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Abstract: This paper used the Gini coefficient, standard deviation ellipse, and spatial autocorrelation
model to analyze the overall changes, regional differences, spatio-temporal evolution pattern, and
clustering characteristics of carbon emissions in 87 counties in Gansu Province from 1997 to 2017,
based on which driving factors of carbon emissions were detected using the geographic detector
model, so as to provide a reference for promoting low-carbon green development and ecological
civilization construction in Gansu Province. The empirical research results found that county carbon
emissions in Gansu Province showed a “first urgent and then slow” upward trend, and the difference
in carbon emissions level has a slightly decreasing trend, and there are significant regional differences.
Compared with other regions, the difference in county carbon emissions level in the Longzhong
region has a smaller decline. Meanwhile, the county carbon emissions show spatial differentiation
characteristics “medium-high and low-outside,” among which the carbon emissions in areas with
better economic foundations are much higher than those in other areas, and the spatial polarization
effect is obvious. In addition, there is a significant spatial positive correlation between county carbon
emissions. The counties with high-high clusters are relatively stable, mainly concentrated in the
Longzhong region, while counties with low-low clusters are slightly reduced, mainly concentrated in
the southern ethnic region and the Longdongnan region, and the county carbon emission clusters
type has a spatial locking effect. This is mainly due to the large differences in economic scale,
industrial structure, and population size in Gansu Province, and the interaction between economic
scale and other factors has a more significant impact on the spatial differentiation of carbon emissions.
Moreover, the leading influencing factors of county carbon emission differences also have regional
differences. Therefore, differentiated and targeted carbon emission reduction strategies need to be
implemented urgently. Due to the lack of real county energy consumption statistics, the research
results need to be further tested for robustness.

Keywords: carbon emissions; spatiotemporal evolution; regional differences; driving factors;
Gansu Province

1. Introduction

Global warming has become the focus of the international community [1]. In response
to climate change, 60% of countries or regions in the world are implementing carbon-
neutral strategies in different ways [2–4]. Most countries, represented by the United
States, the United Kingdom, the European Union, and Japan, have set a goal of carbon
neutrality by 2050, which means the world consensus on carbon emission reduction is
gradually forming [5–7]. As the world’s largest carbon emitter, China’s carbon emissions
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reached 10.67 billion tons in 2020, accounting for 30% of the world’s total and putting huge
pressure on carbon emission reduction. Of course, China has also actively undertaken the
responsibility of reducing emissions. At the 75th UN General Assembly, China solemnly
pledged to reach an emission peak by 2030 and strive to achieve carbon neutrality by 2060.
However, the historical tasks of urbanization and industrialization in China have not yet
been completed, the infrastructure urgently needs to be improved, and the proportion
of fossil fuel derived energy is still relatively high. The realization of the “dual-carbon”
goal and the task of low-carbon and circular development are facing the double test of
arduousness and severity. In particular, Gansu Province, an underdeveloped region located
in western China, is not only the main supplier of energy resources but also a crucial
supporting area of an ecological security barrier. With the proposal of the “Belt and Road”
initiative and the ecological protection and high-quality development strategy of the Yellow
River basin in recent years, higher requirements have been put forward for the energy
efficiency of the local economy. The traditional and extensive high consumption, high
input, and high emission development model urgently needs a low-carbon transformation.
The county, as the most basic administrative unit in China, accounts for 78% of China’s
land area, 71.94% of the population, and 51.80% of the GDP, which is the basic spatial unit
and carrier of economic development and industrial transfer, and the main battleground
for future urbanization development [8]. Compared with provinces and cities, counties
can better capture regional heterogeneity, which is of great significance for the adjustment
and transformation of economic structure and development models and actively promotes
the realization of carbon emission reduction targets [9]. Thus, strengthening research on
carbon emissions at the county level is conducive to improving the scientificity, pertinence,
and operability of energy conservation and emission reduction measures [10,11].

