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Abstract: The urban expansion process involves multiple stakeholders whose interactions and
decision-making behaviors have a complex impact on urban land conversion. In this study, we
established an urban expansion simulation model that couples two sub-models: the residential
location selection model and the land acquisition bargaining model. Those sub-models include four
types of agents: resident agent (RA), real estate developer agent (DA), government agent (GA), and
farmer agent (FA). The residential location selection model is composed of three agents, RA, DA,
and GA, and is first used to select residential locations, while an artificial neural network (ANN) is
used to define the behavior rules of RA and RA selects pixels as candidate locations according to the
joint decision probability. Then the land acquisition bargaining model is used, which is composed
of GA and FA. If the land acquisition is successful, a pixel is converted into urban land, which is
occupied by the corresponding RA; otherwise, the RA selects the next pixel and enters the bargaining
process again, and so on, until the RA successfully selects a residential location. Each iteration
represents the selection process of an agent. We used this model to simulate urban expansion within
the Wuhan Urban Development Zone (WHUDZ) of central China from 2009 to 2019. The overall
accuracy and Kappa coefficient of the simulation results were 92.78% and 55.24%, respectively, which
were higher than the results using logistic regression cellular automata. Moreover, we obtained the
relative contributions of various influencing factors in the ANN on the residential location selection,
revealing the influence of the land acquisition process on land expansion. In addition, the coupled
model predicted that the WHUDZ’s urban land area will reach 1415.82 km2 in 2029, mainly through
extensional expansion, and the southeast and northwest will be expansion hot spots.

Keywords: urban expansion simulation; agent-based model; residential location selection; land
acquisition bargaining; Wuhan Urban Development Zone

1. Introduction

In 2018, 55.3% of the world’s population lived in cities, which is expected to increase
to 60.0% by 2030 [1], indicating that urbanization will continue to advance globally in the
coming decades. As the largest developing country in the world, China’s urbanization level
has increased from 17.9% in 1978 to 64.7% in 2021. However, during rapid urbanization,
land tends to expand in a more “aggressive” way that is faster than population growth [2,3],
and the characteristics of land-centered urbanization appear [4]. On the one hand, local
governments have gained considerable fiscal revenue through land transfer, which has
promoted regional economic development. On the other hand, the large-scale expropriation
of farmers’ land for urban construction has caused social and ecological problems, such as
land acquisition conflicts and encroachment on extensive farmland. China’s land resources
have long faced the dual tasks of development and conservation, the contradictions between
supply and demand, and the pressures of resource utilization and ecological protection [5].
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Urban expansion simulation technology can guide urban expansion by predicting
future land demand and simulating development scenarios, which can promote rational
urban construction and efficient land use. Because it can provide decision support for
land management and urban planning, it has become a research hotspot in geography
and urban planning. Urban expansion simulation models can be divided into top-down
and bottom-up models [6]. The top-down model mainly uses mathematical statistics or
empirical equations to express the dynamic time changes and ignores the spatial–temporal
differences of urban expansion, which fails to reflect the complexity of the urban system
evolution process, such as the system dynamics model [7].

Bottom-up cellular automata (CA) and agent-based models (ABM) are the most widely
used models in urban expansion simulation. CA is a dynamical model with discrete
time, space, and cell status and consists of four elements: space, cell status, neighbors,
and transition rules [8]. CA assumes that historical and neighboring land use states
will affect future land mode, so the cellular state transition rules reflect this, and the
complex urban spatial structure is simulated through changes to the cell state [9–11].
Therefore, defining the transition rules is the key to CA simulation. The current methods
for obtaining transition rules include logistic regression [12], artificial neural network
(ANN) [13], random forest [14], and multi-criteria evaluation [15]. However, they still lack
standard methods for defining transition rules [16]. Moreover, in a CA model, the spatial
location of the cell cannot be moved. It emphasizes the interaction between spatial elements
and the surrounding environment and does not explain the process and causes of urban
growth [17]. In addition, the urban expansion process involves multiple stakeholders. The
interactions of these stakeholders and their decision-making behavior can directly affect
urban land conversion, which is difficult for CA to integrate into the model.

Unlike CA, ABM can simulate complex spatial decision-making behavior and stake-
holder interactions in land use change [18–22]. In ABM, agents are individuals that exist in
and interact with a specific dynamic environment [23,24]. Agents have problem-solving
abilities and behavioral goals. They make decisions through shared perceptions and inter-
actions with other agents and represent geographic phenomena in complex spatiotemporal
dynamics. Similar to the individual variability of real stakeholders, agents also have dif-
ferent attributes, behaviors, and preferences, which directly affect their decision-making
behavior. This results in differences in the location of land use activities [25]. Therefore,
defining the agent and obtaining the model’s decision parameters is the key to ABM mod-
eling [26,27]. For example, Li et al. [28] selected three main agents (resident, developer,
and government) that influence urban development and classified a resident’s intelligence
based on their income and the presence of children to create an intelligence-based model to
simulate the urban expansion of Guangzhou, China. Arsanjani et al. [29] also defined three
agent groups (developer, government, and resident) and simulated the spatiotemporal
pattern of urban growth in Tehran, Iran, by coupling ABM and multi-criteria analysis
models. In addition, Kong et al. [30], Liu et al. [31], and Tian et al. [32] coupled CA and
ABM to simulate urban expansion in metropolitan areas such as Beijing and Tianjin, China,
from the perspective of residents’ location decision-making process.

