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Abstract: Budget and cost are two of the problems that cannot be ignored when conducting a measure
study. Based on the application of generalizability theory, combined with Lagrange multiplier, this
paper explores how many students and items are optimal for teaching level evaluation of college
teachers under budget constraints to maintain the sustainable development of higher education. A
total of 397 students are required to evaluate 10 teachers’ teaching level using the Teaching Level
Evaluation Questionnaire for College Teachers, and we make different generalizability designs
(i.e., (s:t) x 1, (s:t) X (i:v) and (s:t) x (i:v) X o) for the collected data. The study unifies the Lagrange
multiplier formula, derives the optimal sample size formula of different designs under budget
constraints in generalizability theory, and calculates the optimal sample size for teaching level
evaluation of college teachers in different designs with the estimated variance components. Results
indicate that: (1) the unified formula of Lagrange multiplier has a stronger robustness and can be
applied to different study designs under budget constraints in generalizability theory; (2) the occasion
has a great effect on teaching level evaluation for college teachers; (3) the (s:t) X (i:v) x o design has a
high efficiency in estimating the optimal sample size of teaching level evaluation for college teachers;
(4) the design of (s:t) x (i:v) X o is the optimal generalizability design of teaching level evaluation for
college teachers under budget constraints in generalizability theory; and (5) under budget constraints
of teaching level evaluation for college teachers in generalizability theory, the optimal sample size of
students is 31 for each teacher and the optimal sample size of items is 7 for each dimension.

Keywords: generalizability theory; Lagrange multiplier; budget constraints; estimating the optimal
sample size; teaching level evaluation

1. Introduction

The teaching level evaluation for college teachers is an important basis for assessments
and promotions of relevant teachers by colleges (Spooren et al., 2014) [1]. At present,
the focus of higher education assessment turns into the assessment of students’ learning
outcomes (Le and Xin, 2015) [2]. In the evaluation of teaching level of college teachers,
the “students’” evaluation of teaching” has become an important part of the evaluation
of teaching qualities in most colleges (Le and Xin, 2015; Meyer et al., 2014; Wolbing and
Riordan, 2016) [2—4]. Usually, students evaluate the teacher on several indicator dimensions
using the teaching level evaluation questionnaires assigned by colleges, and the average
score of the evaluation is used to express the teaching level of college teachers. However,
the current practice still has some problems.

It is difficult to clarify the complicated relationship among existing influencing factors
in the evaluation of the teaching level of college teachers. Although the students are usually
seen as the subject of evaluation, it is not appropriate for most colleges only to take the
students as the main influencing factor. There are some reasons, as follows: on the one hand,
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there are several other factors (such as evaluation items, evaluation occasions, evaluation
courses, and evaluation majors, etc.) influencing the evaluation in addition to the main
factor students (Chang and Hocevar, 2000; Yang and Chang, 2003) [5,6]; on the other hand,
the relationship among them will be complicated if all factors are taken into account in the
evaluation, and there are also various combinations of corresponding factors.

Less consideration of budget constraints in the evaluation process results in less cost
consideration. In general, the reliability of the evaluation will also increase or decrease as the
number of the students who assess their teachers increases or decreases (Lakes, 2013) [7].
However, it is necessary to consider the budget and cost in the process of evaluating
the teaching level of college teachers when conducting survey research (Hill et al., 2012;
Meyer et al., 2014) [3,8]. In fact, the researchers should consider how to design a measure-
ment program with relatively high feasibility and reliability under budget constraints in
designing research procedures (Goldstein and Marcoulides, 1991, 1991) [9,10], because the
cost will also be higher when the number of students evaluating teachers is larger. Gener-
ally speaking, increasing the number of observations on facets of measurement can reduce
the measurement error; thereby improving the reliability of the evaluation when evaluating
the teaching level of college teachers. However, when the number of observations increases,
the cost for evaluation will undoubtedly increase. Therefore, this is a dilemma for the
evaluation. In fact, it is common for all students to participate in the teacher’s evaluation in
existing colleges with little cost consideration, leading to a serious waste of costs.

It is difficult to estimate the optimal sample size because there is no discussion about
the optimal design of the evaluation. Specifically, there are no conclusions on the optimal
design plan or the factors that need to be considered to explore the estimation of the optimal
sample size at present. Most colleges usually take two methods to restrict: first, for the
evaluation of the design program, they often distribute the questionnaire to students online
or on-site to fill at the end of the semester, and then collect the data back to evaluate the
teacher. Generally, they carry out the optimal program design according to usual practice
without additional consideration. Second, for the evaluation of the number of students,
most of them make the estimation through artificial regulations. For example, it is often
assumed that the optimal number of students in a student evaluation is a sample of a
natural class, typically around 30 (Gitomer et al., 2014; Casabianca et al., 2015) [11,12],
or, roughly, if the number of students in a course is less than 10, the course will not be
included in the evaluation score. However, there is no scientific reason for these practices.
In general, the optimal number of students estimated based on people’s general qualitative
or empirical knowledge is difficult to match with the actual situation and is meaningless,
because there are many factors influencing the evaluation of the teaching level of college
teachers (Bergsman et al., 2015) [13].

The generalizability theory is one of the modern psychological and educational mea-
surement theories (Qi et al., 2002) [14], which can solve the above problems in the evaluation.
The generalizability theory can examine multiple evaluation factors together and analyze
the relationship and importance among them. It is a kind of decision theory for the general-
izability theory to explore the sample size of different designs under budget constraints.
The generalizability theory can explore the optimal number of students, items, and other
issues of teaching level of college teachers under budget constraints based on a variety of
influencing factors.