Recently, relevant scholars have produced many achievements on carbon emissions
from different perspectives and geographical scales, mainly focusing on total carbon emis-
sions [12], footprint [13], intensity [14], structure [15], and efficiency [16], the evolution
characteristics and action mechanism of the spatiotemporal pattern and its simulation
analysis [17–20], the discussion of carbon emission reduction paths and strategies [21,22],
and the evaluation of the effectiveness of carbon trading policies [23]. For the account-
ing of carbon emissions, the academic community not only pays attention to different
industries such as agriculture, forestry, industry, transportation, energy, construction, and
tourism [24–28] but also continuously emerges carbon research in the fields of housing, ser-
vice industry, land use, and waste in recent years [29–33], greatly expanding and deepening
the research content of carbon emissions. These studies involve global, national, provincial,
municipal, county, community, rural, enterprise, etc., including overall studies and case
studies. For example, at the provincial and municipal scales, China’s carbon emission
research shows significant spatial and temporal differentiation and spatial agglomeration
characteristics. Regions with high carbon emissions are mainly distributed in North China,
Central China, and eastern coastal regions with developed transportation and large energy
consumption [34–36]. Provincial-level energy consumption data are easier to obtain so
carbon emission research is more concentrated on the provincial and above spatial scales.
County-level carbon emissions research has also been increasing in recent years, typically
national or county-level research, but different scholars have different accounting methods.
For example, Xia et al. and Simayi et al. allocated provincial or municipal energy consump-
tion to each city or county based on the county population and the output value of each
industry, respectively, thus obtaining the carbon emissions of each city or county [37,38].
However, the method ignores the differences in energy utilization efficiency between re-
gions, and the accuracy of carbon emission data need to be verified. With the continuous
development and application of remote sensing technology, Lyu et al. built a carbon emis-
sion estimation model based on night light data and analyzed the temporal and spatial
dynamics of carbon emissions from energy consumption in the Yellow River basin in the
provinces, cities, counties, and on a grid scale. The results show that the model’s goodness
of fit and accuracy meet the requirements, and the estimation model is effective, but the
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accuracy of the estimation model for refined county-level data still need to be verified [39].
Moreover, the carbon emission pattern is the joint result of the dynamic spatial effects of the
county itself and its neighborhood, and the study of carbon emissions in a certain county is
not enough to reflect its spatial spillover effect [40]. In addition, increasing carbon emissions
is the interaction of GDP growth, population growth, technological change, institutional
mechanisms, and energy structure. Based on this, domestic and foreign scholars have used
the GTWR model, SDA model, spatial measurement model, and decoupling index to study
the driving factors of air pollution and carbon emission [41,42]. The studies show that the
increase in carbon emissions is mainly caused by economic development and economic
structure [43,44]. At the same time, population agglomeration caused by urbanization also
significantly promotes carbon emissions [45]. Capital investment, opening to the outside
world, and market mechanisms have also been confirmed to be important factors affecting
carbon emissions [46,47]. However, studies also show that the development of science
and technology can effectively reduce carbon emissions and improve energy efficiency,
which is conducive to the control and reduction in carbon emission intensity in China at
the present stage [48].

It is not difficult to find that the current academic circles have produced relatively
systematic studies of carbon emissions, which also provide many useful references for this
paper. However, most carbon emission studies are based on traditional statistical data that
are often limited to the national or provincial level due to data limitations, and it is difficult
to refine to the county scale, which cannot provide more strong support for formulating
regional and differentiated carbon emission reduction policies; especially in Gansu Province,
which is rich in resources and energy, the county is not only an important part of the
industrial zone and a contributor to carbon emissions, but also a key administrative unit
to implement the goal and policy of “double carbon.” However, the research on carbon in
the western region is relatively weak. Therefore, it is necessary to study the county carbon
emission in Gansu Province, which is located in the underdeveloped western area. At the
same time, the current use of night light data to estimate carbon emissions is mainly based
on DMSP/OLS data, and the research was primarily conducted before 2013, so it is difficult
to dynamically monitor and track the development trend of carbon emissions in recent
years. However, since 2012, NPP/VIIRS data have been quite different from the previous
data in terms of spatial resolution, pixel brightness value, and other data characteristics,
which has become an obstacle and bottleneck for dynamic estimation and monitoring of
regional carbon emissions in a long time series. The CEAD night light inversion carbon
emission data used in this paper provides a more accurate data basis for district and
county-scale research, and its data have continuity and timeliness. In addition, because of
differences in urbanization level and economic foundation, the influencing factors of carbon
emissions exist variation. Although large-scale research can control the overall situation,
it is not conducive to exploring different development stages and regionally targeted
differentiated control. Common but differentiated responsibilities for carbon reduction
should be reflected across regions. Gansu Province, as an important ecological hub area
in the west and the whole country, is driven by rapid industrialization and urbanization,
and its carbon emission reduction work is imminent. Based on this, this paper takes the
carbon emissions of 87 counties in Gansu Province as the research object, and with the
support of ArcGIS spatial analysis function, Gini coefficient, standard deviation ellipse,
spatial autocorrelation, and other methods, explores what the temporal and spatial change
trend of carbon emissions of counties in Gansu Province? What are the characteristics or
laws of evolution? What factors affect its carbon emission level? The purpose is to reveal
the difference in the implementation effect of energy conservation and emission reduction
measures under different carbon emission levels and provide a theoretical basis for the
implementation of phased carbon emission reduction measures.
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2. Materials and Methods
2.1. Study Area

Gansu Province (92◦13′~108◦46′ E, 32◦11′~42◦57′ N) is a 42.78 × 104 km2 narrow and
elongated shape region in the upper reaches of the Yellow River and inland of northwest
China, including 14 cities (or prefectures) and 87 counties. Based on the natural geographi-
cal location and previous studies, Gansu Province can be roughly divided into four parts:
the Hexi Corridor region (Jiuquan, Jiayuguan, Zhangye, Jinchang, and Wuwei City), the
Longzhong region (Lanzhou, Baiyin, and Dingxi City), the Longdongnan region (Tianshui,
Longnan, Pingliang and Qingyang City) and the southern ethnic region (Linxia Prefecture
and Gannan Prefecture) (Figure 1). It is located at the intersection of the three natural re-
gions of China’s northwest arid region, Qinghai-Tibet alpine region, and eastern monsoon
region so the landforms are complex and diverse, and it has important strategic significance
in maintaining national ecological security and ecological civilization construction. As an
important industrial base in northwest China, Gansu Province achieved rapid development
of industrialization and economy under the promotion of the strategy of western develop-
ment and “strong industrial province,” and has now formed a relatively complete industrial
system with regional characteristics. However, there is still a considerable gap compared
with China and other developed regions. In 2017, the total population of Gansu Province
was 26.26 million, and the GDP reached 767.70 billion yuan, accounting for only 1.89%
and 0.93% of China, and economic development was relatively slow. The province’s sec-
ondary industry accounted for 34.34%, and the energy consumption reached 75.38 million
tons. At present, it is still transitioning from the early stage of industrialization to the
middle stage. Under the interactive coercion of global climate change and human activities,
Gansu Province will face the dual pressures of economic growth and greenhouse gases in
the future.