Overall, the ABM applications for urban locations are often based on residential loca-
tion selection. Three types of agents (resident, developer, and government) are selected
for modeling. Moreover, models mainly use macro or empirical data to obtain the social
attributes of agents, such as income (high income, middle income, and low income) and
the presence of children based on statistical yearbooks and census information. In contrast,
the location attributes of agents are obtained by remote sensing (RS) and geographic infor-
mation system (GIS) technology. However, the current study has the following concerns.

(1) Due to the agent type, models primarily focus on residential location selection by
urban residents and ignore the influence of other decision-makers.

Most ABM-based urban expansion models focus on the behavior of urban agents
and tend to ignore the relationship between farmer agent behavior and urban expansion.
In China’s unique land system, urban land is primarily owned by the state, non-urban
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land is collectively owned [33], and urban construction must take place on state-owned
land [34,35]. Therefore, the urban expansion precondition is converting collectively owned
land into state-owned land through land acquisition. Land acquisition is mainly carried
out between the government and farmers, and conflicts between them occur from time to
time due to the unequal distribution of benefits. This directly affects the land acquisition
process and outcomes, thereby hindering the speed and direction of urban expansion.

Tan et al. [6] and Liu et al. [36] established a land acquisition process model based
on agent decisions and adopted Game Theory to resolve conflicts. However, Tan et al. [6]
only considered three types of agents: the government, land owners, and land developers,
ignoring the critical influence of resident agent locations. Liu et al. [36] did not consider
developer agents and used a linear empirical function to define agent behavior rules. At
the same time, the game model they built is a unilateral offer model, while the natural land
acquisition process is often a bilateral offer. Tang et al. [37] established a bargaining model
with fair preferences for both parties (government and farmers) that focuses on securing
farmers’ benefits and resolving conflicts. This model is a dynamic game of bilateral offer,
which can reflect the interaction between the government and farmers in land acquisition
and is more suitable for China’s land acquisition process. It provides a new way to analyze
and quantify agents’ decision-making behavior during land acquisition.

(2) Based on the definition of an agent’s decision-making behavior, it is difficult for tra-
ditional methods to portray its nonlinear relationship with the decision-making environment.

An agent’s decision-making behavior occurs in a dynamic geographical environment
and there is a complex nonlinear relationship between behavior rules and the decision-
making environment. However, most studies use linear functions to define agent behavior
rules. They ignore the nonlinear behavior rules of agents who cannot adapt to a dy-
namic decision-making environment [38]. In addition, the definition of agent behavior
rules involves multiple influencing factors, such as MCE [29] and AHP [30,31], and other
methods have been widely used to determine model parameters. However, such models
based on expert experience are intensely subjective [39], which may affect the accuracy of
the simulation.

ANNs are self-adaptive, self-organizing, and have strong learning abilities, so they
can fully approximate arbitrary and complex nonlinear relationships [13,40–42]. They
are particularly suitable for dealing with nonlinear or complex systems that cannot be
described mathematically. For example, Li et al. [13] automatically obtained CA model
parameters by training an ANN that was applied to simulate various land use changes. A
model using ANN can effectively reflect the complex relationship between spatial variables.
Shafizadeh-Moghadam et al. [43], Shafizadeh-Moghadam et al. [44], Tayyebi et al. [45]
compared ANN with LR, MCE, and other urban expansion models, and concluded that
ANN has more advantages for simulating urban expansion. Therefore, many scholars
combine ANN with ABM: Zhao et al. [38] combined ABM, ANN, and an artificial immune
system to spatially optimize land use allocation, in which ANN adaptively learned the
preferences of land users to express the dynamic and nonlinear characteristics of agent
behavior rules. Xu et al. [39] coupled ABM and ANN to reveal the learning process and
heterogeneity of multi-sub-residential agents, and the ANN-ABM accurately simulated
urban sprawl in Auckland, New Zealand. The above research proves that ANN can more
effectively simulate the decision-making behavior of agents in complex systems.

However, few studies have coupled multiple decision processes to simulate urban land
expansion, and decision definition needs more intelligent methods. In summary, this study
aims to establish an urban expansion simulation model coupled with two sub-models: a
residential location selection model and a land acquisition bargaining model. Those two
sub-models contain four types of agents: resident agents (RA), real estate developer agents
(DA), government agents (GA), and farmer agents (FA). The two sub-models have the
following main characteristics: (1) residential location selection (RA, DA, and GA) and
land acquisition bargaining (GA and FA) are used to simulate urban expansion; (2) ANN
is used to define the behavior rules of RA to obtain the nonlinear relationship and reduce
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subjective effects when defining parameters; and (3) a bilateral bargaining model with fair
preference is used to simulate the land acquisition process between GA and FA.

2. Methodology

The coupled model includes a residential location selection sub-model and a land
acquisition bargaining sub-model; the former consists of the decision-making process of RA,
DA, and GA. First, RA selects possible residential locations based on personal preferences,
and then the DA decides whether to develop the land based on income. It will apply
to the GA for land use if it is developed. The GA determines whether to approve land
development based on planning and other urban expansion conditions. If approved, it will
enter the land acquisition bargaining sub-model; otherwise, the land application shall be
rejected. In the second model, GA and FA carry out dynamic bilateral bargaining on the
land. When the income obtained by the two parties reaches their respective expectations,
both parties agree to expropriate the land. If the land acquisition is successful, it will
be converted into urban land; otherwise, it will not be converted. Therefore, this study
expresses the land urbanization results as follows:

U ∼
(

fsel , facq
)

(1)

where U is the result of urban expansion, fsel is the residential location selection sub-model
result, and facq is the land acquisition bargaining sub-model result.

