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Abstract: Thorough understanding of the evolution processes and drivers behind the formation of 
and changes in land use and land cover (LULC) is essential for maintaining the balance between 
humans and fragile nature in arid regions. This quantitative driving analysis provides in-depth in-
sight into the driving mechanisms behind the formation of and changes in LULC through a case 
study of the Shiyang River Basin in Northwest China. Based on land use, meteorological, topo-
graphic, and socioeconomic data from 2000 to 2018 (2000, 2005, 2010, 2015, and 2018), this study 
employed land use transfer matrices and the GeoDetector model to explore the evolution and driv-
ing forces behind the formation of and variations in the LULC patterns. The results demonstrated 
that anthropic factors mainly drove the spatial distributions of cropland and settlement. The spatial 
distributions of the forest, grassland, and bare land were determined by the mutual influence of 
natural and anthropic factors. The LULC patterns exhibited consequential variations throughout 
the study period. Through the occupation of the surrounding cropland and grassland, urbanization 
expanded rapidly. The ecological environment had been improved, but there were still considerable 
areas of degraded land, characterized by the grassland degradation downstream and the forest deg-
radation upstream. Geographical differentiation was the primary driver for the transformation of 
bare land to grassland. The main driving forces behind urban expansion and forest loss were socio-
economic development and geographical differentiation. The degree of a certain LULC change var-
ied among different levels of its driving factor. This research can provide scientific advice for ad-
ministrators and policymakers to formulate scientific, rational, and targeted land use planning and 
policies in the future to achieve the sustainable development of endorheic river basins. 
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1. Introduction 
Endorheic river basins, mainly distributed in arid and semiarid areas, account for 

11.4% of the global land area [1]. Owing to the extreme scarcity of water resources and 
relatively simple ecosystems, the environment of endorheic river basins is attributed to 
high ecological sensitivity and vulnerability [2]. In the past few decades, with rapid pop-
ulation growth and socioeconomic development, natural resources in endorheic river ba-
sins have been exploited and utilized extensively, resulting in tremendous LULC changes 
[3]. As the interface between natural and human systems and representing a significant 
challenge for sustainable development, LULC changes contribute prominently to ecolog-
ical degradation, including, but not limited to, land desertification, biodiversity loss, 
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vegetation coverage declines, and terminal lake shrinkage in many endorheic river basins 
[4,5], such as the Aral Sea [6], Tarim River [7], Heihe River [8], etc.  

As a result of complicated human–environment interactions, LULC and its changes 
are generally recognized as being driven by both anthropic and natural factors. The great 
codependencies in the socioecological systems make it hard to ascertain the primary 
causes [9]. Nonetheless, investigating the evolution processes of LULC and identifying 
the predominant drivers of LULC formation and its changes are critical for sustaining the 
equilibrium between human and fragile nature, as well as for arranging practical strate-
gies for land use planning and environmental conservation [5,10]. Therefore, research on 
LULC is urgent and crucial for conserving the fragile environment and realizing sustain-
able development in arid endorheic river basins, which has attracted attention from schol-
ars worldwide. To the best of our knowledge, prior research on LULC in arid endorheic 
river basins have mainly focused on four aspects: (1) analysis of LULC evolution and its 
driving forces [9,11–14]; (2) analysis of landscape pattern characteristics evolution [15–18]; 
(3) simulations and prediction analysis of LULC change [19–21]; and (4) assessing the eco-
logical and hydrological effects caused by LULC change [8,22–24]. Additionally, most of 
the previous studies of the driving forces behind LULC mainly focused on qualitative 
descriptions [11,12,24,25]. Only a few studies have involved quantitatively analyzing the 
driving forces behind LULC pattern formation and LULC changes in endorheic river ba-
sins [4,26]. However, most prior quantitative analyses used techniques such as principal 
component analysis [17,26] and analytic hierarchy process [27]. These methods initially 
have some fuzziness, and cannot clearly and quantitatively determine the effects of indi-
vidual driving factors of LULC. Secondly, when dividing the weight of various factors, 
the subjectivity is too strong to objectively ascertain the optimal weight ratio [28,29]. 
Knowledge gaps exist in quantitatively exploring the drivers of LULC formation and its 
change in endorheic river basins. Additionally, further knowledge of how the driving 
forces affect LULC is required. Effective and quantitative investigations of the driving fac-
tors and mechanisms of LULC formation and variation are indispensable for providing 
scientific references for ecological protection and LULC optimization in arid endorheic 
basins. 

This study applied land use transfer matrices, a GeoDetector, and remote sensing 
technology to fill the preceding knowledge gaps through a systematic and quantitative 
investigation into the spatiotemporal evolution and driving forces behind the formation 
of and changes in LULC in the Shiyang River Basin (SRB). The SRB is a representative 
endorheic river basin in the arid region of Northwest China that has undergone severe 
degradation of vegetation, significant reduction in groundwater, and the aggravation of 
desertification due to intense socioeconomic development over the past few decades [30]. 
Land use transfer matrices and GeoDetector have been widely used in LULC evolution 
and driving analyses [31,32]. Land use transfer matrices and remote sensing techniques 
were adopted to investigate the spatiotemporal characteristics of LULC and its variations 
in the endorheic river basin. Compared with regression analysis, the GeoDetector model 
is more efficient and convenient due to its immunity to collinearity among factors [33]. 
Therefore, GeoDetector was adopted to quantitatively identify the driving factors of 
LULC formation and its change in the endorheic river basin. This study aimed to: (1) quan-
titatively analyze the composition, structure, and spatial distribution patterns of LULC; 
(2) identify the spatiotemporal evolution characteristics of LULC patterns and the main 
LULC change types from 2000 to 2018; (3) quantitatively detect the driving forces behind 
the formation of LULC patterns in different periods and the driving forces behind the 
main LULC change types in the SRB. This study can enrich the comprehension of the 
mechanisms of LULC formation and variations in the arid endorheic river basin and af-
ford scientific evidence for land use policymakers and administrators to formulate more 
scientific and rational land use strategies. Furthermore, the study area is representative of 
the expansive arid landscapes in Northwest China, which can provide a reference for 
LULC research in other comparable arid endorheic river basins. 
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2. Study Area 
The Shiyang River originates in the southeastern part of the Qilian Mountains in 

Northwest China, flows through the cities of Wuwei and Jinchang, and finally disappears 
into the Minqin Oasis between the Tengger Desert and the Badain Jaran Desert (Figure 1). 
The entire basin is located in the central part of Gansu Province, which lies in the eastern-
most part of the Hexi Corridor (101°41′–104°16′ E, 36°29′–39°27′ N) [34]. The study area 
covers 39,492 km2, and the elevation ranges from 1222 to 4834 m. It is generally character-
ized by a continental temperate arid and semiarid climate, with intense solar radiation, 
sufficient sunshine, significant temperature difference, little precipitation, and intense 
evaporation [35].  

 
Figure 1. Geographical location of the SRB. 

