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Abstract: Rainfall prediction remains a hot research topic in smart city environments. Precise rain-

fall prediction in smart cities becomes essential for planning security measures before construction 

and transportation activities, flight operations, water reservoir systems, and agricultural tasks. Pre-

cise rainfall forecasting now becomes more complex than before because of extreme climatic 

changes. Machine learning (ML) approaches can forecast rainfall by deriving hidden patterns from 

historic meteorological datasets. Selecting a suitable classification method for forecasting has be-

come a tough job. This article introduces the Fuzzy Cognitive Maps with a Metaheuristics-based 

Rainfall Prediction System (FCMM-RPS) technique. The intention of the FCMM-RPS technique is to 

predict rainfall automatically and efficiently. To accomplish this, the presented FCMM-RPS tech-

nique primarily pre-processes the rainfall data to make it compatible. In addition, the presented 

FCMM-RPS technique predicts rainfall using the FCM model. To enhance the rainfall prediction 

outcomes of the FCM model, the parameter optimization process is performed using a modified 

butterfly optimization algorithm (MBOA). The performance assessment of the FCMM-RPS tech-

nique is tested on a rainfall dataset. A widespread comparison study highlights the improvements 

of the FCMM-RPS technique in the rainfall forecasting process compared to existing techniques with 

a maximum accuracy of 94.22%. 

Keywords: rainfall forecasting; weather; machine learning; artificial intelligence;  

parameter optimization 

 

1. Introduction 

Rainfall is the most significant phenomenon within a climate system and its chaotic 

nature has a direct effect on biological systems, water resource planning, and agriculture 

[1]. In finance, the rainfall level for a specific period is essential to predict the value of 

financial security. Currently, the abilities of scientists in predicting and understanding 

rainfall have been augmented because of several methods formulated to raise the preci-

sion level in rainfall prediction [2]. Rainfall forecasting is useful to prevent floods, which 

saves the properties and lives of humans. Additionally, it aids in managing water re-

sources. Data for information relating to rainfall in advance assists agriculturalists in 
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managing their crops better [3]. Variation in rainfall quantity and timing makes rainfall 

prediction a difficult task for weather-related scientists [4]. Rainfall derivatives share the 

same principles with other regular and climate variations. It is the agreement between two 

or more, in which the contract value relies on the basic financial asset. Therefore, in the 

case of rainfall prediction, the basic asset will be a climate type, like rainfall [5]. One im-

portant variance among weather and common derivatives is that the primary asset that 

decides the price of the contract is not tradable. Consequently, several existing techniques 

in the literature for other derivatives are inappropriate for predicting rainfall prediction 

[6]. 

The conventional techniques use statistical approaches to measure the correlations 

among rainfall, geographic coordinates (like longitude and latitude), and other elements 

(like wind speed, pressure, humidity, and temperature) [7]. However, the complexity of 

these elements and rainfall’s non-linearity make it tough to forecast. Accordingly, efforts 

have been made to diminish this nonlinearity by utilizing Wavelet analysis, Singular Spec-

trum Analysis, and Empirical Mode Decompositions, among others [8]. However, the sta-

tistical and mathematical approaches used required more time and complicated compu-

tation with minimal effects. The estimation of rainfall derivatives imposes various hin-

drances, both in finance and research [9]. A light amount of the literature has investigated 

rainfall derivatives, since the concept is new, along with the fact that rainfall is hard to 

measure precisely. In financial practice, investors even share similar forms of problems, 

deterring the trading of weather derivatives in monetary markets [10]. Thus, the aim was 

to formulate a technique for precise weather forecasting, which must reduce the practical 

risk from investors. Accurate rainfall forecasting is a challenging process because of ex-

treme climate variations. Artificial intelligence (AI) approaches can forecast rainfall via 

the extraction of hidden patterns from past weather data. 