The generalizability theory has some advantages on analysis of the teaching level
evaluation of college teachers compared with the classical test theory (CTT). The general-
izability theory can construct different generalizability designs to carry out the reliability
analysis of various factors according to different situations. The generalizability theory
can examine the optimal sample size of different generalizability designs under budget
constraints based on the relative decision making of various results. It is possible for the
generalizability theory to find out which generalizability design scheme is optimal by
comparison under certain budgetary constraints.
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Corresponding to the above problems, in order to solve the problem of estimating the
optimal sample size of the teaching level of college teachers under budget constraints, the
generalizability theory usually takes some approaches, as follows.

First of all, different generalizability designs are built. The generalizability theory
can take into account these influencing factors together (e.g., students, classes, courses,
and majors, etc.) in the evaluation of the teaching level of college teachers, and the object
of measurement is the actual teaching level of college teachers. Examining the influence
of these factors on the teaching level of college teachers can help to accurately evaluate
whether or not a teacher’s teaching effect is good, and the level is high. It also can help
to better understand the overall teaching level of a teacher from multiple aspects and
compare the differences among the teaching levels of different teachers fully. There are also
other factors affecting the evaluation of college teachers’ teaching level (Chen et al., 2015;
Maulana et al., 2015; Oghazi, 2015; Pleschova and Mcalpine, 2016) [15-18]. It is necessary
to pay attention to these influencing factors on the objects of measurement and constructing
different generalizability designs to reflect the relationship among them in the analysis
process using the generalizability theory. Otherwise, these influencing factors may be-
come hidden facets; thereby exaggerating the generalizability coefficient of the evaluation
(Brennan, 2001) [19]. For example, a generalizability design of ((s:t) x i, (s:t) X (i:v) and
(s:t) x (i:v) x 0) can present the relationship among these influencing factors. The gener-
alizability theory can construct and analyze different generalizability designs in favor of
situational relationships, which show strong advantages. It can also examine the effect of
factors in different designs. If the effects are small, they will be ignored. If the effects are
large, they are the main factors.

Secondly, the budget and cost of the evaluation are considered. The generalizability
coefficient will generally increase until reaching the intended value with one side level
increases in the generalizability theory. However, the researchers should consider whether
or not to change the research design once there are constraints (e.g., budget constraints from
human, material, and financial resource, etc.). In some cases, to increase the generalizability
coefficient by 0.01, a larger number of observations of a certain side are required, which
may require more money than budgeted. When this happens, the researchers should con-
sider whether or not to increase the number of lateral observations (Cronbach et al., 1972;
Brennan, 2001) [19,20]. In view of this, the researchers should consider how to find a
measurement program with a high reliability under the budget restriction in the evaluation
of college teachers’ teaching level.

Last but not least, the method of estimating the optimal sample size under budget
constraints is explored. These methods are the discrete optimization methods, the Cauchy-
Schwartz inequality method, and the Lagrange multiplier method, etc. Woodward and
Joe (1973) [21] deduced the equation (maximize the reliability of the measurement under the
budget limit) to estimate the sample size using the discrete optimization method. However,
the discrete optimization method cannot be extended to more than three sides or above
of the cross design or nesting design. Some scholars have improved these shortcomings
(i.e., the Cauchy-Schwartz inequality method proposed by Sanders et al. (1989) [22],
and the Lagrange multiplier method proposed by Macrolides and Goldstein (1990) [23].
Macrolides (1993) [24] generalizes the one-side Lagrange multiplier to the multi-lateral
and multi-context in order to solve the problem of estimating the optimal sample size
in multi-side design under budget constraints further. Moreover, Macrolides (1997) [25]
conducts a “divide and conquer” strategy for the Lagrange multiplier method according
to different generalizability designs. Macrolides (1997) [25] aims to simplify crossover
designs instead, extending the focus of the research to more complicated nests or mixed
designs (some generalizability designs are multifaceted mixed designs including both cross
and nested designs) showing deficiencies in the discussion on the method of estimating
the optimal sample size under budget constraints. The research of Li and Ou (2020) [26]
shows that the performance of the Lagrange multiplier method is better than that of the
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Cauchy-Schwartz inequality method. Therefore, this study only discusses the Lagrange
multiplier method.

Meyer et al. (2014) [3] applied the Lagrange multiplier (estimating the optimal sample
size of different designs in generalizability theory under budget constraints proposed by
Macrolides et al. (1993, 1997) [24,25] to actual measurement research through an empirical
study of the teaching level evaluation of college teachers. Meyer and other people list the
application of the Lagrange multiplier in the simple crossover design and present the appli-
cation of the Lagrange multiplier in the nested design, showing that the Lagrange multiplier
has a wide applicability in the generalizability theory. However, there are still two questions
in the study of Meyer et al. (2014) [3]. On the one hand, there is no unified formula for the
Lagrange multiplier. Meyer et al. (2014) [3] still make a “divide and conquer” on different
generalizability designs, and simply apply the basic principle of the Lagrange multiplier to
different general designs, respectively, thereby reducing the optimal sample size of different
generalizability designs. However, they do not put forward a relatively unified formula
of the Lagrange multiplier, generalize, or summarize the basic principle of the Lagrange
multiplier, showing deficiencies. On the other hand, they do not apply the Lagrange
multiplier to more complicated generalizability designs. Although, the generalizability
design of Meyer et al. (2014) [3] can apply the Lagrange multiplier to the nested design in
generalizability theory. However, they cannot apply the Lagrange multiplier to some more
complicated designs (i.e., the mixed design and multivariate conceptual design and etc.),
which is deficient (Macrolides and Goldstein, 1991, 1992; Macrolides, 1994, 1995) [27-30].

Education is sustainable. If we want to maintain the sustainable development of
higher education, we must have strong teachers and attach importance to college teachers’
teaching level. In this view, we should strengthen the supervision of teachers’ teaching
behavior for the reason that the evaluation is very important, but it needs to be scientific
and reasonable.