Due to the arid climate, the limited water resources make the whole basin’s ecological 
environment extremely fragile. With the development of high-intensity anthropogenic ac-
tivities over more than half a century, especially the rapid development and expansion of 
industry and agriculture in the densely populated middle and lower reaches of the SRB 
since the implementation of the Western Development Strategy by the Chinese govern-
ment, water and soil resources have been utilized on a large scale. Therefore, increasing 
water demand and excessively irrational exploitation have resulted in a sharp contradic-
tion between industrial, agricultural, and ecological water across the entire basin [36]. A 
large amount of ecological water has been occupied, leading to large-scale vegetation deg-
radation, desertification, and other serious ecological and environmental problems in the 
SRB. With the implementation of several ecological environment protection policies, such 
as the Grain for Green Project and the Key Treatment Program of the Shiyang River Basin, 
proposed in 1999 and 2007, respectively, many unreasonable land exploitation proposals 
have been restricted and controlled. The ecological environment has been improved to 
some degree in many areas of the SRB [13]. 

3. Data and Methods 
The flowchart can be practically divided into three sections (Figure 2). The first sec-

tion was to collect datasets for analysis in this research. Next was to investigate the com-
position structure, evolution trend features of the LULC pattern, and the main LULC 
change types in the SRB. Finally, the driving factors behind the formation and evolution 
of the LULC patterns in the SRB were investigated.  
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The land use dataset of the SRB from 2000 to 2018 was selected to analyze the LULC 
structure and spatial distribution. The land use transfer matrix was employed to explore 
the temporal evolution features of the main LULC categories, and the major LULC 
changes in the SRB from 2000 to 2018 were obtained. Eleven indicators involving the cli-
mate, topography, and human activities were chosen as potential driving factors. The spa-
tial patterns of each potential factor in different time periods and variations of each factor 
throughout the study period were collected as independent variables for the recognition 
of different driving forces. Driving analyses of land use patterns at different times nodes 
and the main LULC change types during the whole study period in the SRB were con-
ducted through GeoDetector. Finally, the implications were discussed for LULC planning 
in the SRB to achieve the sustainable development of the SRB. The specific analysis data 
and methods are demonstrated in Figure 2. 

 
Figure 2. The framework for the analysis of land use pattern changes and the driving forces. 

3.1. Data Collection and Processing 
The data used were composed of four main categories: land use, topographic, mete-

orological, and socioeconomic data of the SRB from 2000 to 2018. Owing to the long, rela-
tively high-resolution time-series and good classification accuracy in China [37–40], land 
use data from the Climate Change Initiative-Land Cover (CCI-LC) provided by the Euro-
pean Space Agency (ESA) with a spatial resolution of 300 m (http://www.esa-landcover-
cci.org/ (accessed on 1 March 2020)) were chosen. The raw CCI-LC data have divided the 
LULC types into 22 categories. According to relevant research [37,41,42], and considering 
the features of the SRB, the land use data were reclassified into six classification types: 
cropland, forest, grassland, settlement, bare land, and others. The ASTER GDEM V3 (Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation 
Model Version 3) series datasets provided by NASA with a 30 m resolution were used for 
DEM data. These were mainly used in two aspects: (1) as a potential influencing factor 
representing the topography of the basin to analyze the driving forces behind the LULC 
spatial patterns and LULC change in the SRB; and (2) a covariable in the spatial interpo-
lation of climatic data. The data of the river system, urban areas, and township centers of 
the SRB were downloaded from the National Geomatics Center of China 
(http://www.ngcc.cn/ngcc/ (accessed on 1 March 2020)). Based on the original data, the 
Euclidean distance calculation toolbox in the ArcGIS spatial analysis module was adopted 
to determine the raster data of the distance to the rivers and distance to urban and town-
ship centers. 

The monthly datasets of China’s surface climate were collected from the China Me-
teorological Data Network (http://data.cma.cn (accessed on 15 March 2020)). The precipi-
tation and temperature data of 151 weather stations within the SRB and its surrounding 
regions were selected based on the initial data (see Appendix A: Figure A1). The annual 
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mean temperature and annual accumulated precipitation of these stations selected at dif-
ferent time nodes (2000, 2005, 2010, 2015, and 2018) were computed. Then, spatial inter-
polation was performed on the annual mean temperature and annual accumulated pre-
cipitation at different study time nodes in the region. This was performed with 
ANUSPLIN software, which was based upon partial thin-plate smoothing spline and in-
corporated DEM as a covariable to help improve the interpolation accuracy. The detailed 
interpolation principle, method, and steps of ANUSPLIN are presented elsewhere in the 
relevant literature [43,44]. The grid data of the annual mean temperature and annual ac-
cumulated precipitation were used to reflect the basin’s climate change for the subsequent 
driving-force analysis.  

Population density, GDP, and GDP per capita data of the cities and counties during 
the period of 2000–2018 in the SRB were collected from the “Gansu Development Yearbook”, 
selected as indicators representing the socioeconomic development. Meanwhile, data of 
the total water consumption, surface water supply, and groundwater supply were ob-
tained from the “Gansu Water Resources Bulletin”, which were chosen as factors reflecting 
the situations of water resource supply and consumption in the SRB in different years. 
The basin boundary data were downloaded from the Resource and Environment Science 
and Data Center (http://www.rescdc.cn (accessed on 1 March 2020)). Based on the primary 
statistical data of these six indicators, their raster data were generated using the ordinary 
Kriging interpolation module in ArcGIS software and were combined with the urban and 
township centers data. 

The raster data of all the above factors were uniformly set to the WGS84 (World Ge-
odetic System 84) Albers projected coordinate system, and the spatial resolutions were all 
resampled to 300 m, which were the same as the resolution of the land use data to facilitate 
the subsequent analysis. Finally, the raster data of each factor in the SRB were obtained 
through clipping according to the basin boundary. 

3.2. Methods 
3.2.1. Land Use Transfer Matrix 

Land use transfer matrix comprehensively characterizes the mutual conversion 
among LULC types during a certain period in the research area. It can quantitatively in-
dicate the transfer direction and area among various LULC types, which provides detailed 
“from-to” change class information [13,45]. It can be expressed as follows: 

Sij=

S11 S12 ⋯ S1n
S21 S22 ⋯ S2n⋮ ⋮ ⋱ ⋮
Sn1 Sn2 ⋯ Snn

 (1) 

where i and j represent the LULC type at the start and the end of the study period, respec-
tively; n is the overall number of LULC categories in the study area; and Sij is the conver-
sion area from the ith to the jth LULC type during the study period. In this research, 
ArcGIS 10.7 software was applied to determine the LULC changes. All land use data in 
distinct study times nodes were initially converted into vector data. Then, the fusion tool 
in ArcGIS was utilized to merge the identical land use types with each other for each land 
use data. The land use data for two time periods were intersected to extract the land use 
types in the same location from the data at different time periods. Subsequently, using 
Excel’s pivot table function, land use transfer matrices were generated, consisting of rows 
and columns, which presented land use categories at the start and at the end of the study 
period, respectively. Based on the land use data, land use transfer matrices of the SRB in 
five periods were computed in this study, including 2000–2005, 2005–2010, 2010–2015, 
2015–2018, and 2000–2018. Furthermore, the Mann–Kendall (MK) test was applied to as-
sess the trends in major LULC categories during 2000–2018. 