2.1. Residential Location Selection Sub-Model
2.1.1. The Behavior of the Resident Agent

The residential location selection decision is an important driving factor of urban land
expansion that reflects the spatial component of urban residential housing behavior. In
general, RAs choose residential settlements in specific zones based on their needs in terms
of housing price, transportation convenience, living environment, and living convenience.
Different RAs express spatial location preferences based on their attributes, with different
spatial decision-making behaviors. This study used ANN to obtain the relationship between
new residential land and driving factors. The RA residential preference was expressed by
the selection probability, which is calculated as follows:

Selij = fANN(x1, x2, · · · , xn) (2)

where Selij denotes the probability of RA site selection candidate location Lij, f ANN is the
ANN function, and xn denotes the factors affecting RA site selection.

Multilayer perceptron (MLP) is the most commonly used type of neural network, and
it contains input, hidden, and output layers (Figure 1). When ANN is applied in urban
simulation research, the input layer is the spatial variable affecting urban expansion. The
output layer is the result of urban land change. This model randomly selects data to train
the ANN and then applies the trained ANN (optimal weights) to the whole dataset to
obtain a RA site selection probability map.

The biggest drawback of an ANN is its “black box” aspect, meaning the user may
not clearly understand the modeling mechanisms, especially the contribution of the input
variables to the predicted output values. However, the relationship between urban expan-
sion and its driving factors is one of the most concerning topics in urban modeling. The
Garson–Goh algorithm [46–48] is widely used in ANN-related research and partitions the
neural network link weights to determine the relative importance of each input variable in
the network. It was used in this study to quantify the relative contribution of the indepen-
dent variable (driver) to the dependent variable (RA residential preference). The algorithm
includes the following main steps:

First, the contribution of each input layer node to the output layer node is calculated
through the hidden layer nodes:

Cij = Wij ×Wjk (3)
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where Wij denotes the link weight of input layer node i to hidden layer node j; Wjk denotes
the link weight of hidden layer node j to output layer node k.
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Then, the relative contribution of each input layer node to the input signal of the
hidden layer node is calculated:

Rxy =
∣∣Cxy

∣∣/(∣∣C1y
∣∣ + ∣∣C2y

∣∣ + · · ·+ ∣∣Cij
∣∣ ) (4)

The sum of the input layer node contributions is calculated:

Sx = Rx1 + Rx2 + · · · Rxj (5)

Finally, the relative importance of each input variable is calculated:

RIx = Sx/(S1 + S2 + · · · Si)× 100% (6)

2.1.2. The Behavior of the Real Estate Developer Agent

The DA plays an essential role in urban land expansion by applying to the GA for
land for real estate development activities. The RA’s housing preference and the GA’s
land management policy jointly affect the DA’s decision-making behavior. First, the DA
must evaluate the location of the land to be developed and the surrounding environment
(socioeconomic and natural environment) and make investments based on the RA’s housing
preferences to ensure that houses are easy to sell. Second, the DA’s development activities
need to consider development costs to make a profit. The profit calculation formula for a
DA is as follows:

Dpro f it = Hprice − Lprice − Dcost (7)

where Dprofit denotes the profit of DA investment, Hprice is the house price, Lprice is the land
price, and Dcos is the development cost.

The DA is simplified due to the difficulty in obtaining development costs and invest-
ment profits. Due to cost and risk considerations, DAs tend to choose areas for investment
with complete infrastructure and RA concentrations, and the infrastructure condition is also
the most crucial concern for most home buyers. Therefore, the study used neighborhood
impacts as a metric for DA’s willingness to develop:

Devij =

∑
3×3

N
(
urbanij

)
3× 3− 1

(8)
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where Devij is the probability that a DA chooses to develop at the candidate position Lij and
∑

3×3
N
(
urbanij

)
is the number of urban pixels in a 3× 3 neighborhood. If ∑

3×3
N
(
urbanij

)
= 0,

Devij = 0.05.

2.1.3. The Behavior of the Government Agent

The primary responsibility of the GA is macro urban planning and regulation, guiding
a city’s evolution process and determining the development mode. A DA evaluates the
benefits and risks of land development and decides whether or not to develop. It will apply
to the GA for land use if it chooses to develop. The GA decides whether to approve the
application according to whether the land aligns with urban planning. A GA’s decision-
making behavior is as follows:

Regij =

{
1, Outside the prohibited development zone
0, Within the prohibited development zone

(9)

where Regij is the decision probability for a GA development application at candidate
location Lij. A binarized layer represents the GA decision behavior. When the value is 1, Lij
is a permitted development area in urban planning, and the GA agrees to DA’s application
for land development. When the value is 0, Lij is a prohibited development area, and the
GA does not agree to the application.

The total probability of the resident location selection sub-model is jointly determined
by RAs, DAs, and GAs, which can be expressed as follows:

Setij = Selij × Devij × Regij × λ (10)

where Setij is the total probability of resident location selection at candidate location Lij, λ
is the adjustment parameter of the model, λ ∈ [0,1].