Budget and cost are the problems that cannot be neglected in the research of mea-
surement. The cost will be higher when the number of students evaluating teachers is
larger. Thus, it is impossible to expect to endlessly increase students to evaluate teachers’
learning level. The size of a sample would be subject to budget constraints. Therefore, it is
important to examine how to effectively determine the size of a sample considering the
budget constraints. How many students and items are optimal for teaching level evaluation
of college teachers? Possibly, we can find the answer from the generalizability theory and
Lagrange multiplier method.

Generalization theory is widely used in various psychological evaluation practices
(Clayson et al., 2021; Li, 2019; Vispoel et al., 2020) [31-34]. Generalizability coefficients can
be improved by increasing sample sizes (Zhang and Lin, 2016) [35]. However, the size
of a sample would be subject to budget constraints. When there is a budget constraint,
the generalization theory needs to consider how to design a measurement program with
relatively high reliability and feasibility, which requires the optimal sample size to be
estimated by some means. The Lagrange multiplier method is a more mature method for
estimating the optimal sample size under the budget constraints in generalizability theory.

The purpose of this study is as follows: (1) based on generalizability theory combined
with the budget constraints, we unified the Lagrange multiplier formula and derived
the optimal sample size estimators for different generalizability designs; (2) according
to the optimal sample size estimators for different generalizability designs, we estimate
the optimal number of students and the optimal number of items for the actual teaching
level evaluation of college teachers, hoping to provide references for research similar to the
evaluation of the teaching level of college teachers.

2. Lagrange Multiplier
2.1. The Unified Formula of Lagrange Multiplier

The Lagrange multiplier is a method of finding the extreme of a multivariate function
whose variables are limited by one or more conditions. It can solve the problem of the
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optimization with equality constraints by introducing the Lagrange multiplier (Wang and
Wu, 1999) [36]. When using the Lagrange multiplier to solve a problem, the unified formula
of the Lagrange function is formulated as follows:

L(x,y,A) = f(x,y) — Ag(xy) 1

where L(x,y, A) is the Lagrange function, x and y are unknown parameters of the function,
A is a new unknown scalar. Equation (1) can be interpreted as solving the extremism of the
function f(x, y) under the constraint of the function g(x, y) by introducing a new unknown
scalar A (Zheng and Gao, 2018) [37].

According to Equation (1), if the teaching level evaluation of college teachers involves
evaluation students-s, evaluation items-i, evaluation dimensions-v, and evaluation occasion
(o, number of times), the Lagrange function can be expressed as:

L(ns, n;, np, 1y, A) = 0'2((5) — A(engningn, — B) ()

where n; represents the number of evaluation students, #; represents the number of evalua-
tion items, 1, represents the number of the dimension of the evaluation items, 1, represents
the number of evaluation times, 0?(J) represents the relative error variance which cor-
responds to the error variance in CTT (Brennan, 1983, 2001; Qi et al., 2002) [14,19,38],
A represents the new unknown scalar, ¢ represents the cost of a single question, B repre-
sents the budget for completing an evaluation. Equation (2) set the function ¢(J) and the
additional condition (cnsn;nyn, — B) < 0, introducing the unknown parameter A; thereby
finding the extreme value of the function ¢?(§) under the restriction of additional condi-
tions. cnsn;nyn, — B < 0 indicates the actual cost is less than or equal to the budget. When
cnshingny, — B = 0, the maximum value of ngn;nyn, is obtained since ¢ and B are fixed
values. Therefore, Equation (2) adopts the extreme value of the relative error variance o2(J)
by introducing the Lagrange multiplier A as the actual cost is not greater than the budget.

According to Equation (2), the optimal sample size of all three designs can be estimated.

2.2. The Lagrange Multiplier of the (s:t) x i Design

The mean error variance and relative error variance of the (s:t) x i design are:

YUsit + & + Uﬁsi:t,f‘ (3)

2 2 2
o bor S et
2 : si:t,e
(7((5)—it+i+7 (4)
g n; ngn;
In Equation (3), a% represents the mean error variance; O'tZ, (71-2, aét, ‘thir 0521»: te are the

variance components of the teachers, the variance component of the items, the variance
component of the students nested in the teachers, the variance component of the teacher—
item interaction, and the variance component of the students crossover the items, but
nested in the teachers with unmeasured and random sources of variation, respectively.
In this paper, we used the symbol ‘e’ to denote unmeasured and random sources of
variation (Shavelson and Webb, 1991) [39]. The n;, n; and n; represent the sample size of
the teachers, the sample size of the items, and the sample size of the students, respectively.
In Formula (4), (fg is the relative error variance, and the meanings of other representation
symbols are the same as in Equation (3).

The optimal number of students and items can be obtained by conducting minF (ns, 1, A) =
02(8) — A(cnsn; — B) using the Lagrange multiplier unified formula of Equation (2) with Equa-
tions (3) and (4). Results are showed:

ns = | 55— ©)
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5
as:t ¢

(6)

In Equation (5), 15 represents the optimal number of students, ¢2, represents the
estimated variance component of the students nested in the teachers, 07 represents the
estimated variance component of the teacher—item interaction, ¢ represents the cost of
a single item, B represents the budget of completing an evaluation. In Equation (6), #;
represents the optimal number of items, and the meanings of other representation symbols
are the same as in Equation (5).