3.2.2. Attribution Analysis of LULC Spatial Distribution Patterns and LULC Changes 
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1. Factors Selection and Preprocessing 
The SRB is a typical arid inland basin with droughts and scarce rainfall, significant 

spatial heterogeneity of temperature and precipitation, water resource shortages, and a 
prominent contradiction between rapid social and economic development and ecological 
protection. Hence, in this study, eleven factors related to climate change, topography, and 
anthropogenic activities were selected as potential influencing factors for the analysis of 
spatial distribution patterns and changes in LULC in the SRB. The attribution analysis in 
this research was mainly composed of two aspects: (1) the attribution analysis of spatial 
distribution patterns of LULC in different times; and (2) the attribution analysis of the 
main LULC change types throughout the whole study period. For the attribution analysis 
of LULC spatial patterns, the dependent variable was the total area of major LULC types 
in the SRB for different time nodes within the study period, which were counted with the 
zonal statistics toolbox in ArcGIS. The independent variables were the statistics of each 
factor corresponding to the same period. For the attribution analysis of LULC change, the 
dependent variable was the area of major LULC change categories in the SRB during 
2000–2018. The independent variables were the variations in different factors, except for 
elevation, distance to the rivers, and distance to urban and township centers, using the 
statistics for factors in 2018 minus the statistics in 2000 to express the changes in climate 
and anthropogenic activities during the research period. Specific parameters are detailed 
in Tables 1 and 2. The GeoDetector model can only handle discrete independent variables 
[33]; therefore, the eleven continuous independent variables were converted into discrete 
variables using the reclassify tool in ArcGIS. Detailed discretization methods for each fac-
tor are described in Table A1 in Appendix B. 

Table 1. Variables in the driving forces analysis of LULC patterns in the SRB. 

Variable Code Description 

Dependent variable 

CLA The area of cropland in a grid cell. 
FSA The area of forest in a grid cell. 
GLA The area of grassland in a grid cell. 
SLA The area of settlement in a grid cell. 
BLA The area of bare land in a grid cell. 

Independent variable 

X1 The annual mean temperature in a grid cell. 
X2 The annual accumulated precipitation in a grid cell. 
X3 The altitude in a grid cell. 
X4 The population in a grid cell. 
X5 The GDP in a grid cell. 
X6 The GDP per capita in a grid cell. 
X7 The total water consumption in grid cell. 
X8 The surface water supply in a grid cell. 
X9 The groundwater supply in a grid cell. 

X10 The distance to the rivers in a grid cell. 
X11 The distance to urban and township centers in a grid cell. 
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Table 2. Variables in the driving forces analysis of LULC patterns in the SRB. 

Variable Code Description 

Dependent 
variable 

CTG The area of conversion of cropland to grassland in a grid cell. 
CTS The area of conversion of cropland to settlement in a grid cell. 
FTG The area of conversion of forest to grassland in a grid cell. 
GTB The area of conversion of grassland to bare land in a grid cell. 
GTC The area of conversion of grassland to cropland in a grid cell. 

GTS The area of conversion of grassland to settlement in a grid 
cell. 

BTC The area of conversion of bare land to cropland in a grid cell. 
BTG The area of conversion of bare land to grassland in a grid cell. 
OTS The area of conversions of other land use types. 
CTG The area of conversion of cropland to grassland in a grid cell. 

Independent 
variable 

Z1 The change in annual mean temperature in a grid cell. 
Z2 The change in annual accumulated precipitation in a grid cell. 
Z3 The altitude in a grid cell. 
Z4 The change in population in a grid cell. 
Z5 The change in GDP in a grid cell. 
Z6 The change in GDP per capita in a grid cell. 
Z7 The change in total water consumption in grid cell. 
Z8 The change in surface water supply in a grid cell. 
Z9 The change in groundwater supply in a grid cell. 

Z10 The distance to the rivers in a grid cell. 
Z11 The distance to urban and township centers in a grid cell. 

2. GeoDetector model 
In this research, the GeoDetector model was adopted to analyze the driving forces 

behind the spatial distribution patterns and changes in LULC in the SRB. It is a statistical 
approach to explore spatial heterogeneity and reveal the driving forces behind the spatial 
heterogeneity. The software was available on the website (http://geodetector.cn/ (accessed 
on 1 March 2020)), and in this study it was executed with the version for Excel. GeoDetec-
tor has no linear hypothesis, and its core idea is that, if an independent variable has a 
significant influence on a dependent variable, their spatial pattern should be similar. 
Moreover, the basic principle of GeoDetector is the assumption that the research region is 
separated into several subregions. If the sum of the variance in subregions is less than the 
overall variance of the region, there is spatial heterogeneity; if the spatial pattern of the 
two variables tends to be the same, a statistical correlation exists between them [33,46].  

GeoDetector consists of four detectors: a factor detector, an interaction detector, a risk 
detector, and an ecological detector. The factor detector is employed to quantitatively 
identify the driving factors affecting the dependent variable. The q statistic measures the 
explanatory power of each factor, and its expression is defined as follows: 

=

= 
L

h h
h

q N σ
Nσ

2
2

1

11-  (2) 

where q represents the explanatory power of one factor on the spatial patterns of major 
LULC types (such as cropland), or the explanatory power of one factor on the main LULC 
change types (such as the conversion of cropland to settlement); h = 1, …, L is the strata or 
partitions of factor X or Z; Nh and N denote the number of grid cells of the stratum h and 
the whole region, respectively; σh2 and σ2 are the variances in the dependent variable in 
the stratum h and the whole region, respectively. The q statistic ranges from 0 to 1. The 
greater the value of q, the stronger the explanatory power of the factor on the dependent 
variable, and vice versa. If q = 1, it means that the factor completely dominates the spatial 
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pattern of the dependent variable, and q = 0 if the factor is entirely irrelevant to the de-
pendent variable. The q value denotes that the factor explains 100 × q% of the dependent 
variable. The q statistic was fitted to the noncentral F distribution, which was applied to 
detect the significance level [33]. 

In this study, attribution analysis was mainly carried out in two aspects. One was the 
attribution analysis of the spatial patterns of LULC in different time nodes in the SRB. 
Thus, the q statistics of eleven factors for the five main LULC spatial patterns at five indi-
vidual time nodes were calculated. Then, the multiyear average values of the q statistic 
over five different time nodes were computed for analysis to partially eliminate the influ-
ence of data uncertainty. The other was the attribution analysis of the major LULC change 
types in the SRB from 2000 to 2018, namely, the q statistic of eleven factors for the nine 
major LULC change types were calculated. 

The risk detector can not only be utilized to evaluate whether there is a significant 
difference in the mean value of the dependent variable between two levels of a factor, but 
also to obtain the mean value of the dependent variable at each level of a factor. In this 
study, we adopted the risk detector to determine the mean area of every kind of LULC 
change at different levels of its main drivers to assess the correlations between the driving 
factors and the corresponding LULC change categories. All of the above attribution anal-
yses were first conducted in ArcGIS, which stacked layers of all variables in advance and 
collected the values of the dependent and independent variables in each grid cell of the 
research area through the sampling tool. Then, the collected information was exported 
into Excel to run the GeoDetector model and obtain the attribution analysis results. 