Figure 1. Study area.

2.2. Data Sources

The county-level carbon emissions data were derived from the CEADs database
(http://www.ceads.net (accessed on 18 March 2022)). Since the statistical data on energy
consumption are only collected at the provincial-level and cannot be obtained at the county-
level, the research on carbon emissions at the county-level needs to be expanded. At

http://www.ceads.net
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the same time, due to significant differences in satellite data before and after 2013, the
accuracy of most carbon emission data estimated and simulated by night light data need to
be tested. However, CEADs retrieve county carbon emission data from DMSP/OLS and
NPP/VIIRS night light data through particle swarm optimization-back propagation (PSO-
BP) algorithm, which has the advantages of consistent statistical caliber, strong continuity,
and high accuracy. The socioeconomic data were derived from the Statistical Yearbooks
of Gansu.

2.3. Research Methods
2.3.1. Gini Coefficient

The Gini coefficient, also known as the Lorenz coefficient, is a commonly used index
to measure the income difference among residents in a country or region, which is of great
significance for evaluating macroeconomic development and the gap between rich and
poor. In recent years, its connotation has been enriched and expanded and has been widely
used in resource, environmental, carbon emission, and other fields. Therefore, this paper
introduces the environmental Gini coefficient to assess the degree of difference in carbon
emission distribution [49]. The calculation formula is as follows:

GINI = 1−
n

∑
i=1

(
popi − popi−1

)
(emii + emii−1) (1)

where GINI is the Gini coefficient of carbon emissions per capita; popi is the historical
cumulative population proportion of the region; emii is the historical cumulative carbon
emission proportion of the region. The GINI value is [0, 1], and the smaller the value, the
smaller the unfairness of regional carbon emissions. According to international practice,
0.4 is generally regarded as the “warning line” of distribution gap or fairness. If GINI is less
than 0.4, it means that the regional carbon emission allocation is relatively fair. Otherwise,
the allocation of carbon emissions is not fair enough.

2.3.2. Standard Deviation Ellipse

The standard deviation ellipse is characterized by centrality, distribution, density,
orientation, and morphology, which can accurately describe the directional distribution
relationship between carbon emissions and regions and quantitatively describe its dynamic
evolution trend [50]. The center of gravity of the ellipse depicts the centrality of the elements
(carbon emission), the azimuth depicts the trend of elements, the area depicts the main
range of elements distribution, the major axis of the ellipse represents the distribution
direction of elements, and the minor axis represents the dispersion of elements. The specific
formula refers to Yang et al. [51].

X =

n
∑

i=1
xi

n
, Y =

n
∑

i=1
yi

n
(2)

SDEx =

√√√√√ n
∑

i=1

(
xi − X

)2

n
, SDEy =

√√√√√ n
∑

i=1

(
yi −Y

)2

n
(3)

tan θ =

n
∑

i=1
x̃2

i −
n
∑

i=1
ỹ2

i +

√(
n
∑

i=1
x̃2

i−
n
∑

i=1
ỹ2

i

)2
+ 4
(

n
∑

i=1
x̃i ỹi

)2

2
n
∑

i=1
x̃i ỹi

(4)

In the formula, X and Y are the central coordinates of the ellipse, respectively; xi and yi
are the coordinates of the i-th study unit, respectively; SDEx and SDEy are the variances of
the x-axes and y-axes of the ellipse, respectively; tanθ is the rotation angle of the ellipse; x̃i
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and ỹi are the deviation between the center of the ellipse and the center of the i-th element
space, respectively.

2.3.3. Spatial Autocorrelation Analysis

The first law of geography states that geographical phenomena are spatially correlated.
Spatial autocorrelation reflects the correlation degree between a certain attribute value
on a spatial unit and the same attribute value on its neighbors. To measure the overall
characteristics of the spatial correlation degree of carbon emissions, the global Moran’s I
statistic was used [52]. The equation is as follows:

I =

n
n
∑

i=1

n
∑

j=1
wij(xi − x)

(
xj − x

)
n
∑

i=1

n
∑

j=1
wij

n
∑

i=1
wij(xi − x)2

(5)

where xi and xj represent the observed values of unit i and unit j, respectively; n is the
number of space units; x is the average of the observations; wij is the spatial weight.
I ∈ [−1, 1]. When I > 0, the observed values present spatial positive autocorrelation; When
I < 0, the observed values present negative spatial autocorrelation. The absolute value of
the I index reflects the degree of spatial correlation. The larger the absolute value, the larger
the degree of spatial correlation.

To reveal the local similarities and differences in the spatial association of carbon
emissions between local units and adjacent units, this paper further conducts clustering
tests through local spatial autocorrelation (LISA) [53]. The calculation formula is:

Ii =

n(xi − x)
n
∑

j=1
wij
(
xj − x

)
n
∑

i=1
(xi − x)2

(6)

In the formula, if Ii > 0, it indicates that the carbon emission distribution trend between
adjacent units is similar, which is a high-high or low-low value cluster; If Ii < 0, it indicates
that the distribution trend of carbon emissions between adjacent units is not similar, which
is a high-low or low-high value clusters.