Accurate rainfall prediction becomes challenging because of extreme climate varia-

tions. Particularly, precise and timely rainfall prediction can be useful for planning and 

security measures for flight operation, agriculture, water reservoir management, con-

struction, and transportation activities. A red alert in advance in the case of extreme rain-

fall can save the citizens of smart cities from potentially life-threatening situations. AI 

techniques can predict rainfall by extracting hidden patterns from historical weather data. 

Moreover, the selection of proper classification techniques for prediction is a difficult job. 

To resolve these issues, this article introduces the Fuzzy Cognitive Maps with a Me-

taheuristics-based Rainfall Prediction System (FCMM-RPS) technique. The intention of 

the FCMM-RPS technique is to predict rainfall automatically and efficiently. To accom-

plish this, the presented FCMM-RPS technique primarily preprocesses the rainfall data to 

make it compatible. In addition, the presented FCMM-RPS technique predicts rainfall us-

ing the FCM model. To enhance the rainfall prediction outcomes of the FCM model, the 

parameter optimization process is performed using a modified butterfly optimization al-

gorithm (MBOA). The MBOA is chosen due to its simplicity, easy implementation, and 

high stability. The performance assessment of the FCMM-RPS technique is tested on a 

rainfall dataset. 

The rest of the paper is organized as follows. Existing rainfall prediction models are 

discussed in Section 2, and Section 3 introduces the proposed FCMM-RPS technique. 

Next, Section 4 offers performance validation and Section 5 draws conclusions. 

2. Related Works 

Rahman et al. [11] devise a new real-time rainfall prediction system for smart cities 

utilizing a machine learning (ML) fusion method. This modeled structure employs four 

commonly employed supervised ML approaches. For effective rainfall forecasting, the 

fuzzy logic (FL) method was used in the structure for integrating the prediction accuracy 

of the ML approach called fusion. Pathan et al. [12] proposed an effective approach for 

predicting rainfall events for dimensionality reductions. Initially, the authors detected ap-

propriate features from weather data that had a main contribution to rainfall forecasting 
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utilizing a wrapper-oriented feature selection (FS) approach. Then, principal component 

analysis (PCA) was compiled with the complete data along with the selected feature data 

to minimize the data dimensionality. Poornima and Pushpalatha [13] offered an intensi-

fied long short-term memory (LSTM)-oriented recurrent neural network (RNN) for rain-

fall forecasting. The neural network (NN) was tested and trained with a standard rainfall 

dataset. The well-trained network produced estimated features of rainfall.  

He et al. [14] modeled a hybrid method STL-ML (seasonal trend decomposition and 

ML) to forecast the rainfall time series in advance related to historic rainfall and other 

atmospheric data. This STL-ML method has three steps: firstly, the forecasted rainfall is 

acquired through the inclusion of the predicted values of the three elements, and many 

metrics are employed for assessing the performance of the method. Secondly, the seasonal 

trend decomposition is leveraged for decomposing the rainfall time series into the remain-

der, trend, and seasonal elements. Lastly, three different ML methods such as the 

LightGBM model, GRU network, and multi-time scale are formulated to forecast the three 

elements. In [15], artificial neural networks (ANNs) such as the Feed Forward NN (FFNN) 

method were framed to forecast rainfall. ANNs are considered an attractive and valuable 

soft-computing technique for forecasting. ANN depends on a self-adaptive system where 

the method learns from historic data capturing functional relationships among data and 

making forecasts on present data. 

Wei and Chou [16] devised a Hadoop Spark distribution structure related to big-data 

technology for hastening the computation of typhoon rainfall forecasting approaches. 