4. Results 
4.1. LULC Patterns and the Driving Forces in the SRB 
4.1.1. The Composition Structure and Spatial Distribution Patterns of LULC in the SRB 

Figure 3f illustrates that, from 2000 to 2018, the LULC of the SRB mainly consisted of 
four categories: grassland, bare land, cropland, and forest. The mean areas of these cate-
gories in the last two decades accounted for 57.48%, 23.91%, 13.17%, and 5.19% of the 
entire basin, respectively, whereas the proportions of settlements and others were rela-
tively small, accounting for only 0.15% and 0.10%. 
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Figure 3. LULC patterns (a–e) and composition structure of LULC in the SRB (f) from 2000 to 2018. 

Grassland, the dominant LULC type in the SRB, was broadly distributed in the basin, 
but was primarily concentrated in the upstream mountainous area and the middle reaches 
(Figure 3a–e). The most considerable LULC in the downstream areas of the basin was bare 
land, which was distributed in Minqin County and Jinchuan District. Only small areas of 
bare land were sporadically distributed in other parts of the basin. As the third-largest 
landscape of the basin, cropland was primarily distributed in the middle reaches of the 
basin, which was just below the upstream river outlet. Additionally, cropland was gener-
ally distributed close to the banks along the river. The distribution of forest area was more 
concentrated upstream with high elevation. In contrast, settlements were distributed in 
the middle and lower reaches, forming a point-like distribution. Since the LULC type of 
others was mainly composed of permanent snow and ice and water bodies, it was spo-
radically distributed in the mountainous upper and middle reaches of the basin. 

4.1.2. Driving Forces behind LULC Patterns in the SRB 
Figure 4a–e illustrates that the main driving forces behind the distribution patterns 

of various LULC types differed. Generally, the distributions of cropland and settlements 
were chiefly affected by topography (mainly the distance to urban and township centers) 
and human activities. Various natural and anthropic factors drove the spatial patterns of 
the forest, grassland, and bare land.  

 
Figure 4. Driving forces behind the spatial distribution patterns of five primary LULC categories in 
the SRB during 2000–2018: (a) cropland, (b) forest, (c) grassland, (d) settlement, and (e) bare land. 
Notes: The explanatory power of each factor in this figure was the multiyear mean value of the q 
statistics from 2000 to 2018. The q statistic of each factor in each year passed the significance test. 
The factor codes are as follows: X1, temperature; X2, precipitation; X3, altitude; X4, population den-
sity; X5, GDP; X6, GDP per capita; X7, total water consumption; X8, surface water supply; X9, 
groundwater supply; X10, distance to the rivers; and X11, distance to urban and township centers. 
The definitions of each factor are detailed in Table 1. 

During the whole study period, the distance to urban and township centers exhibited 
the most substantial explanation for the spatial pattern of cropland (29.73%) (Figure 4a). 
The explanatory powers of GDP, GDP per capita, total water consumption, surface water 
supply, groundwater supply, and distance to the rivers were all approximately 16%. The 
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other factors could only explain less than 10% of the cropland distribution. The explana-
tory power of temperature was the lowest, at only 0.75%. The explanatory power of each 
factor for the spatial distribution of settlements was lower than that of the other four main 
LULC categories (Figure 4d). The two largest multiyear average q values were from eco-
nomic factors (GDP and GDP per capita), which provided the strongest explanation for 
settlement distribution. The explanatory power of distance to urban and township centers 
ranked third to the economic factors, and other factors explained approximately 0.5% or 
less. As shown in Figure 4b, climatic factors and elevation were demonstrated to be more 
vital for the forest distribution pattern, whose mean annual q statistics were all greater 
than 30%. 

In contrast, the explanatory powers of population density, GDP per capita, distance 
to the rivers, and distance to urban and township centers were all below 10%, especially 
for population density and GDP per capita, whose mean annual q statistics were all less 
than 1%. The main driving factors for the grassland distribution were precipitation, DEM, 
total water consumption, surface water supply, and groundwater supply, whose explan-
atory powers ranged between 15% and 20%. Additionally, all the q values of the other 
factors were less than 10%. For the distribution of bare land (Figure 4e), the two factors 
that had the most significant impact were the annual mean precipitation (48.93%) and 
elevation (44.66%). The explanatory powers of total water consumption, surface water 
supply, and groundwater supply ranged from approximately 30% to 35%. Nevertheless, 
GDP per capita affected the bare land spatial pattern the least (7%). 

4.2. LULC Change and its Driving Forces in the SRB 
4.2.1. LULC Change in the SRB during 2000–2018 
1. Temporal Variations in the Areas of LULC in the SRB 

In general, the area of all LULC categories presented either a monotonic increasing 
or decreasing variation trend, except for the cropland. The variation in cropland initially 
showed an increasing trend (2000–2005) and then decreased (2010–2018) throughout the 
entire study period (see Appendix C: Table A2). According to the analysis of the MK test, 
the area variations in forest, grassland, settlement, bare land, and others passed the sig-
nificance test with a confidence level of 95%, showing significant growths or reductions.  

Regarding the five primary LULC types of cropland, forests, grassland, bare land, 
and settlements in the SRB, grassland and bare land exhibited the most significant varia-
tions during 2000–2018. Grassland grew by 1291.32 km2 and bare land declined by 1052.64 
km2 (Table A2). Settlements had the highest rate of change, increasing approximately six-
fold between 2000 and 2018. In contrast, cropland exhibited the lowest rate of change 
(−0.53%). Furthermore, the cropland area varied the least among the five main LULC cat-
egories in the SRB, decreasing by 27.36 km2. 
2. Spatiotemporal Patterns of the Main LULC Change Types in the SRB 

Figures 5 and 6 illustrate the LULC changes in the SRB from 2000 to 2018. Throughout 
the whole study period, the main types of LULC change were (1) the mutual conversions 
among cropland, grassland, and bare land; (2) the transformation from forest to grassland; 
and (3) the expansion of settlements.  
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Figure 5. LULC changes in the SRB from 2000 to 2018 (unit: km2). Notes: The arcs represent the area 
of each LULC category in the SRB during 2000–2018 after land use conversion had occurred. The 
connecting lines show the conversion relationship among various LULC categories. The color of the 
connecting line between two LULC categories indicates which LULC type has a higher proportion 
in the transformation. For example, the connecting line between grassland and bare land is illus-
trated with the color of grassland, indicating that the area transferred into grassland was larger. The 
thickness of the connecting line indicates the size of converted area between two LULC types; a 
thicker line indicates a greater conversion area between two LULC types. 

From 2000 to 2018, the growth of cropland was mainly induced by the reclamation 
of grassland and bare land, accounting for 77.56% and 22.29%, respectively (Figure 6). 
This chiefly occurred in the middle and lower reaches of the SRB (Figure 7). Among them, 
73.93% of the increase mainly happened in 2000–2005, which was the stage where the 
cropland showed a significant increase (Table A2). Grassland was the LULC category to 
which most of the cropland was converted, accounting for 88.85% of the cropland conver-
sion (Figure 6). It was sporadically distributed in the upper and middle reaches (Figure 
7). A considerable net decline in cropland had occurred since 2005, dominated by the 
growth of grassland (accounting for nearly 93% of the cropland loss) (Table A2). The sig-
nificant reduction in cropland after 2005 was probably related to the performance of the 
Key Treatment Program of the Shiyang River Basin in 2007. One of the critical objectives 
of this program was to reduce agricultural water consumption by reducing unreasonable 
cropland, thereby protecting the basin’s environment [47]. 
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Figure 6. Land use transfer matrix of the SRB during 2000–2018. 