2.2. Land Acquisition Bargaining Sub-Model

In a two-party bargaining model with fair preferences, GA and FA take turns making
offers for expropriated land, and the GA acts first. The GA decides whether to acquire
land based on urban construction needs and the proceeds of land acquisition. If the land
is acquired, the GA makes an initial offer based on the land acquisition compensation
standard. The FA has three choices: accept (GA’s offer is higher than personal expectations),
reject (the offer is lower than the compensation standard), and counter-offer (the offer is
higher than the compensation standard but lower than personal expectations). The first
two decision-making behaviors constitute the first round of bargaining, and a counter-offer
enters the second round. The FA will make a counter-offer based on the individual’s
initial expectations. Similarly, the GA has three options: accept (profitable and above
expectations), reject (unprofitable), and counter-offer (profitable but below expectations),
with the first two decision-making behaviors constituting the second round and a counter-
offer entering the third round. The GA and FA take turns bargaining indefinitely, ending
each round of bargaining when one side accepts or rejects the other’s offer, with acceptance
representing successful land acquisition and rejection failing.

Fairness psychology affects the decision-making behavior of bargaining participants
in land acquisition. Because they are driven by fairness psychology, the GA and FA will
sacrifice their individual interests to some extent to reach an agreement. Moreover, the land
acquisition process is time-consuming, and each round of bargaining incurs costs (denoted
as the discount coefficient δ, 0 < δ < 1), which motivates the bargaining parties to reach
an agreement as soon as possible to reduce losses. During the bargaining process, the GA
and FA have their strategies and are influenced by each other. Based on their different
strategies, the benefits of different rounds can be calculated, and the land acquisition result
can be evaluated. For details on GA and FA strategies during the bargaining process and
the consideration of fairness psychology (see [37]).
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In the model, for odd rounds, the GA offers, and FA makes the choices; for even
rounds, the FA offers, and GA makes the choices. Therefore, there are two cases for GA
and FA benefits:

Rn
ij =

{
δ

f
n−1 × Cn

ij FA accepted the GA′s offer

δ
f
n−1 × Fn

ij GA accepted the FA′s offer
(11)

Gn
ij =

 δ
g
n−1 ×

[
Mij × (1− e)− Cn

ij

]
FA accepted the GA′s offer

δ
g
n−1 ×

[
Mij × (1− e)− Fn

ij

]
GA accepted the FA′s offer

(12)

where Rn
ij and Gn

ij are the FA and GA returns at candidate position Lij in the nth round,

respectively; δ
f
n−1 and δ

g
n−1 are the FA and GA discount factors, respectively; Cn

ij is the GA
offer price in round n (n is an odd number); Fn

ij is the FA offer price in round n (n is an
even number); Mij is the modified GA land transfer price; and e is the coefficient of land
development cost.

Because bargaining participants are rational and there is upper-level government
supervision, the bargaining rounds cannot be infinite. The final result may be that the GA
gives the final offer in a particular round, which the FA decides. If the GA’s offer is higher
than the FA’s expectation in that round, the FA agrees to the land acquisition; otherwise,
the land acquisition fails. The GA and FA’s expected revenue is dynamically changing. At
the same time, the ratio of realistic land acquisition GA and FA gains are about 60~70% and
20~40% [49], based on the assumed minimum and maximum expectations of the bargaining
parties. The minimum expectation is accepted by the GA and FA only when the final round
of bargaining is conducted; that is, the final GA offer is based on the minimum expectation
of the individual, and the expectation of FA in the final round is the minimum expectation.
This study assumed that the two parties conduct five rounds of bargaining, and the final
land acquisition result was determined as follows:

Acqij =

{
1, G5

ij ≥ Eg
ij and R5

ij ≥ E f
ij

0, other
(13)

where Acqij is the land acquisition result of candidate position Lij, 1 denotes the land

acquisition success, and 0 denotes the land acquisition failure. Eg
ij and E f

ij are the expected
GA and FA revenues, respectively.

2.3. Urban Expansion Simulation Coupled with Residential Location Selection and Land
Acquisition Bargaining

Only residential land expansion was considered in this study, so it was assumed
that all urban land was for residential use. It was assumed that each urban pixel could
accommodate one RA. The number of RAs was determined based on the total urban land
use growth. When each RA selected a residential location, the model first calculated the
probability Selij of a housing location for each pixel (except those selected by a specific
RA). It then sorted the pixels in descending order of probability. The pixel with the highest
probability entered the RA, DA, and GA joint decision-making process. The highest pixel
of joint decision development probability Setij (selected by roulette when there are multiple
pixels with the same probability) was entered into the land acquisition bargaining sub-
model as the candidate RA location. If the land acquisition was successful, the pixel was
transformed into urban land and occupied by the RA; otherwise, the RA continued to select
the next pixel with the highest probability and entered the bargaining process again. The
model iterated in this way until the RA found a suitable location to settle. Each iteration



Sustainability 2023, 15, 290 8 of 20

of the model represented an RA selection process (Figure 2). Based on this, the urban
expansion probability in this model was expressed as follows:

Pij = Setij × Acqij (14)

where Pij is the urban expansion probability of candidate location Lij.