2.3. The Lagrange Multiplier of the (s:t) x (i:v) Design

The mean error variance and relative error variance of the (s:t) x (i:v) design are:

2 2 2 2 2 2 2 o2
2 0, 0 U % : (% . (o Y B si:tv,e
Uyzi+l+i+ﬂ+ﬂ+ﬂ+ﬂ+7 (7)
ng Ny My Mg Nghy My NNy HgliNy
o2, o> o2 o o2
02(5) _ Usit su:t Ytv ti:v si:tv,e (8)
ns Nty Ny  NMiNy NNty
In Equation (7), 02 represents the mean error variance; o2, 02, 02, 02,, 02, 0>
q ¢ p 7 Ytr Yor Vi YVsitr Ysvitr Vtos
0%.,, 02, , are the variance components of the teachers, the variance component of the

dimensions, the variance component of the items nested in the dimensions, the variance
component of the students nested in the teachers, the variance component of the students
crossover the dimensions, but nested in the teachers, the variance component of the teacher—
dimension interaction, the variance component of the teachers crossover the items, but
nested in the dimensions, and the variance component of the students crossover the
items, but nested in the teachers and dimensions with unmeasured and random sources
of variation, respectively. The 1y, n;, ns and n, represent the sample size of the teachers,
the sample size of the items, the sample size of the students, and the sample size of the
dimensions, respectively. In Equation (8), 0 represents the relative error variance, and the
meaning of other representation symbols are the same as in Equation (7).

The optimal number of students and items of the (s:t) x (i:v) design can be obtained
by conducting minF (ns, n;, 1, A) = 02(8) — A(cnsniny — B) using the Lagrange multiplier
formula of Equation (2) with Equations (7) and (8). Results are showed:

_ (nvasz:t + Uszv:t) E
ns = 5 )
o0y ¢
o2 B
n; = 2“:0 5 — (10)
Ny (nl’as:t + Usv:t) ¢

In Equation (9), n; represents the optimal number of students, 02, represents the
estimated variance component of the students nested in the teachers, 02, , represents the
estimated variance component of the students crossover the dimensions, but nested in
the teachers, 07, represents the estimated variance component of the teachers crossover
the items, but nested in the dimensions, 1, represents the sample size of the dimensions,
c represents the cost of a single item, B represents the budget for completing an evaluation.
In Equation (10), n; represents the optimal number of items, and the meanings of other
representation symbols are the same as in Equation (9).

2.4. The Lagrange Multiplier of the (s:t) x (i:v) X o Design

The mean error variance and relative error variance of the (s:t) x (i:v) x o design are:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 (72
a; [ [ q, 5. q, g [ g, (o)t (%N 0; (% (pynny si:t
v s:t v ot os:t ov 0i:0 tv ti:v sv:t si:ty oty oti:v osv:t ost:iv,e (] ] )

X No ng ny ns niny Nno Nsto Nyho nilyne Ny nity Nshy nsning Nnyho ninyne NsNyne Nsninyty
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2 2 2 2 2 2 2 2 2 2 2
[ o . 0. (ot 0. . Ot Thso: Oosizto,e
0.52 _ st + ot + os:t + tv + ti:v + su:t + si:tv + otv + oti:v + 0sv:t + / (12)

Ns Ny NNy Ny NNy  NgNy  NsMiNy  Nply  NNpNy  NglpNy  NgNiNyHy

In Equation (11), 0'% means the mean error variance; (Tg, Uf, 05, Uszzt/ Uizm, agt, O'gs:t,
2 2 2 2 2 2 2 2 2 2 :
O0vr Upicvr Otvr Otipr Psvitr Usisror Potor Yotiznr Posvits Uosi:t‘u,e represent the variance Component

of the occasions; the variance component of the teachers; the variance component of the
dimensions; the variance component of the students nested in the teachers; the variance
component of the items nested in the dimensions; the variance component of the interaction
between the teachers and occasions; the variance component of the interaction between the
occasions and students, but nested in the teachers; the variance component of the interaction
between the occasions and dimensions; the variance component of the interaction between
the occasions and items, but nested in the dimensions; the variance component of the
interaction between the teachers and dimensions; the variance component of the interaction
between the teachers and items, but nested in the dimensions; the variance component of
the students crossover the dimensions, but nested in the teachers; the variance component
of the interaction between the students and the items, but nested in the teachers crossover
the dimensions; the variance component of the interaction of occasion-teacher—dimension;
the variance component of the interaction of occasion-teacher—item, but nested in the
dimensions; the variance component of the interaction of occasion-student-dimension, but
nested in the teachers crossover the dimensions with unmeasured and random sources of
variation, respectively. The ny, n;, ns, n, and n, are the sample size of teachers, the sample
size of items, the sample size of students, the sample size of dimensions, and the sample
size of occasions, respectively. In Equation (12), 07 represents the relative error variance,
and the meanings of other representation symbols are the same as in Equation (11).

The optimal number of students and items can be obtained by conducting minF (ns, 1, 115, 115, A)
= 02(8) — Alcnsninyn, — B) using the Lagrange multiplier formula of Equation (2) with
Equations (11) and (12). Results are showed:

2 2 2 2
Ne = (nvnoas:t + Mo0hs:t + Mo0sp:¢ + Uosv:t) E (13)
s =
NoMlo (noazfzi:v + Ugti:v) ¢
2 2
L o0}y + otizo B
ni = 2 2 2 2 N\~ (14)
Nyt (nvnogs:t + No00s. + MoUgp: + Josv:t) ¢

In Equation (13), ns represents the optimal number of students, ¢2; represents the
estimated variance component of the students nested in the teacher, o2, represents the
variance component of the situations crossover the students, but nested in the teachers,
crszw represents the estimated variance component of students crossover the dimensions,
but nested in the teachers, 02, represents the variance component of the occasion-student-
dimension interaction, but nested in the teachers, ‘thi:v represents the estimated variance
component of the teachers crossover the items, but nested in the dimensions, Uoztizv repre-
sents the variance component of the occasion—teacher—item interaction, but nested in the
dimensions, 1, represents the sample size of the dimensions, #, represents the sample size
of the occasions, c represents the unit cost, B represents the budget to complete an evalua-
tion. In Equation (14), n; represents the optimal number of the items, and the meanings of

other representation symbols are the same as in Equation (13).