The mutual conversion of grassland and bare land was the most significant LULC 
change type in the SRB. From 2000 to 2018, the net increase in grassland area was 1291.32 
km2. Approximately 78% came from the decline in bare land (Figure 6). This mainly oc-
curred during 2000–2005 (Table A2), which might be because this period was immediately 
after the initiation of the Grain for Green Project. The transformation from bare land to 
grassland was mainly distributed sporadically in the middle and lower reaches of the ba-
sin, chiefly distributed on the east and west sides of the basin near the edges of the Badain 
Jaran Desert and the Tengger Desert (Figure 7). Moreover, forest loss was another major 
contribution to grassland growth. This mainly occurred in the upper and middle reaches 
of the SRB (Figure 6; Figure 7). In terms of bare land, although its area reduced signifi-
cantly during the entire study period, some grassland was still converted to bare land. 
The conversion area was about 110.43 km2, and nearly half occurred between 2005 and 
2010 (Figure 6; Table A2). This was broadly distributed on the edges of the Minqin Oasis, 
in the lower reaches of the Shiyang River (Figure 7). 

The settlement area mainly expanded by encroaching into grassland and cropland 
(Figure 6). In the past two decades, the settlement areas in the SRB increased by 91.44 km2; 
its rate of increase was relatively consistent in each period (Table A2). Additionally, the 
loss of grassland and cropland accounted for approximately 66% and 25% of the total set-
tlement increase, respectively (Figure 6). This demonstrated the characteristics of concen-
tration distribution in the urban centers, which indicated that the mechanism of urbani-
zation progression in the SRB was mainly based on point-like diffusion (Figure 7). 
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Figure 7. Spatial pattern of LULC changes in the SRB during 2000–2018. 

4.2.2. Driving Force Variations in LULC Changes in the SRB 
The variation in each factor during the study period presented different spatiotem-

poral characteristics (see Appendix D: Figure A2). Throughout the entire study period, 
the temperature in the northeast of the research region increased the most, and the tem-
perature amplitude gradually declined from northeast to southwest. The precipitation in-
creased mainly in the southeastern regions, whereas it significantly decreased in the 
southwest. Population density, GDP, and surface water supply increased considerably in 
the areas surrounding the Liangzhou District. Moreover, higher GDP growth per capita 
mainly occurred in Jinchuan and Sunan. Areas with significant decreases in total water 
consumption and groundwater supply were mainly situated around Liangzhou. In addi-
tion, the increases in total water consumption and groundwater supply chiefly occurred 
in Jinchuan and Yongchang. 
1. Driving Forces behind the Main LULC Changes in the SRB 

According to the factor detection results, the main driving factors behind different 
LULC types converted to the same LULC type were generally the same as in the SRB 
(Figure 8; Appendix E: Table A3). Total water consumption, GDP, and distance to urban 
and township centers considerably impacted the conversion of cropland and grassland to 
settlements, indicating that they were mainly affected by anthropogenic activities (Figure 
8b,f).  
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Figure 8. Driving forces behind LULC changes in the SRB during 2000–2018: (a) cropland→grass-
land; (b) cropland→settlement; (c) forest→grassland; (d) grassland→bare land; (e) grass-
land→cropland; (f) grassland→settlement; (g) bare land→cropland; (h) bare land→grassland; and 
(i) other land use conversion types. Notes: The factors in this figure indicate the variation in each 
factor between 2000 and 2018. The factor codes are as follows: Z1, temperature; Z2, precipitation; 
Z3, altitude; Z4, population density; Z5, GDP; Z6, GDP per capita; Z7, total water consumption; Z8, 
surface water supply; Z9, groundwater supply; Z10, distance to the rivers; and Z11, distance to ur-
ban and township centers. The meaning of each factor is detailed in Table 2. 

The explanatory power of each factor for the conversion of grassland and bare land 
to cropland was similar; both were mainly affected by DEM, distance to urban and town-
ship centers, and precipitation variation. It manifested that the conversions to cropland 
were not only affected by humans but were closely connected to climate change and to-
pography (Figure 8e,g). Anthropic and climatic factors chiefly influenced the transfor-
mation from grassland to bare land. The major driving factors were temperature change, 
total water consumption variation, surface water supply variation, and altitude differen-
tiation (Figure 8d). The changes in temperature, population density, and total water con-
sumption had significant impacts on the transformations of cropland and forest into grass-
land (Figure 8a,c). Furthermore, terrain factors dominated the transformation from bare 
land to grassland, namely, the elevation, distance to the rivers, and distance to urban and 
township centers. 
2. Differences in Driving Factor Influences on LULC Change at their Levels 

Figure 9 depicts the risk detector results, showing that the degree of LULC change 
varied among different levels of driving factors. The areas of different land conversions 
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into the same LULC type had similar distribution patterns at different levels of their main 
driving factors. This further proved that the driving forces behind various LULC types 
that transferred into identical LULC types were generally the same in the SRB.  

The degree of settlement expansion presented a growing trend with the increase in 
GDP growth and the decrease in distance to urban and township centers. It indicated that 
settlement expansion was closely related to the rapid growth of the urban economy (Fig-
ure 9a). In the regions where the GDP growth exceeded CNY 1.28 million, the cropland 
and grassland converted into settlements were 17.37 km2 and 47.88 km2, respectively, ac-
counting for about 77% of the overall conversion area of each. The cropland conversion to 
settlement fully occurred within 5.8 km from the urban and township centers (Figure 9c). 
Moreover, over 90% of the grassland conversion to settlement was concentrated within 
the same distance. The vast majority of farmland and grassland occupied by settlements 
were distributed in the regions where water consumption decreased and increased signif-
icantly (Figure 9b). 

 
Figure 9. Variations in the influence of driving factors on LULC changes at different levels: (a–c) 
mean areas of cropland/grassland converted to settlement at different levels of the main driving 
factors; (d–f) mean areas of grassland/bare land converted to cropland at different levels of the main 
driving factors; (g–j) mean areas of grassland converted to bare land at different levels of the main 
driving factors; (k–m) mean areas of cropland/forest converted to grassland at different levels of the 
main driving factors; (n–p) mean areas of bare land converted to grassland at different levels of the 
main driving factors. Notes: The levels represent the strata of factors generated by discretization; 
the discretization methods and the values of factors corresponding to each level are shown in Table 
A4 in Appendix F. The factor codes are as follows: CTG, cropland→grassland; CTS, cropland→set-
tlement; FTG, forest→grassland; GTB, grassland→bare land; GTC, grassland→cropland; GTS, 
grassland→settlement; BTC, bare land→cropland; BTG, bare land→grassland; OTS, other land use 
conversion types; Z1, temperature; Z2, precipitation; Z3, altitude; Z4, population density; Z5, GDP; 
Z6, GDP per capita; Z7, total water consumption; Z8, surface water supply; Z9, groundwater supply; 
Z10, distance to the rivers; and Z11, distance to urban and township centers. The meaning of each 
factor is presented in Table 2. 
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According to the results of the two categories of land use transformation to cropland, 
with the increases in precipitation and elevation, the areas of grassland and bare land that 
transformed to cropland increased first and then decreased (Figure 9d,e). Concretely, ap-
proximately 77.69% and 71.24% of the grassland and bare land conversion to cropland 
were distributed in the regions with precipitation growths of 39.37–79.09 mm, respectively 
(Figure 9d). In the region with an altitude of 1439–1579 m, the area of grassland converted 
to cropland was the greatest, reaching 78.03 km2. Meanwhile, the maximum conversion 
area of bare land to cropland was mainly located in the area where the elevation was 1350–
1439 m (Figure 9e). However, the conversion area distributions of those two LULC 
changes slightly differed in terms of the distance to urban and township centers. As the 
distance to urban and township centers grew, the grassland area converted to cropland 
gradually reduced. The transformations mainly occurred within 10.36 km from the urban 
and township centers, accounting for 83.41% of the total conversion area (Figure 9f). For 
the transformation of bare land to cropland, the transformation area increased at first and 
then decreased with the increasing distance from urban and township centers (Figure 9f). 
It was concentrated the most in the regions 5.82–10.36 km away from the cities and towns, 
covering approximately 19.62 km2. 