2.3.4. Geodetector Model

Referring to the existing research, following the principles of availability of county
data and scientific and typical construction of indicator systems, this paper focuses on
the investigation and in-depth analysis of the impact of 9 factors, including population,
economy, investment, and technology, on carbon emissions (Table 1). Studies have con-
firmed that population is one of the main driving factors of carbon emissions [54–56],
and population has an impact on carbon emissions through production and consumption
behavior and has a two-way effect. Compared with population density, structure, and
other indicators, the population size and urbanization level selected in this paper can
better reflect the direct impact of population changes on carbon emissions in the process
of urbanization. The promotion of the regional economy makes changes in production
and consumption patterns and then changes the level of carbon emissions. Therefore,
this paper selects economic scale and financial input to characterize the level of afflu-
ence that affects environmental pressure because the irrational industrial structure is the
contributing factor to China’s carbon emissions, and the economy of Gansu Province is
generally underdeveloped, most counties are still in the middle stage of industrialization
development, so the ratio of the added value of secondary production to the added value of
primary production is used to discuss the impact of industrial structure on county carbon
emissions. Consumption is an important carriage for urban economic development, and
the improvement of the county’s disposable income will promote an increase in urban
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consumption emissions [57]. Therefore, this paper selects the per capita disposable income
of urban residents to represent the impact of living standards on carbon emissions. The
market potential of large-scale and high-consumption activity attracts the migration of
manufacturing and service industries, which will have an impact on carbon emissions.
Therefore, this paper selects market scale and investment level to characterize the impact on
carbon emissions. Industrialization plays a decisive role in reducing carbon emissions, and
the improvement of energy efficiency is one of the key means to achieve carbon emission
reduction [58]. This paper selects carbon emission intensity to characterize the impact of
technological progress on carbon emissions. First, SPSS 27 software was used to conduct
KMO and Bartleet tests for the driving factors, and it was calculated that the KMO value
was greater than 0.5, and the Bartleet spherical test results were all significant at the 1%
level, indicating that the variables could be factor analyzed.

Table 1. The main explanatory variables.

Influence Factors Index Definition Mean
Value

Standard
Deviation

Minimum
Value

Maximum
Value

Population size (X1) Total resident population at the end of the year
(10,000 persons) 30.34 20.31 1.53 131.61

Urbanization level (X2) Proportion of urban population in total resident
population (%) 37.68 20.99 11.04 100.00

Economic scale (X3) Gross domestic product (10,000 yuan) 83.36 121.34 7.78 947.13

Industrial structure (X4) Ratio of secondary production value added to
primary production value added 12.17 49.01 0.22 358.60

Financial input (X5) General public budget expenditure (10,000 yuan) 25.06 9.70 7.44 63.68

living standard (X6) Per capita disposable income of urban residents
(10,000 yuan) 2.46 0.48 1.67 3.87

market size (X7) Per capita retail sales of consumer goods
(10,000 yuan) 1.10 0.99 0.10 5.54

Investment level (X8) Investment in fixed assets per capita (10,000 yuan) 2.53 2.38 0.38 20.14
Carbon emission intensity (X9) Carbon emission per unit GDP (t/10,000 yuan) 3.03 1.47 0.65 8.63

Geographic detectors have been widely used in natural, social economic, environ-
mental, and other related fields in recent years because of their few assumptions and
wide applications. Therefore, this paper uses actor detection and interaction detection in
geographic detectors to detect the leading factors affecting the spatial differentiation of
carbon emissions in counties of Gansu Province [59,60]. Its calculation formula is:

q = 1−

L
∑

h=1
nhσ2

h

nσ2 (7)

where q is the explanatory power value of the probe factor; L is each factor type; n and
nh are the number of all samples in the study area and the number of samples within the
factor type h, respectively; σ2 is the discrete variance of all samples in the whole study area;
σ2

h is the variance of sample discrete variance within factor type h; q ∈ [0, 1]. The larger the
q value, the stronger the spatial determinacy of the factor to carbon emissions.

In addition, the interaction detection model is used to detect whether each driving
factor has an independent influence when explaining factor variables or whether it has
enhanced or weakened interpretation ability after an interaction. The interaction types of
factors mainly include five types: nonlinear attenuation, single-factor nonlinear attenuation,
double-factor enhancement, and independent and nonlinear enhancement.

3. Results and Analysis
3.1. Temporal Evolution of Carbon Emissions

The county total carbon emissions in Gansu Province showed an upward trend of
“first urgent and then slow” from 1997 to 2017 (Figure 2a). Although carbon emissions
fluctuated up and down after 2011, the decline was small, indicating that Gansu Province
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still faces severe pressure to reduce emissions. The per capita carbon emissions in the
counties of Gansu Province increased from 2.17t in 1997 to 6.53t in 2017, an increase of
200.92%, especially before 2011. After 2011, the increase rate of per capita carbon emissions
slowed down significantly and reduced in 2015, which is inseparable from the policy
constraints and implementation of high-quality economic transformation since the 18th
National Congress and energy conservation and emission reduction targets. From the
regional perspective, the carbon emissions in the Longzhong region have always been the
largest, reaching 65.48 million tons in 2017 and accounting for 38.21% of Gansu Province.
The carbon emissions in the Longdongnan region lagged behind the Hexi region before
2005 and rose rapidly after 2005, overtaking the Hexi region and becoming the second
largest carbon emission area in Gansu Province, which benefited from the optimization of
industrial structure and the effective promotion of ecological protection and restoration
projects in Hexi region. The carbon emissions of the southern ethnic minority region are
always lower than other regions.