3. Methods
3.1. Data Collection

The Teaching Level Evaluation Questionnaire for College Teachers was used to eval-
uate the teaching level of college teachers. The main subjects participating in the ques-
tionnaire were trained, and the instructions were unified, and the objectives and points of
attention were stated before the formal test.
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The questionnaire includes three dimensions (teaching method, teaching content, and
teaching effect). The teaching method is the general term of the ways and means used by
teachers and students in the teaching process to achieve the common teaching goals and
complete the common teaching tasks. The teaching content is the main information that
is intentionally transmitted in the process of interaction between learning and teaching,
generally including curriculum standards, textbooks, and courses. The teaching effect
refers to the effect achieved by teachers through teaching behavior to guide students to
acquire knowledge, such as better academic performance and greater progress made by
students. Each dimension has 18 items, and there are 54 items in total on a 5-point scale
(from 1 = Disagree at all to 5 = Agree very much). The Cronbach’s « coefficient of the
whole questionnaire is 0.88. The internal consistency coefficients of all dimensions and
the questionnaire are 0.85, 0.80, 0.85, and 0.94. The correlation between the scores of all
dimensions and the total score of the questionnaire was 0.62~0.78. We performed a series
of confirmatory factor analyses (CFA) (Geiser, 2012) [40] to identify the dimensions of the
scales using a pilot sample data (# = 501) collected in 2020, prior to our formal research.
Results indicated three dimensions (and each of these dimensions was examined using
18 items and averaged): teaching method (e.g., “the teacher is good at using multi-media,
such as lantern slide, models, films, for teaching; the teacher summarizes and emphasizes
the key points and difficult points clearly.”), teaching content (e.g., “the teacher introduces
us the present trend of the subject and the background of the learning content; the teacher
links learning content to practical life.”), and teaching effect (e.g., “through the study, I
grasp the basic principles and theories of the curriculum; through the study, I learn how
to solve problems by searching and using information resources.”). The model fit was
acceptable (Schermelleh-Engel et al., 2003) [41] and the validity of the questionnaire met
the measurement requirements ()(2/ df =3.283, CFI1 = 0.927, TLI = 0.918, RMSEA = 0.066,
SRMR = 0.039).

Table 1 shows the number of teachers and students for different major type participat-
ing in the evaluation of the teaching level for college teachers.

Table 1. The number of students of the teacher for different major type in the evaluation.

Teacher ID 1 2 3 4 5 6 7 8 9 10
Student number 43 39 42 39 39 37 38 42 39 39
Major type A S A E E A A S E S

Note: A = liberal arts; S = science; E = engineering.

As shown in Table 1, there are 10 teachers who are evaluated and 397 students
who participate in the evaluation. The types of students include liberal arts, science,
and engineering.

3.2. Procedures

In total, we investigated 10 teachers (and 10 classes or 10 courses) from three colleges
and their teaching performance. All of the 10 courses were mandatory, and had the same
workload (one 45 min lesson a week). Data were collected during the class in 45 min using a
paper/pencil version survey administered to all students in these classes, first at the end of
the first semester (T1, before the final exam; fall semester) and then at the beginning of the
second semester (T2, spring semester). Research staff was trained before they administered
the survey. Student assent was obtained, and this study received approval documents from
the targeted university’s research ethics board (Institutional Review Board).

3.3. Generalizability Design

The generalizability design includes (s:t) x i, (s:t) x (i:v) and (s:t) X (i:v) x o, where t is
the object of measurement, 7, s, v, and o are facets of measurement. Among them, ¢t denotes
the evaluated teacher, i is the evaluated item, s denotes the evaluated student, v represents
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the dimension of the evaluation item (dimension or veidoo), and o denotes the evaluated
occasion (occasion).

3.4. Analysis Tools

Analyses were performed in the urGENOVA software (Brennan, 2001) [42]. Some
programs were completed by writing the control card in the urGENOVA software. Some
variance components were estimated on each side of the data in different designs, and then
substituted the variance components into the unified formula of the Lagrange multiplier to
calculate the optimal sample size for different designs under budget constraints.

3.5. Budgetary Costs

The budget constraints and measurement costs from the actual situation of the evalua-
tion of teaching level of college teachers are set. C represents the single-item cost, which is
the cost of completing an item in the evaluation questionnaire. The cost of completing an
evaluation questionnaire (a total of 54 items) is showed in Table 2.

Table 2. The cost of completing an evaluation questionnaire (54 items in total).

. . Cost of a Single
Details Price Question C
Design cost of the evaluation item CNY 4/share
Printing cost of the evaluation item CNY 0.8/share c=CNYO0.2
Cost of the analysis of evaluation data CNY 6/share

The cost of a single item is CNY 0.2; the cost of completing an evaluation questionnaire
(54 items in total) is CNY 10 (54 x 0.2 = 10.8). This paper defines the budget needed
to complete the evaluation based on the cost of completing an evaluation questionnaire.
B* = B x k represents the total budget for completing k times evaluation, where B is the
budget for completing one time evaluation. The budget cost of the evaluation can be set
according to the actual needs. For example, there are a total of 397 evaluation questionnaires
in the evaluation of teaching level of college teachers. If the evaluation is conducted twice
(k = 2), the total budget will be B* = CNY 4287.6.

The cngn; < B is a budget constraint expression of two-sided design according to the
definition of budgetary cost, where 1, indicates the number of students participating in
the evaluation (or the number of completed evaluation questionnaires), n; is the number
of evaluation questionnaire questions, and cngn; < B indicates the cost of one time that
must be less than or equal to the predetermined budget cost in the evaluation of college
teachers’ teaching level. Similarly, the budget constraint expression can be expressed as
cnsning < B if the definition of the budget cost is extended to a three-sided design, where
ns indicates the number of students participating in the evaluation (or the number of
completed questionnaires), n; is the number of items contained in each dimension, 7,
indicates the number of the dimension in each evaluation items. When more aspects are
involved, the expression of the budget constraint can be expressed as cnsn;ny, - - - ny < B.