This work leveraged multiple linear regression (MLR) and deep neural networks (DNNs) 

in ML, for enforcing rainfall forecasting approaches and assessing the accuracy level of 

rainfall forecasting. The Hadoop Spark distributed cluster-computing structure is the big-

data technology employed. Samad et al. [17] utilized an LSTM-related RNN for forecast-

ing rainfall. Standard datasets were employed for the testing and training of the devel-

oped method. The time series rainfall datasets were pre-processed through Additive Sea-

sonal Decomposition to enhance the prediction analysis. The preprocessed datasets were 

then put through the method. ANN was applied for benchmarking the LSTM method. In 

spite of the several models existing in earlier studies, there is still a need to enhance the 

weather forecasting performance. At the same time, most of the existing works do not 

focus on the parameter-tuning process. The parameters in the classification model mainly 

influence its overall performance in the rainfall prediction process. Since the trial and error 

method for parameter tuning is a tedious and erroneous process, metaheuristic algorithms 

can be applied. At the same time, the FCM parameters can affect the performance of the 

fuzzy system irrespective of the significance. Therefore, in this work, MBOA is applied 

for the parameter optimization of the FCM model. 

3. The Proposed Model 

In this article, we have introduced a new FCMM-RPS technique for predicting rain-

fall accurately. The major aim of the FCMM-RPS technique is to forecast rainfall routinely 

and efficiently. It follows a three-step process: data pre-processing, FCM-based predic-

tion, and MBOA-based parameter tuning. Figure 1 depicts the workflow of the FCMM-

RPS system. 
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Figure 1. Workflow of FCMM-RPS system. 

3.1. Data Pre-Processing 

The presented FCMM-RPS technique primarily pre-processes the rainfall data to 

make it compatible. Initially, the data cleaning process takes place where the missing val-

ues in the dataset are replaced by the mean method. Then, normalization is applied to 

convert the data into a scalar format. In this work, min–max normalization [18] is used to 

normalize the input data into the range of 0 to 1. By assuming feature �, such that it con-

tains a mapping from the dataset among ����  and ���� , min–max normalization 

(�����) is attained by the following: 

����� =
� − � ��� 

� ��� − � ��� 

, (1)

3.2. Rainfall Prediction using FCM Model 

In this study, the presented FCMM-RPS technique predicts rainfall using the FCM 

model. In the classification method, the weather data is passed into the FCM model for 

the prediction process. FCM is regarded as an RNN, utilizing interpretability features that 

are widely applied in modeling tasks [19]. They encompass a group of neural processing 

entities called concept (neuron) and causal relationships. The activation value of these 

neurons usually takes values in the range of zero and one; thus, the stronger the activation 

value, the greater its effects on the model. Connected weight is pertinent in these systems. 

The power of the causal relationships between concepts �� and �� are measured by ��� ∈
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[−1,1] arithmetical weight and signified by a causal edge from �� to ��̇. There exist three 

possible types of causal relationships amongst neural processing units in FCM-based net-

works that state the impacts from a single neuron to others, as shown below: 

 If ��� > 0, a rise (decrement) in the cause �� produces an increment (decrement) in 

impact �� with intensity �����. 

 If ��� < 0, a rise (decrement) in the cause �� produces a decrement (increment) in 

neuron �� with intensity �����. 

 If ��� = 0, there exists no causal relationships between �� and ��. These rules are 

reiterated until a stopping condition is fulfilled. A new activation vector can be eval-

uated at each step � and then a predetermined number of iterations [20]. The FCM 

is stated to have converged if it obtains a fixed-point attractor, otherwise, the update 

process ends after a maximum number of iterations � is accomplished. 

��
(���)

= � �� ���

�

���

��
(�)

� , � ≠ �, (2)

where �(⋅)  signifies monotonically non-reducing nonlinear functions exploited for 

clamping the activation value of each neuron to the interval. For example, the trivalent 

function, sigmoid variants, and bivalent function. Next, emphasize the sigmoid function 

since it has demonstrated better prediction capabilities. In the study, a non-linear transfer 

function is used where � signifies the sigmoid slope and ℎ denotes the offset. Several 

research workers have discovered that these parameters are closely connected with net-

work convergence. 

�(��) =
1

1 + ���(����)
, (3)

These rules are chosen while upgrading the activation values of neuron that is not 

influenced by the neural processing entities. 