Sustainability 2023, 15, 290 8 of 20 
 

probability Selij of a housing location for each pixel (except those selected by a specific 
RA). It then sorted the pixels in descending order of probability. The pixel with the 
highest probability entered the RA, DA, and GA joint decision-making process. The 
highest pixel of joint decision development probability Setij (selected by roulette when 
there are multiple pixels with the same probability) was entered into the land acquisition 
bargaining sub-model as the candidate RA location. If the land acquisition was success-
ful, the pixel was transformed into urban land and occupied by the RA; otherwise, the 
RA continued to select the next pixel with the highest probability and entered the bar-
gaining process again. The model iterated in this way until the RA found a suitable loca-
tion to settle. Each iteration of the model represented an RA selection process (Figure 2). 
Based on this, the urban expansion probability in this model was expressed as follows: 

= ×ij ij ijP Set Acq  (14) 

where Pij is the urban expansion probability of candidate location Lij. 

 
Figure 2. Model flow chart. 

3. Research Area and Data 
3.1. Research Area 

Wuhan is the capital of Hubei Province in central China, the core city of the Yangtze 
River Economic Belt, and the central region’s most prominent political and economic 
center. With the implementation of the Rise of Central China strategy and the construc-
tion of Wuhan’s Urban Circle, Wuhan’s economy has developed rapidly. In 2021, the 
GDP of Wuhan reached CNY 1771.68 billion, an increase of 12.2% over the previous year. 
At the same time, the city’s permanent urban population at the end of the year was 11.54 
million, and the urbanization rate was 84.56%. As a result of economic and population 
growth, Wuhan has experienced a rapid urban expansion in the past decades, with an 
increase in built-up area from 4.19 × 104 ha in 1988 to 43.39 × 104 ha in 2011 [14]. 

The administrative division of Wuhan includes seven central urban districts: 
Jiang’an, Jianghan, Qiaokou, Hanyang, Qingshan, Wuchang, and Hongshan, and six 
distant urban areas: Huangpi, Xinzhou, Jiangxia, Hannan, Caidian, and Dongxihu. The 

Figure 2. Model flow chart.

3. Research Area and Data
3.1. Research Area

Wuhan is the capital of Hubei Province in central China, the core city of the Yangtze
River Economic Belt, and the central region’s most prominent political and economic center.
With the implementation of the Rise of Central China strategy and the construction of
Wuhan’s Urban Circle, Wuhan’s economy has developed rapidly. In 2021, the GDP of
Wuhan reached CNY 1771.68 billion, an increase of 12.2% over the previous year. At the
same time, the city’s permanent urban population at the end of the year was 11.54 million,
and the urbanization rate was 84.56%. As a result of economic and population growth,
Wuhan has experienced a rapid urban expansion in the past decades, with an increase in
built-up area from 4.19 × 104 ha in 1988 to 43.39 × 104 ha in 2011 [14].

The administrative division of Wuhan includes seven central urban districts: Jiang’an,
Jianghan, Qiaokou, Hanyang, Qingshan, Wuchang, and Hongshan, and six distant urban
areas: Huangpi, Xinzhou, Jiangxia, Hannan, Caidian, and Dongxihu. The total land area is
about 8569.15 km2. In this study, the urban development zone (WHUDZ) defined by the
urban planning of Wuhan was selected as the experimental area (Figure 3), which is the
main gathering area for urban functions and the critical expansion area for urban space in
Wuhan. It has a total land area of about 3261 km2.
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3.2. Data Preparation and Processing

The spatial and socioeconomic data used in the study are listed in Table 1. Landsat
TM/OLI images in 2009, 2014, and 2019 were used to obtain land-use change information.
After preprocessing, the remote sensing images were classified into five categories using
maximum likelihood classification: cultivated land, forest land, water bodies, urban con-
struction land, and other lands. Three hundred sample points were randomly selected
to evaluate the classification results. The results showed that the classification accuracy
of each period was greater than 85%, meeting research needs. Two land use types, forest
land, and water bodies were reclassified as restricted development zones, and cultivated
land and other land use were reclassified as non-urban land. In addition, the data were
resampled to 100 m to reduce the simulation’s computational complexity and running time.

Table 1. Data used in this study.

Type Name Year Data Source

Spatial data

Landsat TM and OLI 2009, 2014, and 2019 USGS
DEM USGS

Road network 2015 China Basic Geographic Database (1:250,000),
Open Street Map

Gaode POIs 2019 Gaode map (https://ditu.amap.com/),
accessed on 1 August 2020

Socioeconomic data

GDP and population density 2015 RESDC (http://www.resdc.cn), accessed on
1 August 2020

House price 2019 Lianjia (https://wh.lianjia.com), accessed on
1 August 2020

Land acquisition compensation
standard 2019 Department of Natural Resources of

Hubei Province
Benchmark land price

for residential 2019 Wuhan natural resources and
planning bureau

With reference to related research and data availability [28,31,42,50], 14 factors were
selected, including DEM, slope, distance to major roads, distance to expressways, distance
to bus stations, distance to subway stations, house price, distance to parks, distance to
water sources, distance to schools, distance to hospitals, distance to supermarkets, GDP

https://ditu.amap.com/
http://www.resdc.cn
https://wh.lianjia.com
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and population density, etc., to analyze the influencing factors of RA residential loca-
tion selection considering the terrain, transportation, housing prices, and convenience
(Figure 4a–n). The data were normalized to [0,1]. The housing price data were from the
housing price monitoring information of Wuhan City in 2019, released by Lianjia. A total
of 2221 monitoring points in the study area were obtained, and a regional housing price
layer was generated through the Thiessen polygon. A distance layer was generated using
Euclidean distance analysis, and the benchmark land price and land acquisition compensa-
tion standard layers required by the bargaining model were obtained through vectorization
(Figure 4o–p). Data processing and analysis were completed using ENVI 5.3, ArcGIS 10.4,
and Python 3.7. The ANN was trained in MATLAB using Neural Network Toolbox. All
data had the same spatial reference (UTM WGS 84) and resolution (100 m).
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4. Model Implementation and Results