Figure 2. Regional differences of carbon emissions and changes of Gini coefficient of Gansu Province
in 1997–2017. (a. Carbon emissions in different regions; b. Gini coefficient of carbon emissions.)

The Gini coefficient of county carbon emissions in Gansu Province showed a continu-
ous downward trend from 1997 to 2017 (Figure 2b), decreasing from 0.54 in 1997 to 0.39 in
2017, indicating that the carbon emission gap between counties was narrowing. The Gini
coefficient of county carbon emissions in the Hexi region generally shows a fluctuating
downward trend, and after 2009, the Gini coefficient fell below the warning value of 0.4,
and the carbon emission gap decreased slightly. The change in the Gini coefficient of
county carbon emissions in the Longzhong region is basically consistent with that in Gansu
Province, and the decline is slightly faster than that in Gansu Province after 2012, but
the average value of the Gini coefficient is still above 0.4. The Gini coefficient of carbon
emissions in the Longdongnan region shows a fluctuating downward trend, and the Gini
coefficient is not significantly higher than 0.4 during the study period. Hence, the difference
in county carbon emissions is relatively fair. The Gini coefficient of carbon emissions of
the southern ethnic region has the largest downward trend, especially after 2006, and the
difference in county carbon emissions is significantly smaller than that in other regions.

3.2. Spatial Pattern of Carbon Emissions

The carbon emission levels in the counties of Gansu Province showed an obvious
upward trend from 1997 to 2007. In 1997, county carbon emissions of Gansu Province were
relatively low as a whole. Except for cities and industrial cities, the carbon emissions of
other counties did not exceed one million tons. In 2007, carbon emissions of all counties
increased, especially in the Longzhong region, with Lanzhou as the core. By 2017, the
increase in carbon emissions in the counties had obviously accelerated and gradually spread
to the periphery, forming a geospatial pattern of medium-high and low outside (Figure 3).
The distribution of areas with higher carbon emissions and above in counties is scattered,
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mainly concentrated in the Longzhong region represented by Yuzhong, Chengguan, Qilihe,
Honggu, Yongdeng, and Baiyin District, and the regional urban areas in the Hexi region.
The low-value areas of carbon emissions are concentrated in the southern ethnic region,
mainly in Gannan Prefecture, and the carbon emissions in most counties are lower than
one million tons.

Figure 3. Spatial patterns of county carbon emissions of Gansu Province in 1997–2017.

3.3. Evolution Trajectory Analysis of Carbon Emissions

In this part, five-time points in 1997, 2002, 2007, 2012, and 2017 were selected to
measure the spatial movement characteristics of county carbon emissions of Gansu Province
and the relevant attributes of the standard deviation ellipse (Figure 4).

Figure 4. The standard deviation ellipse and movement trajectory of gravity center of county carbon
emissions of Gansu Province in 1997–2017.

The distribution pattern of county carbon emissions in Gansu Province is basically
stable, and the carbon emissions center is always located in Lanzhou City in the Longzhong
region, manifesting that carbon emissions at the county level of Lanzhou City are relatively
high, which is basically consistent with the characteristics of its spatial evolution pattern.
From 1997 to 2002 and from 2002 to 2007, the center of carbon emission moved to the
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southwest two consecutive times. From 2007 to 2012, the center of carbon emission shifted
significantly to the southeast, and from 2012 to 2017, it shifted slightly to the south. In
terms of moving distance, the center of county carbon emissions distribution of Gansu
Province moved to the southeast more than the total distance to the southwest and south,
indicating that the increasing rate of county carbon emission in the Longdongnan region
was fast after 2007, and driving the center of carbon emission in Gansu Province to shift to
the southeast gradually.

From the perspective of long and short semi-axes, the long semi-axis showed a fluctuat-
ing elongation trend in the northwest-southeast direction from 1997 to 2017, with the radius
increasing from 428.56 km to 449.83 km, and the short semi-axis also showed an elongation
trend in the northeast-southwest direction, with the radius increasing from 117.05 km to
140.23 km, indicating that there was a spatial diffusion trend of carbon emissions in the
northwest-southeast and northeast-southwest directions. From the azimuth angle, the
azimuth angle of carbon emissions decreased slightly from 1997 to 2017, indicating that the
divergence direction of carbon emissions was relatively stable. From the elliptical area, the
elliptical area of carbon emissions has expanded from 157,548 km2 in 1997 to 198,135 km2

in 2017, illustrating the high-quality development of Gansu’s social economy is still facing
greater carbon emission pressure.

3.4. Spatial Agglomeration Analysis of Carbon Emissions

The Moran’s I values of county carbon emissions in Gansu Province were 0.349, 0.319,
and 0.275 in 1997, 2007, and 2017, respectively, and the Z-value of normal statistics passed
the 1% significance test, that is, county carbon emissions in Gansu Province showed a
positive spatial autocorrelation, which indicates that there are high (low) value clusters of
county carbon emissions in space, and the spatial agglomeration degree of county units
with similar carbon emissions decreases.