��
(���)

= � �� ���

�

���

��
(�)

+ ��
(�)

� , � ≠ �, (4)

An alternate adapted upgrading rule was introduced to avoid the conflicts that 

emerged in the event of non-active neurons. The rescaled inference enables us to deal with 

the scenario where there exist no data regarding the initial state of the neuron and helps 

to avoid saturation problems. 

��
(���)

= � �� ���

�

���

�2��
(�)

− 1� + �2��
(�)

− 1�� , � ≠ �, (5)

The model generates a similar output once the cognitive network has the capacity to 

converge, and the activation number of neurons remains the same. Simultaneously, a cy-

clic FCM generates various responses, with the exception of some states that are usually 

produced. The last possible scenario is related to the chaotic configuration where the net-

work generates dissimilar state vectors. 

3.3. Parameter Tuning Using MBOA 

To enhance the rainfall prediction outcomes of the FCM model, the parameter opti-

mization process is performed using the MBOA. BOA is based on the food-foraging be-

haviors of butterflies and is applied as a searching agent to perform optimization in BOA 

[21]. Butterflies have a sense receptor that is applied for smelling or sensing the odor of 
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food or flowers. These sense receptors are named chemoreceptors and are dispersed over 

the butterfly’s body parts. The presented method assumes that the butterfly produces 

scent or fragrance with certain power or intensity. The fragrance that rises from the but-

terfly is sensed by the different butterflies present in the neighborhood and an aggregate 

social learning scheme is framed. This fragrance is related to the fitness of the butterfly, 

which is evaluated by the objective function. This represents that when the butterfly 

moves around in the searching region, the fitness could have similarly changed. When the 

butterfly is unable to detect the scent of others in the searching space, then it makes ran-

dom strides and 1this is named a local searching technique. Then, when the butterfly 

senses fragrance from the optimum butterfly in the search space, it moves toward the op-

timum butterflies, which is named a global searching technique and can be formulated as 

follows: 

��� = ���, (6)

In Equation (6), � represents the sensory modality, � characterizes the power expo-

nent based on modality that is accountable for distinct levels of absorption, ���, charac-

terize the perceived magnitude of scent viz., how strongly the fragrance of ��� butterflies 

are perceived by other butterflies present in the region, and � shows the stimulus inten-

sity. Figure 2 demonstrates the steps involved in BOA. 

 

Figure 2. Steps involved in BOA. 

����� = ��� + ��
���, (7)

Now, �� represents the fragrance that is used by ��
�� butterflies to upgrade the po-

sition during iteration and ��
� signifies the solution vector �� for ��� butterflies at � iter-

ation count. Furthermore, there exist two major stages, global and local search stages. 
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During the global search technique, the butterfly takes a step toward the appropriate so-

lution or butterfly �∗ in the following: 

��
��� =  (��  × �∗ − ��

�)  × ���, (8)

In Equation (8), �∗ represents the existing optimum solution amongst the existing 

iterations, ��� denotes the perceived fragrance of ��� butterflies, and � shows the ran-

dom number ranges from zero to one: 

��
��� =  ���  × ��� − ����  × ���, (9)

In Equation (9), ���  and ���  characterize ��� and ��� butterflies from the solution 

space. If ���  and ���  belong to a similar population and � represents the random num-

ber ranges from zero to one. A switching possibility � is employed in BOA for switching 

from global searching to intensive local searching. The pseudocode of BOA is demon-

strated in Algorithm 1. 

Algorithm 1: Pseudocode for BOA 

The main function f(x), x = (��, �� ��) 

Generate the population of � butterflies x� = (� = 1,2 �) 

Define the switch probabilities �, sensor modality �, and power exponents � 

while ending criteria are not satisfied do 

 for every butterfly bf from the population do 

  Calculate the fragrance to bf based on Equation (6) 

 end for 

 Determine the optimal bf 

 for every butterfly bf from the population do 

  Generate the arbitrary value rand within 0 and 1 

  if ���� < � then 

   Move near the optimal butterfly  

  else 

   Move arbitrarily based on Equations (7) and (9) 

  end if 

  Evaluate a novel butterfly 

  If the novel butterfly is optimal, upgrade it from the population 

 end for 

 Upgrade the value of � 

 Determine the existing global optimal butterfly 

end while 

Output the optimal solution. 