First, the ANN was trained using land use data from 2009 and 2014 and 14 spatial
variables to generate an RA site selection probability map (Selij). Then, based on the current
land use in 2014, two sub-models of residential location selection and land acquisition
bargaining were run to simulate the urban expansion of WHUDZ in 2019. This was
compared with actual urban land in 2019 to evaluate the model’s accuracy. After the
simulation accuracy met the requirements, data from 2014 to 2019 were used to retrain the
ANN and generate a new RA location probability map. Finally, the urban expansion of
WHUDZ in 2029 was predicted based on the 2019 land use status.
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4.1. RA Location Selection Probability Using ANN

The ANN structure constructed in this study was 14-12-1, meaning there were 14 input
layers, 12 hidden layers, and 1 output layer. The input layer nodes consisted of 14 spatial
variables that affected the location of RA residences. When building the network, care
should be taken when selecting the number of hidden layer nodes. If the number is too
small, the network prediction error will be significant, but if too many nodes lead to
increased learning time, the phenomenon of “over-fitting” may occur. Wang [51] argued
that for a three-layer neural network, the number of nodes in the hidden layer should be
at least 2/3 of the number of nodes in the input layer. After several trials, the number of
nodes in the hidden layer was set to 12. This study only considered urban land conversion,
and the output layer was 1. The data labels were 0 and 1, indicating unconverted and
converted to urban land, respectively.

In the urban land conversion map from 2009 to 2014 and 14 spatial variable maps,
30,000 points were selected by random sampling, 15,000 points each for unconverted and
converted to urban land. Of those, 70% were used for ANN training, 15% were used as
the validation dataset, and 15% were used as the test dataset. The initial weights were
generated randomly during ANN training, and the weight update algorithm used “trainlm”
with a learning rate of 0.01. The number of epochs was 500, and the mean-square error
(MSE) target for stopping training was 0.01. After the ANN training was complete, the
optimal weights were used to generate the RA location selection probability map (Figure 5).
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4.2. Urban Expansion Simulation Dynamic Process and Results in 2019

Urban land in WHUDZ increased from 648.37 km2 in 2009 to 889.56 km2 in 2014 and
further increased to 1086.15 km2 in 2019, a rapid urban expansion rate that was much
higher than the predicted urban planning of Wuhan. Based on land use data for 2009 and
2014, the Markov chain (MC) was used to predict the urban land area of WHUDZ in 2019 to
be 1099.91 km2, which was 13.76 km2 more than the actual urban land area with a relative
error of 1.27%. The total number of RAs was finally determined to be 21,025.

The coupled model was used to simulate WHUDZ urban expansion from 2014 to
2019, and the dynamic process is shown in Figure 6. N represents the number of resettled
residents (the number of pixels increased by urban land), N = 0 indicates that the model is
in the initial state representing 2014 urban land, and N = 21,025 indicates that the model
has iterated 21,025 times and reached the termination state that represents the simulated
2019 urban land use. During the simulation process, pixels with high development proba-
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bility and a large number of urban pixels in the neighborhood were first transformed into
urban land. In the early stage, it was mainly characterized by urban filling expansion. In
the later stage, it was mainly an extensional urban expansion mode with the continuous
expansion of the city scope.
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4.3. Accuracy Evaluation and Comparison of Urban Expansion Simulation Results in 2019

The simulation results were compared with actual land use in 2019 pixel by pixel after
eliminating the initial urban land (2014). The accuracy of the simulation was assessed using
the Kappa coefficient. Moreover, logistic regression CA (LRCA) was selected in GeoSOS
software [52] to simulate the WHUDZ urban land in 2019 and compare the accuracy of
the two models using the same dataset. Table 2 shows that with an overall accuracy and
Kappa coefficient of 92.78% and 55.24%, respectively, the coupled model developed in this
study had excellent simulation accuracy and could successfully simulate WHUDZ urban
expansion. The accuracy of the model constructed for this paper was higher than that of
LRCA, particularly for urban land simulation. The overall accuracy and Kappa coefficients
were 0.76% and 4.68% higher, respectively.

Table 2. Error matrix for simulated and actual urban land in the WHUDZ in 2019.

Land-Use Type
Actual Simulation Accuracies/%

Urban Non-Urban Producer’s
Accuracy

User’s
Accuracy

Overall
Accuracy

Kappa
Coefficient

Coupled model Urban 12,042 8983 61.25 57.27
92.78 55.24Non-urban 7617 201,116 95.72 96.35

LRCA
Urban 11,175 9850 56.84 53.15

92.02 50.56Non-urban 8484 200,249 95.31 95.94

In addition, five landscape metrics were selected to assess the similarity between the
simulation results and the actual pattern (2019), including the number of urban patches
(NP), largest-patch index (LPI), mean Euclidean nearest-neighbor distance (ENN_MN),
mean perimeter-area ratio (PARA_MN), and the proportion of like adjacency (PLADJ).
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Table 3 shows that correlations were consistent between the two model simulations and the
actual landscape pattern metrics.