Figure 5 shows that the spatial agglomeration pattern of county carbon emissions of
Gansu Province was relatively fixed from 1997 to 2017, dominated by high-high clusters
and low-low clusters. High-high clusters were basically unchanged, mainly distributed in
Lanzhou, Baiyin, and other Longzhong regions. Low-low clusters were mainly distributed
in Gannan, Longnan, Linxia, and Dingxi counties in the southwest of Gansu Province, and
the range of low-low clusters was slightly reduced.

To further reveal the transfer of county carbon emissions in different local relevant
spatial patterns at different times, the LISA time-space transition matrix is further used for
tracking analysis. Spatiotemporal transitions can be divided into four types, involving 16
transition forms. Type I refers to the transition that only occurred in the county itself; Type
II refers to those that the county itself has not transited, and the neighborhood shape has
transited; Type III refers to the transition of the county itself and its neighborhood; Type
IV refers to the fact that neither the county itself nor its neighborhood has experienced
any transition. Table 2 shows that the type IV transition was the main type, and few
transitions occurred among different types. There was a certain transition inertia among
county types, and the evolution of carbon emissions was “path dependent.” Among them,
the spatiotemporal cohesion index of type IV is as high as 0.88, which means that the
probability of no spatiotemporal transition of carbon emissions is 88%, demonstrating that
the spatial cohesion of carbon emissions at the county of Gansu Province shows a high
path locking effect.

Table 2. LISA spatiotemporal transition matrix of carbon emissions of Gansu Province in 1997–2017.

Time Spatial Association Mode HHt+1 HLt+1 LLt+1 LHt+1

1997–2017

HHt IV(12) II(0) III(0) I(1)
HLt II(0) IV(1) I(0) III(0)
LLt III(0) I(1) IV(13) II(0)
LHt I(1) III(0) II(0) IV(3)
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Figure 5. Moran scatter plot and LISA clustering of carbon emissions of Gansu Province in 1997–2017.

4. Driving Factors of Carbon Emissions
4.1. Driving Factors of Spatial Differentiation of Carbon Emissions in Gansu Province

The spatial differentiation of county carbon emissions of Gansu Province is mainly
mutually affected by economic, societal, population, and other factors. As shown in
Table 3, economic scale and industrial structure are the main factors for the increase in
carbon emissions, with q values reaching 0.760 and 0.531, respectively. Meanwhile, the q
value of population size and urbanization level is also higher than 0.440, indicating that
urbanization level and population size are also important factors affecting carbon emissions.
Urbanization mainly leads to an increase in energy consumption and carbon emissions
through the population scale effect, urban scale expansion, and industrial agglomeration.
In addition, the impact of living standards on carbon emissions cannot be ignored either.

The interaction detection results show that the dominant interaction factors have
stronger explanatory power than the single factor, and the interaction between factors is
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mainly nonlinear and enhanced, which indicates the spatial variation of carbon emissions in
Gansu Province is mainly the comprehensive effect of multiple factors (Figure 6a). Among
them, the explanatory power of interaction between economic scale and other factors is
significantly higher than that of interaction between other factors. The explanatory power
of interaction between economic scale and carbon emission intensity is the strongest, the q
value reaches 0.996, and the explanatory power of interaction between financial input and
investment level is the weakest. For Gansu Province, taking advantage of the opportunity of
the new round of western development, reducing carbon emissions through technological
innovation, industrial structure transformation, upgrading, improving energy efficiency,
and other two-pronged measures is the key to achieving low-carbon development.

Figure 6. Interaction detection results of carbon emission driving factors in Gansu province and
sub-regions.
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Table 3. Detection results of the driving factors of carbon emissions in Gansu Province and its
sub-regions.

Factors
q

Gansu Province Hexi Region Longzhong
Region

Longdongnan
Region

Southern Ethnic
Region

X1 0.445 *** 0.645 *** 0.482 *** 0.547 *** 0.816 ***
X2 0.414 *** 0.259 *** 0.475 *** 20.475 *** 0.340 ***
X3 0.760 *** 0.804 *** 0.768 *** 0.797 *** 0.764 ***
X4 0.531 *** 0.456 *** 0.630 *** 0.670 *** 0.580 ***
X5 0.233 *** 0.664 *** 0.204 *** 0.507 *** 0.478 ***
X6 0.441 *** 0.726 *** 0.449 *** 0.686 *** 0.667 ***
X7 0.333 *** 0.855 *** 0.458 *** 0.615 *** 0.590 ***
X8 0.334 *** 0.646 *** 0.707 *** 0.154 *** 0.410 ***
X9 0.299 *** 0.718 *** 0.706 *** 0.406 *** 0.844 ***

Notes: *** p < 0.01.

4.2. Driving Factors of Carbon Emissions in Different Regions

Table 3 and Figure 6b–e show that the influencing factors of spatial differentiation of
county carbon emissions in different regions are heterogeneous.

The leading factors of carbon emission in the Hexi region are market size (0.855),
economic size (0.804), and economic size ∩ investment level (0.999). The Hexi Corridor is an
important military town in the northwest of China and an indispensable part of the ancient
Silk Road. It is rich in resources and energy. In its early days, it was a rich place for military
strategists to compete. The urban function of the “tea and horse trade” has stimulated the
expansion of trade and consumption markets in this region and the constant increase in
social fixed investment. In addition, the rapid development of resource-based cities such as
Yumen, Jinchuan, Jiayuguan, and Suzhou has injected vitality into the economy. However,
the rapid development and extensive utilization of resources and energy will inevitably
promote an increase in carbon emissions. With the depletion of resources in recent years,
its industry is facing the challenge of adjustment and transformation, and it is urgent to
promote the development of the local economy to a green environment.