In the MBOA, the BOA is integrated into the Levy Flight (LF) concept. The LF moni-

tors the rule of the Levy distribution of several arbitrary phenomena like random walk, 

Brownian motion, and so on [22]. Presently, LF is frequently employed in intelligent op-

timization. For instance, the BOA implements LF for updating the place. LF develops the 

searching space, therefore it can be simpler to avoid premature convergence by introduc-

ing LF into the MBO approach. 

LF place upgrades to: 

��(� + 1) = �
��(�) + � ⊕ ����(�) � ���(�)� ≤ ����(� + 1)�

��(� + 1) ����(�)� > ����(� + 1)�
 , (10)
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where ��
�  defines the ���  generation place of ��, ⊕ implies the dot multiplication, � 

denotes the step size control parameter, and Levy (�) implies the arbitrary searching path 

that fulfills: 

���� ∼ � = ���, 1 < � ≤ 3, (11)

The step size observes the Levy distribution, and step size � is computed as: 

� =
�

|�|�/�
, (12)

In which �, � are normally distributed, determined as: 

� ∼ �(0, ��
�), (13)

� ∼ �(0, ��
�), (14)

whereas 

�� =
(1 + �)( sin 

��
2

)

1 + �
2

�� � − 1
2

, (15)

�� = 1, (16)

In which � is generally a constant of 1.5. 

The MBOA approach develops a fitness function (FF) for realizing superior classifier 

results. It defines a positive integer for exemplifying the good efficiency of candidate so-

lutions. During this work, the minimized classifier error rate assumes that FF is expressed 

in Equation (17). 

�������(��) =
������ �� ������������� �������

����� ������ �� �������
∗ 100, (17)

4. Experimental Validation 

The proposed model is simulated using Python tool. The rainfall prediction results 

of the FCMM-RPS model are tested using a dataset [11] comprising 25,919 samples under 

two classes, as defined in Table 1. The dataset consists of 25,919 instances and 11 features, 

out of which 10 features are independent and 1 is dependent (output class). The features 

are temperature (°C), atmospheric pressure (weather station), atmospheric pressure (sea 

level), pressure tendency, relative humidity (%), mean wind speed, minimum tempera-

ture, maximum temperature, visibility (km), and dew point temperature (°C). Further, the 

dataset is preprocessed to improve the quality of the rainfall data over two days. Initially, 

the missing values in the data are replaced by the mean method. Next, min–max normal-

ization is used to scale the data into a uniform scale of [0, 1]. 

Table 1. Dataset details. 

Class No. of Samples 

Positive (rainfall) 23,682 

Negative (no rainfall) 2237 

Total Number of Samples 25,919 

The performance measures used to examine the rainfall prediction are defined as fol-

lows. 
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Accuracy (�����) represents the number of correctly classified instances to the total 

number of instances. 

����� =
�� + ��

�� + �� + �� + ��
 (18)

Precision (�����) is defined as the ratio of properly classified positive samples to the 

total number of classified positive samples. 

����� =
��

�� + ��
 (19)

The recall (�����) is calculated as the ratio between the number of positive samples 

correctly classified as positive to the total number of positive samples.  

����� =
��

�� + ��
 (20)

The F-score (������) is the harmonic mean of a system’s precision and recall values. It 

can be calculated by the following formula: 

������ = 2 ∗ �
����� ∗ �����

����� + �����

� (21)

The negative predictive value (NPV) is the proportion of negatively classified cases 

that were truly negative. 

��� =
��

�� + ��
 (22)

The confusion matrices of the FCMM-RPS model on the weather prediction process 

under training (TR) and testing (TS) data are illustrated in Figure 3. The results reported 

that the FCMM-RPS model has properly identified the positive and negative classes of 

rainfall prediction in all cases. 