Table 3. Similarity between simulated results and real landscape patterns.

Landscape Metrics NP LPI ENN_MN PARA_MN PLADJ

Observed 2019 202 39.91 250.78 363.44 90.09
LRCA 128 40.91 215.13 519.07 93.17

Coupled model 150 40.55 235.35 478.41 92.73

The simulation results showed that LPI, PARA MN, and PLADJ were more significant
than the actual pattern. At the same time, NP and ENN MN values were lower than the
actual pattern, indicating that the simulated urban landscape pattern was more fragmented
and the urban form was more compact. The primary similarity errors all came from PARA
MN. All five landscape indices in the linked model were more comparable and closer to the
real pattern than those of the LRCA model, demonstrating that the coupled model more
accurately simulated urban development pattern evolution in the WHUDZ.

Figure 7 shows WHUDZ urban expansion as simulated by the coupled model in 2019
compared with the actual urban land. Missing values indicate actual expansion, while the
simulation was not expanded. These were mainly located in the periphery of the city, most
of which were adjacent to the original urban land, and some were far from the original
urban land. As shown in Figure 7a, the missing pixels were clustered in this area. The main
reason was that the urban expansion was not apparent in the past, the road density was
low, and the RA location probability obtained by ANN training was low, indicating that
the coupled model poorly simulated the expansion of the peripheral area. Hits represented
both actual and simulated expansion, mainly filled expansion pixels within the city and the
conversion of land with high traffic accessibility. For example, in Figure 7b, located in the
Wuhan East Lake High-tech Development Zone, the urban land increased significantly, the
complete infrastructure, the urban land conversion probability was high, and there were
more hits. This zone may continue to be a hot spot for urban expansion. False hits were
mainly distributed in areas with a high probability of urban expansion, such as Figure 7c,
which experienced rapid urban land expansion from 2009 to 2014 and a high probability of
urbanization of surrounding sites. These were more likely to have simulated expansion
without actual expansion. Overall, the coupled model accurately simulated 57.27% of the
newly added urban pixels in WHUDZ from 2009 to 2014, with higher simulation accuracy
and better performance than the traditional CA model.

4.4. Prediction of Future Urban Expansion in the WHUDZ

Based on land use data from 2009 to 2019, MC predicts that by 2029, WHUDZ urban
land will reach 1415.82 km2, an increase of 329.67 km2 compared to 2019 and twice the
area of urban land in 2009. By taking 2019 as the starting point for land use, the simulated
WHUDZ urban land in 2029 is shown in Figure 8. The spatial characteristics of WHUDZ’s
prospective urban development demonstrate that it generally spreads outward around
the original urban land and expands in all directions, with the southeast and northwest
being the most active growth regions. The landscape metric shows that the predicted urban
spatial pattern is more compact, and the spatial structure is optimized. The city’s link with
nearby metropolitan areas will deepen due to the city’s ongoing urban land expansion, and
Jiangxia, Caidian, and Huangpi districts have the most growth.
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5. Discussion
5.1. The Significance of a Coupled Residential Location Selection and Land Acquisition
Bargaining Model

The urban system is very large and complex, with spatial–temporal dynamic changes.
From the microscopic point of view, urban land use changes result from human activities
within an urban system in the geographic environment. China has a unique land system
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in which urban construction is often carried out through large-scale expropriation of
collective land used by farmers, mainly arable land. The government expropriates land
for infrastructure construction and then sells the land use rights according to specific uses
determined by urban planning. Residential land is one of the most widely distributed
types of urban land. Land developers obtain development permits from government
departments and then develop real estate for urban land conversion, which is influenced by
residents’ demand for housing. The decision-making behavior of the government, farmers,
developers, and residents runs through the process of converting non-urban land to urban
land in China.

This study simulated urban expansion by coupling residential location selection
(RA, DA, and GA) and land acquisition bargaining (GA and FA) to reveal the impact of
each agent’s decision-making behavior on urban expansion. In the real world, the joint
effect of these agents on the conversion of non-urban land to urban land is much more
pronounced than the impacts of natural and spatial elements. The sub-model initially
simulated residential living locations, RAs selected suitable residences in accordance with
their own needs, DAs developed land and built real estate to seek maximum profits, and
GAs complied with urban planning to sell land use rights. Those three types of agents were
independent and interacting.

A bargaining model simulated the process of land acquisition between GAs and RAs.
It was assumed that the land chosen by a RA could not be converted into urban land if
land acquisition failed in the sub-model. The main distribution of such pixels is shown
in Figure 9. In the 2019 WHUDZ urban land simulation process, 1324 pixels could not be
converted into urban pixels due to unsuccessful land acquisition, accounting for about 6.3%
of the total simulated pixels. There were two main situations in which land acquisition
was unsuccessful. Type 1 indicated that the government and farmers were unwilling to
carry out land acquisition activities, totaling 878 pixels. In contrast, type 2 indicated that
the government was willing to acquire land, but farmers were unwilling to sell, with a total
of 446 pixels.