The leading factors of carbon emission in the Longzhong region are economic size
(0.768), investment level (0.707), and population size ∩ investment level (0.999). Lanzhou
and Baiyin, as important industrial towns in the west, economic centers in the upper
reaches of the Yellow River, and important cities in the Silk Road Economic Belt, have a fast
flow of regional factor resources and strong regional radiation. The economic foundation
of the counties in this region is better than that of other regions as a whole. With the
further promotion of the construction of Lanzhou-Xining urban agglomeration, the market
radiation scope is gradually expanding, production factors are concentrated, population
concentration is high, and the scale of construction land is expanding. However, due to the
terrain limitation of the valley basin, the dense population and production activities have
increased the atmospheric environmental pressure, making it a high-value concentration
area of carbon emissions. In addition, heavy industries with high water consumption, high
energy consumption, and high pollution, such as the petrochemical and nonferrous metal
smelting industry, still account for a large proportion of the region’s industries. The conver-
gence of economic structure is common, and it is difficult to change the transformation and
upgrading of the economic industrial structure and the conversion of new and old kinetic
energy in the short term. While the high-energy-consuming industries promote economic
development, they also contribute to the increase in carbon emissions in the region.

The dominant factors of carbon emission in the Longdongnan region are economic size
(0.797), living standard (0.686), and economic size ∩ carbon emission intensity (0.997). The
region has laid a solid foundation for the rapid promotion of the county economy by virtue
of its favorable location advantages and good industrial foundation such as electronics,
electricians, and equipment manufacturing. However, traditional industries still account
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for a certain proportion, and green manufacturing with technological innovation as the
core is relatively limited. With the improvement of the living standard of urban residents,
the concept of urban consumption has gradually changed, and the consumption of various
goods and services has increased. The potential of large-scale and high-consumption
markets has attracted the migration of manufacturing and service industries, and the living
standard has increased carbon emissions. In addition, the region has a large national energy
and chemical industry base. Pingliang and Qingyang have achieved rapid economic growth
by virtue of their energy endowment advantages and have long been at a higher carbon
emission level in Gansu Province. However, the energy structure dominated by coal has
promoted the agglomeration of high energy-consuming industries, which is not conducive
to the realization of the “low carbon” and “green” development goals in the region.

The main influencing factors of carbon emission in the southern minority region are
carbon emission intensity (0.844), population size (0.816), and economic size ∩ carbon
emission intensity (1.00). This region is an arid and alpine agricultural and pastoral area at
the intersection of Gansu and Qinghai. The ecosystem is fragile, the industrial foundation is
weak, and investment is limited. Agriculture and animal husbandry are the main channels
of the county economy. A higher livestock breeding scale, while increasing income, also
leads to increased carbon emissions. At the same time, restrictions emplaced by the natural
environment, economic foundation, traditional ways of production and living, and other
energy inputs. This region has an extensive household energy consumption structure
and low energy utilization efficiency. The increase in population and the development of
urbanization promote the increasing energy consumption of buildings and living, which
leads to the increase in carbon emissions from production and living.

5. Discussion

Reducing carbon emissions has become a global goal in combating climate change.
According to the spatiotemporal evolution trajectory and driving factor analysis of county
carbon emissions, Gansu Province should note the following points in terms of carbon peak
and emission reduction path:

The above analysis results show that Gansu Province is still facing a severe situation in
carbon emissions in the future. Therefore, Gansu Province should fully grasp the strategic
opportunities of “double carbon,” “the Belt and Road,” the new round of western devel-
opment, ecological protection, and high-quality development of the Yellow River basin,
and combine the background foundation and resource endowment conditions of each
region to strengthen the investment in low-carbon technology innovation, improve the
policies and development mechanisms related to carbon emissions, give play to the ability
of low-carbon technology to optimize and upgrade traditional industries, accelerate the
cultivation and expansion of distinctive industries, encourage the integration of upstream
and downstream development of different industries and industrial chains, and avoid ho-
mogeneous competition between counties, enterprises, and industries. To effectively learn
from the experience of advanced low-carbon pilot cities, scientifically formulate systematic
and diverse green low-carbon development models and emission reduction paths based on
local conditions, and strive to achieve a peak in carbon emissions before 2030.

Unbalanced and inadequate development is still the major contradiction of carbon
emissions in Gansu Province. The urban areas of prefecture-level cities and industrial-
oriented districts (cities and counties) are the basic implementation units of carbon emission
reduction in the future. As the largest source of carbon emissions in Gansu Province, the
Longzhong region is a key area for carbon emission reduction at present. Meanwhile,
the Longzhong region is also the core region of the province. In the future, Longzhong
should play a leading role in carbon emission reduction, strive to be a proponent and
practitioner of promoting carbon peak and carbon neutralization, take carbon reduction
as the key strategic direction, promote the upgrading of traditional industries such as
the petrochemical and non-ferrous metal smelting industries, and eliminate production
capacity with high emissions, high consumption, and low efficiency, continuously improve



Sustainability 2023, 15, 291 15 of 19

the energy consumption structure of production and living. Moreover, the region should
improve the mechanisms of carbon emission reduction, carbon trading, and energy trading
in different industries in an orderly manner, strengthen the investment and application of
green low-carbon technologies, continuously optimize energy resource allocation capabili-
ties, expand the clean energy consumption and investment market, and strive to become a
demonstration area for energy conservation and emission reduction in the province.