 

Figure 3. Confusion matrices of the FCMM-RPS system. (a,b) TR and TS databases of 70:30 and (c,d) 

TR and TS databases of 60:40. 
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Table 2 reports the overall rainfall prediction results of the FCMM-RPS model on 70% 

of TR and 30% of TS databases. Figure 4 offers a brief rainfall prediction performance of 

the FCMM-RPS model on 70% of the TR database. The figure highlights that the FCMM-

RPS model has categorized all the samples under positive and negative classes. It is ob-

served that the FCMM-RPS model has obtained an average ������� of 94.75%, ����� of 

93.13%, ����� of 94.75%, ������ of 93.92%, and NPV of 93.13%. 

Table 2. Rainfall prediction outcomes of FCMM-RPS system on 70:30 of TR/TS databases. 

Class Accuracybal Precision Recall F-Score NPV 

Training Phase (70%) 

Positive 98.77 99.15 98.77 98.96 87.12 

Negative 90.73 87.12 90.73 88.89 99.15 

Average 94.75 93.13 94.75 93.92 93.13 

Testing Phase (30%) 

Positive 99.05 98.92 99.05 98.99 90.52 

Negative 89.39 90.52 89.39 89.95 98.92 

Average 94.22 94.72 94.22 94.47 94.72 

 

Figure 4. Average analysis of FCMM-RPS system on 80% of TR database. 

Figure 5 provides the brief rainfall prediction performance of the FCMM-RPS method 

on 30% of the TS database. The figure emphasized that the FCMM-RPS approach has cat-

egorized all the samples under positive and negative classes. It is clear that the FCMM-

RPS system has acquired an average �������  of 94.22%, �����  of 94.72%, �����  of 

94.22%, ������ of 94.47%, and NPV of 94.72%. 
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Figure 5. Average analysis of FCMM-RPS system on 70% of TR database. 

Table 3 demonstrates the overall rainfall prediction outcomes of the FCMM-RPS al-

gorithm on 60% of the TR database and 40% of the TS database. Figure 6 provides a brief 

rainfall prediction performance of the FCMM-RPS approach on 60% of the TR database. 

The figure shows that the FCMM-RPS method categorized all the samples into positive 

and negative classes. It is shown that the FCMM-RPS approach has attained an average 

�������  of 92.58%, �����  of 96.19%, �����  of 92.58%, ������  of 94.30%, and NPV of 

96.19%. 

Table 3. Rainfall prediction outcome of FCMM-RPS system on 60:40 of TR/TS databases. 

Class Accuracybal Precision Recall F-Score NPV 

Training Phase (60%) 

Positive 99.45 98.64 99.45 99.04 93.75 

Negative 85.71 93.75 85.71 89.55 98.64 

Average 92.58 96.19 92.58 94.30 96.19 

Testing Phase (40%) 

Positive 99.49 98.59 99.49 99.04 93.89 

Negative 84.52 93.89 84.52 88.96 98.59 

Average 92.01 96.24 92.01 94.00 96.24 

 

Figure 6. Average analysis of FCMM-RPS system on 60% of TR database. 
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Figure 7 depicts a brief rainfall prediction performance of the FCMM-RPS methodol-

ogy on 40% of the TS database. The figure reveals that the FCMM-RPS method has cate-

gorized all the samples under positive and negative classes. It is detected that the FCMM-

RPS system has gained an average ������� of 92.01%, ����� of 96.24%, ����� of 92.01%, 

������ of 94%, and NPV of 96.24%. 

 

Figure 7. Average analysis of FCMM-RPS system on 40% of TS database. 

The training accuracy (TACC) and validation accuracy (VACC) of the FCMM-RPS 

approach are examined on rainfall prediction performance in Figure 8. The figure shows 

that the FCMM-RPS methodology has exhibited enhanced performance with maximal 

values of TACC and VACC. It is observable that the FCMM-RPS approach has reached 

maximal TACC outcomes. 

