSTM-BHO,
EMD-LSTM, and VMD-LSTM, have better prediction accuracy than conventional deep
learning methods, including 1D CNN-LSTM and 1D CNN-GRU. 1D CNN-LSTM and 1D
CNN-GRU models have the worst estimation performance, with the highest MAE, MAPE,
and RMSE in all the experiment groups. The prediction performance of VMD-LSTM
and EMD-LSTM are similar, just below the proposed method. Figure 10 compares the
predicted values with the testing set using the proposed and benchmark models. The
results predicted by the proposed model are the closest to the ground truth measurements.
Moreover, the results estimated by the CNN-LSTM/CNN-GRU model are the farthest from

the ground truth curve, showing that CNN-LSTM and CNN-GRU perform worst among
all the algorithms.

Table 4. Prediction performance of the proposed model and related works.

Method MAE (kW) MAPE (%) RMSE (kW) R?
1D CNN-LSTM 189.822 8.564 267.284 0.487
1D CNN-GRU 205.014 9.270 284.339 0.429
VMD-LSTM 122.899 5.010 171.473 0.803
EMD-LSTM 150.303 6.286 196.932 0.709
Proposed Method 70.666 3.004 91.084 0.966
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Figure 10. Day-ahead forecasting results on the distribution-level load. (a) Load demand profiles.
(b) Load demand forecasting error.

Figure 11 shows the scatter plot of different forecasting models’ ground truth and
forecasting values. The scatter plot shows the correlation relationship between the two
variables. The higher the R? value, the stronger the correlation between the predictions
and ground truth, representing better accuracy achieved by the forecasting model. For
the proposed model, the scatter about the line is relatively small and most of the points
are on the regression line, with only several data values far from other data values. For
other spectral methods, the R? of VMD-LSTM and EMD-LSTM models also show a strong
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correlation with the ground truth curve, with R? values over 0.70. CNN-GRU shows the
worst correlation from the scatter plot, with R? values of 0.429.
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Figure 11. High-density scatter plot of ground truth and prediction values of day-ahead load
forecasting models.

4. Discussion

In Section 3, three case studies are implemented. From the first case study, it is
observed that the layer number N has a significant impact on the final forecasting result. A
small or large value of N will reduce the prediction accuracy. When N is too small (such
as 2), the EWT is inefficient in separating all the frequency components, different frequency
components are overlapping, and the LSTM model causes it to be difficult to produce
a precise prediction for each element. When N is too large, there are too many LSTM
predictors trained and the errors from all the predictors are added up, increasing the error
of the predicted active power. As for case study 2, the two important variables that strongly
influence human activity, namely weather and temporal information, are investigated.
The result is obtained by comparing the models with/without the weather and temporal
information. From the result of the case study, it is observed that the weather information,
especially temperature T and humidity H, can improve the prediction accuracy and reduce
the MAE by 3.98%. The temporal data, including DOY, HOD, DOW, and MOY, can reduce
the prediction error further. The results indicate that it is essential to consider the weather
and temporal variables for distribution-level load forecasting. In the last case study, the
robustness of the time—frequency-domain STLF models (VMD-LSTM, EMD-LSTM, and
VMD-LSTM) are compared with the conventional time-domain STLF models (including
LSTM and GRU). The simulation result shows that all three time-frequency domain STLF
models have lower prediction errors than LSTM and GRU models, especially the EWT
model. The explanation for this result is: (1) The robustness of the time—frequency-domain
STLF models can extract frequency and time information from the original dataset; this
information is vital to the analysis of the trend of the demand load. (2) EWT takes advantage
of both EMD (high adaptation) and VMD (a strong mathematical expression). Hence, EWT
achieves the highest accuracy among the five models.
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5. Conclusions

In this paper, a robustness frequency—time-domain STLF model was proposed to
improve the prediction accuracy of the distribution network. The proposed model utilized
the three wavelet transform approaches (EWT, EMD, and VMD) to decompose the original
data to extract the inherent frequency components of the load and then several LSTM
predictors are trained to predict each frequency component. Besides, this paper investigated
the important variables that influence the prediction results. From the case study analysis,
it was found that the decomposition layer number, weather, and temporal information have
a significant impact on the load forecasting results. The results verified that the model that
utilizes both time and frequency data could better estimate the trend of the load. However,
there are also limitations to this work. The training time of the model is longer than the
normal LSTM model and it is time-consuming to tune the hyperparameters. In future
work, a fast parameter-tuning algorithm will be proposed to reduce the training time and
improve the model’s efficiency.
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Abbreviations and Notations

The following abbreviations are used in this manuscript:

STLF Short-term load forecasting
FFT Fast Fourier transform

WT Wavelets transform

RNN Recurrent neural network
EWT Empirical wavelet transform
EMD Empirical mode decomposition
VMD Variational mode decomposition
ML Machine learning

DL Deep learning

LSTM Long-short term memory

GRU Gated recurrent unit

CNN Convolutional neural network
IMF Intrinsic mode functions
AM-FM Amplitude modulation—frequency modulation
SVM Support vector machine

on Low-pass filter

Pq High-pass filter

DIk Detail coefficients

Alk] Approximation coefficients

oT Thresholding function

f Fourier spectrum

Wy Support boundaries

Tn Transition area width

N Number of sub-layers

fi Forgetting gate

it Input gate

Cy Candidate state value of the cell state
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Cy Cell state

Ci1 Cell state of the previous step
Ot Output gate

o Activation function

Ty, Look-back steps

Tr Forecasting steps
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