Economic scale is the main driving force for the increase in county carbon emission in
Gansu Province, but it is obviously inconsistent with the actual economic development to
achieve carbon emission reduction by abandoning economic growth and limiting indus-
try scale output. Therefore, under the premise of maintaining steady economic growth,
Gansu’s carbon emission reduction policy needs to promote the integration and devel-
opment of energy resources advantages and industrial cultivation so as to realize the
coordinated development of carbon emission reduction and economy and society. For the
Longzhong region where energy consumption is relatively concentrated, give full play
to the advantages of human capital, economic capital and technological innovation and
research and development, promote the deep integration of energy, science and technology,
economy and industry, and form a leading role in the demonstration of leading industries.
For the Hexi region, take full strength of resource endowment, vigorously develop wind
power, photovoltaic power generation, solar heat and other clean new energy, and focus
on key technologies of new energy, strengthen coordination and linkage of production,
education and research, and build a complete industrial chain. For the Longdongnan
region, constantly consolidate the economic foundation, adhere to the pace of green and
clean development and supply of coal, oil, natural gas and other resources, continuously
optimize the energy structure and layout, strengthen technological innovation capabilities.
While maintaining economic growth, the southern ethnic region should grasp the ecological
protection and high-quality development strategy of the Yellow River Basin, adhere to
ecological priority, actively promote new energy sources of wind, solar and electricity, and
improve the energy utilization efficiency.

6. Conclusions

From the multi-dimensional perspective of time and space, this paper analyzed the
overall change trend, regional differences, and spatial pattern of carbon emissions in
87 countries of Gansu Province by Gini coefficient, ArcGIS spatial analysis function, stan-
dard deviation ellipse, and spatial autocorrelation. At the same time, the driving factors
of carbon emissions were detected by geographic detectors. The purpose of this study is
to provide a reference for the realization of carbon emission reduction targets in Gansu
Province in order to promote the green, low-carbon, and coordinated development of
Gansu Province. The results show that:

County carbon emissions in Gansu Province showed an upward state of “first urgent
and then slow” from 1997 to 2017, with an overall convergence tendency, but it has not
yet reached the carbon peak. From the perspective of regional differences, the Longzhong
region is the main source of carbon emissions in Gansu Province, and the differences within
counties are still large. The carbon emissions in the southern ethnic region are always the
smallest, and the differences in carbon emissions between counties are also small.

In terms of spatial distribution, county carbon emissions in Gansu Province show
a spatial pattern of “high in the middle and low at both ends.” The carbon emissions in
the Longzhong region are significantly higher than other regions, and provincial capitals,
industrial cities, and prefecture-level cities are much higher than general county units
and with the passage of time, the center of gravity of carbon emission distribution moved
slightly to the southeast direction, but the overall change was little. Meanwhile, county
carbon emissions have an obvious spatial positive correlation. The distribution range of
the high-high clusters area is relatively stable, mainly concentrated in Lanzhou City and
Baiyin City in the Longzhong region, while the low-low cluster areas are widely distributed,
mainly in the southern ethnic region and Longnan City in the Longdongnan region. In
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addition, the LISA spatiotemporal transition matrix shows that there is a high path-locking
effect in county carbon emissions.

From the analysis of driving factors, we can see that economic scale, industrial struc-
ture, and population size are the dominant factors for the spatial differentiation of county
carbon emissions in Gansu Province, among which economic scale has the strongest ex-
planatory power and the explanatory power is significantly enhanced after interaction with
other factors. The leading factors of the spatial differentiation of carbon emission levels in
different regions are quite different. The market scale and carbon emission intensity have a
significant impact on the Hexi region and the southern ethnic region, while the economic
scale has a significant impact on the Longzhong region and Longdongnan region.

The carbon emission data retrieved by CEADs night lights used in this paper pro-
vide a more accurate data basis for county-level research, fill the gap of statistical data
in micro-scale energy data, and are widely used by domestic and foreign scholars in the
assessment of socioeconomic factors such as population, urban expansion and traffic, and
the measurement and research of pollutants and carbon emissions. Based on these data,
this paper also explores the spatiotemporal evolution characteristics of carbon emissions
at the county level in Gansu Province in order to provide a reference for the development
of carbon emission reduction strategies in different regions. However, due to the lack of
real county-level energy consumption statistical data and the latest county carbon emission
data, some studies cannot be carried out, or the results of the studies vary greatly or are
not accurate enough. Therefore, it is recommended that the county government of Gansu
Province establish an energy consumption statistics system, develop an energy balance
sheet, and directly obtain carbon emission data, which provides a basis for formulating
more effective carbon emission reduction policies in the county. In the future, in addition
to night light data, multi-dimensional data such as the land, social economy, and natural
geography should be considered when calculating carbon emissions, which can not only
expand the application scope of the night light data set, provide a reference for the govern-
ment and policymakers, but also help to achieve coordinated emission reduction between
different departments.
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