For the transformation from grassland to bare land, generally, with the gradual rise 
in temperature and decrease in surface water supply, the impacts of these two driving 
factors were gradually enhanced (Figure 9g,j). The conversion area of bare land increased 
first and then reduced with the gradual increase in elevation (Figure 9h). The conversion 
area peaked when the altitude ranged between 1350 and 1439 m. Furthermore, approxi-
mately 82.31% of the conversion area was distributed where the total water consumption 
had fallen by 0.12–0.20 billion m3 (Figure 9i). 

Furthermore, for the three LULC change types converted to grassland, the cropland 
and forest conversion areas were distributed similarly at various levels of their main driv-
ing factors (Figure 9k–m). Specifically, as the temperature rose, the area converted to 
grassland gradually reduced (Figure 9k). The cropland and forest conversion areas in the 
regions with a temperature variation range of −0.01 to 0.16 °C were 117.81 km2 and 248.22 
km2, respectively, accounting for approximately 63.18% and 74.90% of each total transfor-
mation area. The influence of population factors on those two conversions generally in-
creased with the growth in population density (Figure 9l). However, in the areas with a 
population density variation of −0.78 to 2.38 people per km2, the average areas of cropland 
and forest conversion were relatively larger, reaching 0.02 km2 and 0.04 km2, respectively. 
Additionally, the effects of total water consumption on these two LULC change types 
showed a rising trend and then fell (Figure 9m). The conversions mainly occurred in the 
regions where the total water consumption exhibited a significant decline and considera-
ble growth.  

With the increases in distance to the rivers and towns, the impacts of these two factors 
on the transformation from bare land to grassland gradually increased (Figure 9o). In con-
trast, the influence of altitude rose first and then reduced as it increased (Figure 9n). In the 
areas with an elevation of 1439–1579 m, the mean conversion area reached its maximum, 
at approximately 0.15 km2. 

5. Discussion 
5.1. Driving Mechanisms behind the Formation of and Changes in LULC Patterns 
5.1.1. Driving Mechanisms behind the Formation of LULC Patterns 

For endorheic river basins, artificial oases represent key concentrations of anthropo-
genic activities and chiefly consist of cropland and settlements. Generally, economic ac-
tivities require vast infrastructure construction as hardware support to ensure economic 
development [48], such as factories, shopping malls, railway stations, etc. In turn, the de-
velopment of economic activities boosts infrastructure construction. Therefore, because 
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settlements contain these infrastructures, their spatial patterns are closely related to eco-
nomic factors, which is consistent with some previous research [4,17,49].  

On the other hand, the SRB is one of China’s crucial commodity grain bases [22]. The 
development of agriculture not only guarantees the food security of the basin or even the 
whole country, but also plays a vital role in the economic development of the basin. Ad-
ditionally, approximately 90% of the population in the SRB is concentrated in the hinter-
land of artificial oases such as Liangzhou, Jinchuan, and Minqin. Hence, agricultural ac-
tivities are mainly carried out in artificial oases with convenient transportation, a large 
population, and a developed economy. More importantly, due to the water shortages in 
arid regions, internal farming activities primarily rely on irrigation through artificial ca-
nals or other water conservancy facilities. Considering the construction cost of irrigation 
facilities as well as the cost and efficiency of water conveyance, the cropland in the SRB 
was mainly distributed in the vicinity of cities and towns.  

Water is the most critical element affecting vegetation growth and distribution in arid 
inland regions [50,51]. In the SRB, precipitation is primarily concentrated in the upstream 
mountainous areas. Sufficient rainfall is beneficial to the growth of forests and grassland. 
From the middle reaches to downstream, the gradual temperature increase, and the de-
crease in precipitation lead to increased evaporation, and the availability of water became 
smaller. Thus, the grassland distribution gradually decreases, and the area of bare land 
rises.  

Furthermore, a considerable part of the grassland was distributed in the middle and 
lower reaches with relatively little rainfall. This part of the grassland survived more by 
absorbing shallow groundwater [52]. However, high-intensity anthropogenic activities in 
these regions have seriously affected the local hydrological regime [53,54], resulting in 
fluctuations in surface runoff and groundwater levels, which strongly affect the growth 
of the surrounding natural vegetation [55]. Therefore, the degree of water resources uti-
lized in the SRB affected vegetation growth to a large extent. Additionally, this was the 
main reason that the impact of water utilization on grassland and bare land distribution 
was more significant than that on the forests.  

In conclusion, the formation of land use patterns in the SRB was not driven or con-
strained by a single driving factor, but by various factors interconnectedly and jointly af-
fecting the spatial distribution of LULC. 

5.1.2. Driving Mechanisms behind LULC Changes 
Over the past two decades, the ecology of the SRB has generally improved. A large 

amount of bare land and cropland has been used to restore vegetation. However, unrea-
sonable LULC exploitation still existed in the basin, resulting in the basin facing potential 
ecological risks in some areas. For instance, rapid urbanization mainly occurred through 
occupying the grassland and cropland; degradation existed in the forests and some of the 
grassland. These conclusions were consistent with previous studies [11,51,56–58]. 

Concretely, a large area of vegetation recovered in the bare land was the main reason 
for the ecological improvements in the SRB. Altitude and proximity factors were the main 
reasons for this improvement. Li et al. suggested that the proximity factors can directly 
reflect the intensity of anthropogenic activities and profoundly affect LULC changes [59]. 
Therefore, the ecological restoration of bare land might be partially due to the reduction 
in groundwater wells and the operation of the ecological water transport project since the 
operation of the Key Treatment Program of the Shiyang River Basin in 2007. These coun-
termeasures elevated the groundwater levels near the towns, promoting natural vegeta-
tion restoration, such as the Huang’antan Enclosed Conservation Area near Jiahe Town-
ship in Minqin County and the terminal lake (Qingtu Lake). These areas were mainly dis-
tributed within 5.8–15.2 km away from the towns [60,61]. In addition, in 2011, the local 
government planned and implemented the “Prevention and Control of Desertification 
and Ecological Restoration Plan”. It suggested that local governments should strengthen 
the construction of ecological function zones in the desert–oasis transition zones of the 
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northern and western parts of the SRB to achieve comprehensive ecological improvements 
and prevent the further erosion of farmland and settlements by wind and sand. As a re-
sult, in recent years, large-scale artificial greening has been carried out in some regions 
close to the edge of deserts, relatively far from rivers and towns [61–63]. In short, with the 
guidance of policies and the regulation of ecological restoration projects, large-scale grass-
land growth could substantially help restore the fragile ecological environment and en-
hance the ecosystem service function of the SRB.  