4. Results
4.1. The Optimal Sample Size Estimation for the (s:t) X i Design

The size of the test population is a non-negligible factor affecting the evaluation
results (Hill et al., 2012) [8]. Most of the evaluations are based on sampling methods
due to the practical limitations of the operation; thus, the size of the sample becomes an
important factor influencing the effectiveness of the evaluation. It is necessary to consider
the impact of this factor in the evaluation of the teaching level of college teachers. In
general, the evaluation student-s is nested within the evaluated teacher-t and intersects
with the evaluation item-i. Their relationship is (s:t) X i.

Results about the estimated variance component of the (s:t) x i design from the
performance of the urGENOVA program are showed in Tables 3 and 4.
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Table 3. ANOVA result of urGENOVA for (s:t) X i.
Effect df T SS MS
t 9 298,136.60505 816.58597 90.73177
sit 387 304,396.20370 6259.59865 16.17467
i 53 300,299.11587 2979.09679 56.20937
t 477 302,017.40826 901.70641 1.89037
sitt, e 20511 336,825.00000 28,547.99309 1.39184
Table 4. The Variance Components Estimated of the (s:t) x i Design.
t s:t i ti si:ct, e
0.03455 0.27376 0.13682 0.01256 1.39184

The calculation is available as n; = 521.96957, n; = 23.94775 based on the variance
components estimated by Equations (5) and (6) and Table 4. The results of n; and n; are
rounded to 522 and 24; the total cost is 2496 and the relative error variance o%(8) is 0.00116
when ng = 522, n; = 24, Ep? = 0.96752.

When the number of evaluation student is 52 for each teacher and the number of the
evaluation items is 8 items for each dimension in the (s:f) x i design, the reliability of the
evaluation is the greatest.

4.2. The Optimal Sample Size Estimation for the (s:t) X (i:v) Design

The reliability of the evaluation result is not only influenced by the size of the test
group, but also by the setting of the evaluation items. When assessing the teaching level of
college teachers, it is also possible to examine the influence of the dimension of the evalu-
ation items on evaluation results so as to make the analysis results more comprehensive.
The relationship among the evaluation students, evaluation items, and the dimension of
the evaluation items is: the students-s are nested in the evaluated teachers-t, while the eval-
uative items-i are nested in the dimension-v of the evaluative items, and the relationship
between them is (s:t) x (i:v).

The results of the estimated variance component of the (s:t) x (i:v) design from the
performance of the urGENOVA program are shown in Tables 5 and 6.

Table 5. ANOVA result of urGENOVA for (s:t) x (i:v).

Effect df T Ss MS
t 9 298,136.60505 816.58597 90.73177
sit 387 304,396.20370 6259.59865 16.17467
v 2 297,396.69728 76.67820 3833910
iv 51 300,299.11587 2902.41859 56.91017
to 18 298,300.29952 87.01626 4.83424
tiro 459 302,017.40826 814.69015 1.77492
svit 774 306,288.76254 1728.86437 223367
sictv, e 19,737 336,825.00000 26,819.12872 1.35882

Table 6. The Variance Components Estimated of the (s:t) X (i:v) Design.

t s:t v iv to ti:v su:t si:tu, e

0.03349 0.25688  —0.00311  0.13888 0.00314 0.01048 0.04989 1.35882

The calculation is available as n; = 571.16419, n; = 7.29504 based on the variance
component estimated by Equations (9) and (10) and Table 6 (the number of items in each
dimension). The results of ns and n; are rounded to 571 and 7. In the (s:t) x (i:v) design; the
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total cost is 2398.2 and the relative error variance (72(5 ) is 0.00109 when ng = 522, n; = 24,
Ep® = 0.96848.

When the number of evaluation student is 57 for each teacher and the number of the
evaluation items is 7 items for each dimension in the (s:t) x (i:v) design, the reliability of
the evaluation is the greatest.

4.3. The Optimal Sample Size Estimation for the (s:t) X (i:v) x o Design

On the evaluation of college teachers’ teaching level, it is necessary to evaluate the
influence of the occasion (time or the number of times) in addition to the size of the group
of participants and the setting of evaluation items. The measurement results on different
occasions (re-tested) can make the evaluation result more persuasive to a certain extent.
However, it also means the cost will increase. In the assessment of college teachers’ teaching
level, the evaluation student-s is nested in the evaluated teacher t, and the evaluation item-i
is nested in the dimension-v of the evaluation items, and there is a cross relationship
between them. If the evaluation occasion (time or the number of times) is included in the
generalizability design, the two nests intersect with the evaluation occasion (time or the
number of times) o, namely (s:t) x (i:v) X o.

Those results of the estimated variance components of the (s:t) x (i:v) x o design from
the performance of the urGENOVA program are shown in Tables 7 and 8.

Table 7. ANOVA result of urGENOVA for (s:t) x (i:v) X o.