The training loss (TLS) and validation loss (VLS) of the FCMM-RPS methodology are 

tested on rainfall prediction performance in Figure 9. The figure shows that the FCMM-

RPS algorithm has better performance with minimal values of TLS and VLS. It is noticea-

ble that the FCMM-RPS system has resulted in lesser VLS outcomes. 

 

Figure 8. TACC and VACC analysis of FCMM-RPS system. 
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Figure 9. TLS and VLS analysis of FCMM-RPS system. 

An obvious precision–recall investigation of the FCMM-RPS approach on a test da-

tabase is described in Figure 10. The figure reveals that the FCMM-RPS system has re-

sulted in higher values of precision–recall values in various classes. 

 

Figure 10. Precision–recall analysis of FCMM-RPS system. 

Table 4 represent detailed results of the FCMM-RPS model with recent models [11]. 

The results show the enhanced outcomes of the FCMM-RPS model under all measures. 

Based on �����, the FCMM-RPS model has obtained a higher ����� of 94.22% while the 

FCM, decision tree (DT), Naïve Bayes (NB), K-nearest neighbor (KNN), support vector 

machine (SVM), and fused ML models have attained lower �����  values of 93.99%, 

92.53%, 90.37%,92.93%, 93.30%, and 93.94%, respectively. Meanwhile, with respect to 
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�����, the FCMM-RPS algorithm has gained a superior ����� of 94.72% while the FCM, 

DT, NB, KNN, SVM, and fused ML approaches have reached minimal ����� values of 

85.45%, 69.49%, 40.98%, 77.25%, 72.10%, and 84.03%, respectively. Furthermore, in terms 

of negative predictive value (NPV), the FCMM-RPS algorithm has obtained an enhanced 

NPV of 94.72% while the FCM, DT, NB, KNN, SVM, and fused ML systems have attained 

decreased NPVs of 94.54%, 93.62%, 93.62%, 93.47%, 93.07%, and 94.20%, respectively. 

These results assure the enhanced performance of the FCMM-RPS model. The enhanced 

performance of the proposed model is due to the parameter-tuning process by MBOA. In 

addition, the data preprocessing including missing value removal and data normalization 

process helps to improve the quality of the input rainfall data. Further, the advantages of 

the FCM model and MBOA include an improved rainfall prediction process over other 

existing models. 

Table 4. Comparative analysis of FCMM-RPS system with existing approaches [11]. 

Methods Accuracy Precision NPV 

FCMM-RPS 94.22 94.72 94.72 

FCM 93.99 85.45 94.54 

Decision tree [23] 92.53 69.49 93.62 

Naïve Bayes [23] 90.37 40.98 93.47 

KNN [23] 92.93 77.25 91.37 

SVM [11] 93.30 72.10 93.07 

Fused ML [11] 93.94 84.03 94.20 

5. Conclusions 

In this article, we have introduced a new FCMM-RPS technique for predicting rain-

fall accurately. The major aim of the FCMM-RPS technique is to forecast rainfall routinely 

and efficiently. The presented FCMM-RPS technique primarily preprocessed the rainfall 

data to make it compatible. In addition, the presented FCMM-RPS technique predicts rain-

fall using the FCM model. To enhance the rainfall prediction outcomes of the FCM model, 

the parameter optimization process was performed using the MBOA. The performance 

assessment of the FCMM-RPS technique was tested on a rainfall dataset. A widespread 

comparison study highlighted the improvements of the FCMM-RPS technique in the rain-

fall forecasting process compared to existing techniques with a maximum accuracy of 

94.22%. Thus, the presented FCMM-RPS technique can be employed for automated rain-

fall forecasting in real time. In the future, the prediction accuracy can be boosted by the 

use of sensor and meteorological datasets with additional different environmental fea-

tures. Hence, in future work, big data analysis can be used for rainfall prediction if the 

sensor and meteorological datasets are used for the daily rainfall amount prediction 

study. 
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