During the past two decades, the Western Development Strategy, enacted by the Chi-
nese government in 2000, has vastly boosted the urbanization of the SRB [17,64]. This pol-
icy implementation brought rapid population growth and increased the demand for hous-
ing and the expansion of enterprise scales. The rapidly growing economy could satisfy 
the investment and construction of housing, factories, and other infrastructure, further 
addressing the land demand brought by urbanization expansion, and thus promoting set-
tlement expansion. However, urbanization in the SRB has rarely been conducted through 
bare land development, only expanding outward from the original urban region by occu-
pying original cropland and grassland around the towns. This kind of extension mode has 
caused evident damage to the surrounding natural vegetation. Without rational regula-
tion, it may cause further harm to the ecological environment near the cities and towns in 
the future.  

Another land use conversion which might cause ecological problems in the SRB was 
the reduction in forests and part of the grassland. The degeneration of the forests had 
chiefly occurred in the upstream mountainous areas, which have had small population 
density growth and increased water consumption. This variation might be because the 
upstream Qilian Mountains in the national nature reserve are rich in natural resources 
and cultural landscapes. Before 2015, the tourism industry in the Qilian Mountains had 
developed rapidly, receiving more than 0.3 million tourists per year on average. Numer-
ous tourism facilities were built in scenic areas, leading to extensive forest deforestation 
[65]. Although the Chinese government has vigorously remedied the ecological problems 
in the Qilian Mountains since 2018, it still needs some time to recover.  

Additionally, most grassland deterioration happened in downstream Minqin County 
(Figure 7). The soil texture of the downstream desert was mainly sandy soil with high 
porosity and good permeability; thus, temperature rises cause increased evaporation, 
leading to declining groundwater levels and, eventually, the death of some vegetation. 
The result was consistent with the previous research [51,57,58].  

On the other hand, to restore and protect the ecological environment of the SRB, lo-
cals have taken many measures to realize these goals, including returning the cropland to 
green land. However, most of the transformations occurred in the upper and middle 
reaches. Many farmers in the lower reaches believe that reducing farmland would affect 
their income, so they were not very supportive of the cropland-reducing policy [66–68]. 
Moreover, the local administration also actively adjusted the local agricultural structure 
and increased the construction of greenhouses [51]. They also promoted water-saving ir-
rigation technology to convert some farmland from traditional irrigation means, such as 
flood and border irrigation, to pipe and drip irrigation. This shift effectively reduced the 
agricultural water consumption and loss of surface water delivery in Minqin. All these 
governing measures were conducive to increasing runoff downstream and improving the 
ecology of the lower reaches [69,70]. However, as the irrigation means change, the reduc-
tion in water consumption will also significantly reduce the amount of lateral seepage 
water around the irrigation canals [71]. According to Cao et al., the groundwater depth in 
the western Minqin Oasis was more than 12 m. When the groundwater depth exceeded 4 
m, the vegetation growth mainly depended on the surface soil moisture [60,72]. Consid-
ering the low annual accumulated precipitation in Minqin, the natural vegetation near the 
towns in western Minqin Oasis was likely to grow through the seepage water derived 
from the traditional irrigation modes.  
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Thus, the promotion and utilization of water-saving irrigation have improved the 
efficiency of regional water utilization and reduced the waste of water resources. How-
ever, the transformation of irrigation modes also caused the degradation and death of 
some original natural shelterbelts and vegetation which relied on the seepage of water 
from traditional irrigation practices. This is an example of an ecological effect caused by 
converting traditional irrigation to water-saving irrigation [69,71,73]. Without scientific 
and reasonable control, it might threaten the surrounding agricultural production activi-
ties and the ecological environment, which should draw decision-makers’ attention. 

5.2. Suggestions for LULC Planning in the SRB 
In early 2021, the Chinese government issued the Fourteenth Five-Year Plan, which 

stated that by 2035, China would achieve multiple goals, such as new industrialization, 
informatization, urbanization, and agricultural modernization [74]. It pointed out that it 
was necessary to optimize the spatial patterns of the land and gradually develop three 
spatial patterns with urbanization areas, key agricultural production areas, and ecological 
function areas based on the carrying capacity of the environment and resources. There-
fore, analyzing the evolution process of regional LULC spatial distribution and clarifying 
the driving factors behind LULC patterns and LULC changes are essential for promoting 
the sustainable development of society, the economy, and the environment. Based on the 
results of this research, we propose the subsequent suggestions for the decision-makers 
to optimize the spatial distribution of land use of the SRB in the future. 
(1) Promoting urbanization appropriately. “People-oriented” is the prerequisite for hu-

man social development. Therefore, appropriate and necessary urbanization benefits 
socioeconomic development, ecosystem service protection, and the improvement of 
people’s living standards [21]. However, the scale and rate of settlement growth 
should be controlled, and locals should pay attention to the efficiency of urban space 
utilization. Meanwhile, sufficient urban ecological land should be reserved, which 
could be considered ecological compensation for the destruction of surrounding nat-
ural green space caused by urban expansion. In summary, ecological damage should 
be minimized during urbanization.  

(2) Protecting elemental cropland and improving production efficiency. With the devel-
opment of urbanization and the operation of ecological restoration schemes, 
cropland has reduced in the SRB over the past few decades. Excessive reductions in 
cropland may threaten regional food security to some extent. Consequently, the 
quantity of elemental cropland should be fully guaranteed to ensure essential eco-
logical environment health and meet appropriate and necessary urbanization con-
struction. In addition, the cropland’s spatial pattern should be optimized, consider-
ing the ecological functions of different regions. For instance, agricultural activities 
should be avoided as much as possible in the upper reaches, which are crucial water 
conservation areas of the SRB. Instead, they can be appropriately shifted to the mid-
dle and lower reaches. In addition, it is necessary to continuously improve the struc-
ture of the agricultural industry and promote water-saving irrigation, which is suit-
able for local regions. However, people should focus on ecological problems, such as 
the degradation of natural shelterbelts around cropland caused by the change in ir-
rigation means. Relevant investigations, assessments, and remedial plans should be 
developed before water-saving irrigation techniques are used, which could avoid 
secondary damage to the local ecological environment in the short term. 

(3) Protecting ecological land. Vegetation is a significant natural barrier to ensure re-
gional ecological security and prevent desertification in arid inland regions. Hence, 
people should continue to increase forests and grassland in the basin under the guid-
ance of relevant ecological environment protection policies. Additionally, relevant 
laws and regulations should be established to prevent the recurrence of severe eco-
logical damage. For example, given forest degradation upstream, artificial planting 
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could be adopted to accelerate forest recovery, and corresponding nature reserves 
should be established. Nevertheless, blind planting must be restricted, and the gov-
ernment should plan the planting area, layout, and varieties scientifically and ration-
ally to avoid the unnecessary consumption of water resources. 