Effect df T SS MS

0 1 603,244.46427 30.68404 30.68404

t 9 603,950.41673 736.63650 81.84850
s:t 387 609,305.87963 5355.46290 13.83841

v 2 603,391.54635 177.76613 88.88306

v 51 609,157.78212 5766.23576 113.06345
ot 9 604,541.19110 560.09034 62.23226
os:t 387 615,196.01852 5299.36451 13.69345
0v 2 603,423.19852 0.96812 0.48406
0i:v 51 609,374.12343 184.68914 3.62136
tv 18 604,233.40471 105.22185 5.84566
ti:v 459 610,968.65628 969.01581 2.11115
sv:t 774 611,401.23105 1812.36344 2.34155
si:tv 19,737 647,921.50000 29,785.01738 1.50910
otv 18 604,872.81689 47.66969 2.64832
oti:v 459 612,708.89276 916.13515 1.99594
osv:t 774 619,097.49034 1757.48259 2.27065
osi:tv, e 19,737 686,117.00000 29,398.41641 1.48951

Table 8. The Variance Components Estimated of the (s:t) x (i:v) x o Design.

o t v s:it iv ot os:t 0v 0i:v
—0.00136 0.08376 —0.00173 0.00065 0.13769  0.02247 0.21.39  —0.00054 0.00409

to ti:v sv:t si:tv otv oti:v osv:t osi:tu, e

0.00218  0.00120  0.00146  0.00979  —0.00018 0.01276  0.04454  1.48951

The calculation is available as n; = 305.26026, n; = 6.80250 based on the variance
components estimated by Equations (13) and (14) and Table 8. The results of n; and #n; are
rounded to 306 and 7. In the (s:t) x (i:v) x o design, the total cost is 1285.2 and the relative
error variance 02(J) are 0.001264 when 1 = 306, n; = 7, Ep? = 0.86888.

When the number of evaluation students is 31 for each teacher and the number of
the evaluation items is 7 items for each dimension, n, = 3, n, = 2, the reliability of the
evaluation is the greatest.
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5. Discussion
5.1. The Influencing Factors of the Evaluation

The generalizability theory replaces the notion of reliability in the CTT with the concept
of dependability, which refers to extend the scores of the participants in one measurement
(such as psychological test, behavioral observation, questionnaire survey, etc.) to the accu-
racy of the generalizability of the scores of participants on all possible conditions accepted
by the test participants at the same level. The concept of dependability in generalizability
theory can be expressed as a generalizability coefficient Ep? (Brennan, 2001) [19]:

2
Ep" = az(t()T-IEtclz((S) (1

where Ep? represents the generalizability coefficient, ?(t) is the variance of the global
fractional (means the teacher’s global fractional variance in this case), and ¢(§) represents
the relative error variance. In Equation (15), the generalizability coefficient Ep? can be
defined as the ratio of the sum of the global fractional variance and relative error variance.

The global fractional variance and relative error variance of all three designs can be
obtained according to the results of Tables 3—6 and the above analysis, and the optimal
generalizability coefficients Ep? and AEp? of all three designs can be calculated according
to Equation (15), which is shown in Table 9.

Table 9. The Optimal generalizability coefficients and Their Changes.

Global Relative Error Optimal
Design Fractional Vari 2(5) Generalizability AEp?
Variance o2 (t) arance ¢ Coefficient Ep?
(s:t) x i 0.03455 0.00116 0.96752
(s:t) x (iv) 0.03349 0.00109 0.96848 —0.00096
(s:) X (iv) x 0 0.08376 0.01264 0.86888 0.09960

From Table 9, the complexity of all three designs is continuously increasing, showing
a progressive relationship. The next design is formed by adding a factor to the previous
design, which means that the design of (s:t) x (i:v) X o is based on the design of (s:t) x i
with the effect of v added. The (s:t) x (i:v) x o design is formed after adding the o factor
to the (s:f) x (i:v) design. The advantage is that it can intuitively dig out the influence of
each factor on the generalizability coefficient, thus it can explore more hidden facets and
lay the foundation for discovering the main influencing factors of the evaluation of college
teachers’ teaching level.

From Table 9, these facets gradually emerge from the hidden facets with the facets
added one by one, which results in the “fixed” variance in the global fractional as being
gradually “liberated” (Brennan, 2001) [19]. This also shows that these “liberated” facets
may have a certain impact on the evaluation of the teaching level of college teachers, which
is consistent with the research of Meyer et al. (2014) [3]. The (s:t) x (i:v) x o design has a
relatively large change in the generalizability coefficient (AEp?) compared to the (s:t) x (i:v)
design, reaching 0.09960 (9.960%), showing that o (occasion) is an important factor in
evaluating the teaching level of college teachers. However, the (s:t) x (i:v) design has a
relatively smaller change in the generalizability coefficient (AEp?) than the (s:t) x i design,
only —0.00096 (0.096%), indicating that the v (Dimensions) can only be considered as a
general factor.

5.2. The Optimal Sample Size Estimation for Different Designs

The estimated optimal sample size for all three designs can be obtained by sorting out
the data in the above results, as shown in Table 10.
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Table 10. The Estimated Optimal Sample Size for the Three Designs.
Design ns n; n 1 ngn; ngn,
(s:t) x i 520 24 52 8 12,480 416
(s:t) x (iv) 571 21 57 7 11,991 399
(s:t) x (irv) X o 306 21 31 7 6426 217

In Table 10, ns and #n; indicate the total number of the optimal students and items
needed to evaluate the 10 teachers. In Table 10, 1 is the average number of the optimal
students needed to evaluate per teacher, #/ indicates the average number of optimal items
contained in the dimensions.

In Table 10, the optimal number of students in all three designs is 520, 571, and 306
while the optimal number of items for all three designs is 24, 21, and 21. The average
number of optimal students in all three designs is 8, 7, and 7. Comparing the (s:t) x (i:v)
and (s:t) x (i:v) X o designs in Table 11, the former’s average number of optimal students
and items are 57 and 7, and the latter’s average number of optimal students and items are
31 and 7 with a great difference between them. In addition, the product of (s:tf) x (i:v) and
(s:t) x (i:v) x o1is relatively big under the nsnin;ng columns of data in Table 11. The former
is 11,991 and 399, and the latter is 6426 and 217, indicating that the gap between them is
relatively big.

Table 11. The Budget Costs Corresponding to the Optimal Sample Sizes of all Three Designs.