As shown in Figure 9a,c, type 1 was mostly located in the periphery of the city,
especially in areas far from the center where government compensation standards for land
expropriation and the benchmark land price were both low. Because both the GA and FA
received modest gains from land expropriation, it was difficult to have successful land
acquisition because neither side wanted to do it. As shown in Figure 9b, type 2 was mostly
located around the city center with high urbanization probability, high value-added land,
and low compensation standard for land expropriation. A GA could make a significant
amount of profit from land expropriation, whereas a FA made very little. The FA would
become reluctant to participate, and the land expropriation was prone to failure. It is worth
pointing out that the income of those two types of agents is quite different because the
land expropriation compensation standard and the benchmark land price for type 2 were
quite different (Figure 4o,p). In addition, some pixels with high Setij (such as pixels (247,
558) and (398, 333)) could not be converted into urban land because the land acquisition
was unsuccessful.

This study combined residential location selection and the land acquisition process,
which mainly affect urban land conversion in China, to describe the urban land develop-
ment process. It also took the main agents’ decision-making behavior into account with
respect to the overall macroscopic situation of urban development. When compared with
the CA model, the coupled model obtained higher simulation accuracy and a landscape
pattern closer to actual land use.
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5.2. Factors Influencing RA Residential Location Selection

In this study, 14 variables were selected to analyze the factors influencing RA residen-
tial location, ANN was used to obtain the nonlinear relationship between them, and the
Garson–Goh algorithm was used to reveal the relative contribution of ANN input variables
to output variables (Figure 10). Traffic accessibility (distance to major roads, distance to
subway stations, and distance to bus stations) generally contributed significantly to RA
residential location selection decisions. Among those factors, distance to major roads
had the greatest impact, indicating that land closer to the main road was more likely to
be selected by the RA as residential and thus converted to non-urban land, which was
consistent with the research conclusion of Tan et al. [35]. Despite being a relatively minor
factor in RA location selection, the importance of amenities such as distance to parks, water
sources, schools, hospitals, and supermarkets has been growing over time. This is mainly
because, as cities have rapidly expanded and infrastructure such as roads has improved,
commute times and distances are less, and lifestyles have changed. This trend is likely to
continue in the future.
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5.3. Changes to GA and FA Income before and after Bargaining

The two-party bargaining model with fair preference coordinated conflicts of interests
between the GA and FA in the land acquisition process to ensure the smooth implemen-
tation of land acquisition activities. In the areas where land acquisition bargaining was
successful, FA’s gains were improved, and the GA made appropriate profits and reached
an agreement that may benefit both parties. Conflicts did not occur or were less likely, so
urban expansion could be carried out within this range to reduce land acquisition con-
flicts. As shown in Table 4, the average revenue of the FA in land expropriation increased
from 306.3 CNY m−2 to 604.76 CNY m−2, with a net increase of 97.44% from 2014 to 2019
when new simulated urban land pixels were added. GA average revenue decreased from
2099.87 CNY m−2 to 1624.48 CNY m−2, a net decrease of 22.64%. Through bargaining, FA
income increased significantly, and the income gap between GA and FA decreased, but the
GA still obtained most of their income from land expropriation.

Table 4. Changes in income of government and farmers before and after bargaining (Unit: CNY m−2).

Before After Growth/%

FA 306.30 604.76 97.44
GA 2099.87 1624.48 −22.64

6. Conclusions

This study simulates urban expansion using two coupled sub-models: residential
location selection and land acquisition bargaining, which consisted of four agents: RA,
DA, GA, and FA. First, RA, DA, and GA. ANN was used to define the RA behavior rules,
which selected settled pixels according to the probability generated by the land acquisition
bargaining sub-model composed of GA and FA. Both agents decided whether to expropriate
the land according to their respective returns. If the land acquisition was successful, the
pixel was converted to urban land; otherwise, it was not. Each iteration represented the RA
selection process.

WHUDZ was selected for this empirical study. The urban land expansion was pre-
dicted based on WHUDZ data from 2009 to 2014. The results showed that the total accuracy
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and Kappa coefficient of land use in 2019 were 92.78% and 55.24%, respectively. Moreover,
the LRCA simulation results were 92.02% and 50.56%, respectively. The accuracy of the
coupled model was higher than LRCA, which demonstrated the model’s effectiveness. The
coupled model predicted that the urban land area of WHUDZ will reach 1415.82 km2 in
2029, primarily indicating outward expansion within the southeast and northwest regions.
In addition, the Garson–Goh algorithm was used to reveal the relative contributions of
various influencing factors in ANN to the RA residential location choices. It was found that
the overall contribution of traffic accessibility was more significant, distance to major roads
had the greatest impact, and the weight of life conveniences gradually increased with time.
Moreover, this trend is likely to continue. In the simulation of WHUDZ’s 2019 urban land
use, the land acquisition bargaining sub-model killed a total of 1324 pixels, which could
not be converted into urban pixels after land acquisition failed.

In this study, two crucial decision-making processes affecting urban land expansion in
China are coupled, and the urban evolution of WHUDZ is simulated to reflect the impact
of micro-individual decisions on global urban growth. In particular, quantifying the land
expropriation process is relevant for solving land expropriation conflicts and formulating
more reasonable land expropriation policies.
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