Optimal
Design Generalizability ns n; Actucaéslil;dget AB
Coefficient Ep®
(s:t) x i 0.96752 520 24 2496 —4
(s:t) x (i:v) 0.96848 571 21 2398.2 —101.8
(s:t) x (iv) x 0 0.86888 306 21 1285.2 —1214

Compared to the (s:t) x (i:v) design, the (s:t) x (i:v) x o design adds a factor o, which
will decompose the effect of the important factor “occasion”. From the analysis, this occa-
sion factor is very important, which is consistent with the research of Igbal et al. (2016) [43].
According to this, it will have a great impact on the estimation of the optimal sample size
from the above and we can see that the gap between the number of optimal students and
items of the two designs is big. So, the (s:t) X (i:v) x o design is superior.

The (s:t) x (i:v) x o design under the budget constraint has a higher efficiency for
estimating the optimal sample size compared with other designs.

5.3. The Optimal Generalizability Design under Budget Constraints

The budget costs corresponding to the optimal sample size of all three designs can be
further summarized. Results are shown in Table 11.

In Table 11, AB is actual budget cost B minus 2500, where the actual budget cost
B = 0.2 ngn; is the actual corresponding budget cost generated after rounding off the op-
timal number of students and items, and CNY 2500 is the theoretical budget cost set at
the beginning.

The cost budgets of the (s:t) x (i:v) x o design are least under the B and AB of all three
designs in Table 11, which is CNY 1285.2 (—1214) and will greatly increase the effectiveness
of the designs. This means that the (s:t) x (i:v) x o designs show strong applicability under
certain budgetary constraints and should be given priority.

From the generalizability coefficient of all three designs in Table 11, the (s:t) x (i:v)
design has the largest generalizability coefficient (0.96848), followed by the (s:t) x i design
(0.96752), and the (s:t) x (i:v) x o design (0.86888). Although the generalizability coefficient
of the (s:t) X (i:v) X o design is the lowest in all three design, it involves the largest number
of measurement facets. In addition, the generalizability coefficient of all three designs is
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already very high as far as its size of the generalizability coefficient and the smallest one
has reached 0.86888, which completely guarantees the reliability of the evaluation.

The (s:t) x (i:v) X o design analyses the results more comprehensively and is in line
with the actual situation of the assessment of teaching level of college teachers. In addition,
it includes the evaluator students, the evaluation items, and the dimension of the evaluation
items and the measurement of evaluation on different occasions (time or the number of
times). In fact, there are differences in the evaluation of teachers by different students
on different occasions (time or the number of times), which indicates that the evaluation
occasions (time or the number of times) have a considerable influence on the evaluation.
Especially when students are under the pressure of the exam, they have to make high
scores on the teacher’s evaluation (Vaillancourt, 2013; Igbal et al., 2016) [43,44].

Considering the above three aspects of budget cost, generalizability coefficient, and ac-
tual situation, the (s:t) x (i:v) X o design is the optimal generalizability design under the bud-
get constraint of the college teacher’s teaching level evaluation in the generalizability theory.

Under budget constraints, the number of students can be reduced, even to about 30.
If the evaluation occasion or time is appropriate, the questionnaire evaluation can also
ensure considerable reliability. So, this gives us two inspirations: on the one hand, it is not
necessary to implement large-scale questionnaire evaluation. A considerable number of
students can also ensure the reliability of the evaluation, which saves the human, material,
and financial resources of colleges and universities; on the other hand, the evaluation
occasion or time can be adjusted according to the actual situation, and the number of
students and items in the evaluation can be appropriately reduced to the optimal sample
size of students as 31 for each teacher and the optimal sample size of items as 7 for each
dimension. It is not necessary to carry out large-scale questionnaire evaluations to obtain
enough students and items, which is usually seen as more insurance. In fact, if the occasion
or time is appropriate, a certain number of students and items will be enough.

5.4. Limitations

For this paper, there are the following limitations. Firstly, the teacher sample is
relatively small, so we can increase the collection of teacher samples in the future to
strengthen the representativeness of teacher samples. Secondly, missing data are not
considered in this study. This study has collected data twice, but the collected data are all
full data, and there are no gaps. In the future, we can consider how to deal with the missing
data. Last but not least, more influencing factors can also be considered. This study only
considers four influencing factors: students, items, dimensions, and occasions. In fact, other
influencing factors, such as courses and majors, can also be considered in future research.

6. Conclusions

(1) The unified formula of the Lagrange multiplier shows a strong universality, which can
be applied to various designs of generalizability theory under the budget constraint.
Using the unified formula of the Lagrange multiplier and the estimated variance
component of different generalizability designs, the optimal sample size for mini-
mizing the relative error variance to the most and maximizing the generalizability
coefficient under different generalizability theory designs can be deduced under
budget constraints.

(2) Occasion is a very important factor influencing the evaluation of college teachers’
teaching level. Compared with the other two factors, students and dimensions, the
variation of the generalizability coefficient in the occasion is the largest. Therefore,
this factor can maximize the ability to “liberate” more “fixed” variance effectively in
global fractions with a very important influence on the evaluation of college teachers’
teaching level.

(8) The (s:t) x (i:v) x o design has a higher efficiency in estimating the optimal sample size
for the teaching level of college teachers. It can decompose the effect of the important
influencing factors of the evaluation situation (time or the number of times), and it
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is also relatively small in the product of the estimated number of optimal students
and items.

(4) The (s:t) x (i:v) x o design is the optimal generalizability design of the teaching level
evaluation for college teachers under budget constraints in generalizability theory.
Comparing the performance of the optimal sample size estimation for the (s:t) x I,
(s:t) x (i:v), and (s:t) X (i:v) X o design comprehensively, the (s:t) x (i:v) X o design is
the optimal design under the three aspects of the budget, namely cost, generalizability
coefficient, and actual situation.

(5) Under budget constraints of teaching level evaluation for college teachers in gener-
alizability theory, the optimal sample size of students is 31 for each teacher and the
optimal sample size of items is 7 for each dimension.
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