5.3. Limitations and Future Work 
There were some limitations to this research. Due to the limitation of data availabil-

ity, we did not consider the difference in soil type as one of the potential driving factors. 
Additionally, because the preclassified products of ESA were selected as the land use data, 
specific errors were inevitable in the classification process. Meanwhile, for some areas 
with low vegetation coverage, different studies have classified them into various catego-
ries. In this study, we reclassified shrubs and some land covers with low vegetation cov-
erage into grassland, which may have lost part of the land cover information, resulting in 
certain deviations between our results and other previous studies. In addition, because 
the GeoDetector analysis was based on grid cells, the results will be affected by the grid 
size and discretization methods to some extent. The area of this study was relatively small, 
and the impact of those two effects was primarily considered in previous studies with 
large study areas [31]. Moreover, to date, there is no optimal criterion for selecting grid 
size and discretization method; therefore, in this study, evaluations of the effect of grid 
size and discretization method were not taken into consideration. We will consider it in 
future research.  

In the next stage, we will consider dividing the SRB into different ecohydrological 
function zones and try to optimize and predict the land use patterns in the SRB by ana-
lyzing and calculating the water requirements and consumption of different land uses on 
the premise of ensuring the main ecological objectives of the basin. 

6. Conclusions 
In this study, land use transfer matrices and a geographic detector were employed to 

reveal the evolution of LULC patterns and the driving forces behind the formation of and 
changes in LULC in the SRB. The results revealed that grassland and bare land were the 
two most extensive LULC types. Anthropogenic activities were the main driving factors 
influencing the spatial patterns of cropland and settlements distributed in the middle and 
lower reaches of the basin. For the forest, grassland, and bare land, their spatial distribu-
tions were all chiefly impacted by the joint influence of natural and anthropic factors.  

In the past 18 years, the LULC patterns in the SRB have changed significantly. Grass-
land and settlements presented a rising tendency. In contrast, the areas of cropland, forest, 
and bare land have decreased. With the implementation of the Key Treatment Program of 
the Shiyang River Basin, cropland demonstrated a variable trend of first increasing and 
then declining after 2005. The major LULC changes in the SRB were the mutual conver-
sions among cropland, grassland, and bare land. Moreover, approximately 91% of the set-
tlement expansion derived from the occupation of cropland and grassland. The decline in 
forest area was mainly because of its conversion to grassland, which generally occurred 
in the Qilian Mountains and its surroundings.  

Climate change, socioeconomic variation, topographical factors, and changes in de-
velopment policies all drove LULC changes in the SRB; however, the primary driving 
force depended on specific LULC changes. The main driving factors of different LULC 
conversions to the same LULC type were similar in the SRB. The transformation of bare 
land to grassland was chiefly affected by the elevation and proximity factors. The expan-
sions of settlements, characterized by the occupation of grassland and cropland, were 
mainly driven by the distance to urban and township centers, economic growth, and var-
iations in total water consumption. Variations in anthropogenic and natural factors both 
caused degradation of the forests and grassland. There were apparent variations in the 
impacts of the driving factors on the LULC changes at their different levels.  
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Facing the continuous changing climate conditions and the rapid development of so-
ciety, land use managers and planners should continuously update and improve their 
LULC plans and strategies in a timely manner, according to the driving forces behind the 
current LULC patterns and changes. This will ensure the sustainable and rational use of 
land resources and may be conducive to achieving sustainable development. The results 
obtained in this paper could, to a certain extent, fill the gap in the quantitative driving 
analysis of LULC pattern formation and changes in the SRB. Furthermore, it could afford 
a scientific framework reference for the driving analysis of LULC in other arid endorheic 
river basins worldwide. Further research would address the optimization and prediction 
of LULC, with consideration towards distinguishing ecohydrological function zones. 
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Appendix A 

 
Figure A1. Distribution of weather stations surrounding the Shiyang River Basin (SRB). 
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Appendix B 

Table A1. Discretization methods and the 11 potential driving factors of the formation of and main 
changes in LULC in the SRB. 

Factor Method Level Numbers Unit 
X1, Z1 Natural Breaks 8 °C 
X2, Z2 Natural Breaks 8 mm 
X3, Z3 Quantile 6 m 
X4, Z4 Natural Breaks 5 persons/km2 
X5, Z5 Natural Breaks 5 104 CNY/ km2 
X6, Z6 Natural Breaks 5 104 CNY/ km2 
X7, Z7 Natural Breaks 8 108 m3/ km2 
X8, Z8 Natural Breaks 6 108 m3/ km2 
X9, Z9 Natural Breaks 6 108 m3/ km2 

X10, Z10 Natural Breaks 8 km 
X11, Z11 Natural Breaks 8 km 

Notes: The definitions and descriptions of factors are shown in Tables 1 and 2 in the manuscript. 

Appendix C 

Table A2. Land use transfer matrices of different periods from 2000 to 2018 in the SRB (unit: km2). 

  2005 
 Land Use Types Cropland Forest Grassland Settlement Bare Land Others Total Area 

2000 

Cropland 5142.78 0.09 12.51 2.97 0.00 0.00 5158.35 
Forest 0.00 2110.23 105.39 0.81 0.45 0.00 2216.88 

Grassland 98.82 21.60 21,780.00 17.55 14.76 2.25 21,934.98 
Settlement 0.00 0.00 0.00 12.60 0.00 0.00 12.60 
Bare Land 35.91 0.27 619.47 1.08 9476.19 0.00 10,132.92 

Others 0.00 0.00 0.00 0.00 0.00 36.27 36.27 
Total Area 5277.51 2132.19 22,517.37 35.01 9491.40 38.52 39,492.00 

  2010 
 Land Use Types Cropland Forest Grassland Settlement Bare Land Others Total Area 

2005 

Cropland 5241.51 0.00 32.85 3.15 0.00 0.00 5277.51 
Forest 0.00 2058.39 71.73 1.80 0.27 0.00 2132.19 

Grassland 21.24 0.99 22,424.58 16.11 52.02 2.43 22,517.37 
Settlement 0.00 0.00 0.00 35.01 0.00 0.00 35.01 
Bare Land 2.16 0.00 106.83 0.36 9382.05 0.00 9491.40 

Others 0.00 0.00 0.00 0.00 0.00 38.52 38.52 
Total Area 5264.91 2059.38 22,635.99 56.43 9434.34 40.95 39,492.00 

  2015 
 Land Use Types Cropland Forest Grassland Settlement Bare Land Others Total Area 

2010 

Cropland 5167.08 0.09 90.27 7.38 0.09 0.00 5264.91 
Forest 0.00 1934.82 123.66 0.90 0.00 0.00 2059.38 

Grassland 0.09 1.80 22,599.90 16.92 16.20 1.08 22,635.99 
Settlement 0.00 0.00 0.00 56.43 0.00 0.00 56.43 
Bare Land 0.00 0.00 369.27 0.00 9065.07 0.00 9434.34 

Others 0.00 0.00 0.00 0.00 0.00 40.95 40.95 
Total Area 5167.17 1936.71 23,183.10 81.63 9081.36 42.03 39,492.00 

  2018 
 Land Use Types Cropland Forest Grassland Settlement Bare Land Others Total Area 

2015 Cropland 5104.53 0.27 57.87 4.41 0.09 0.00 5167.17 
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Forest 0.00 1903.50 32.85 0.36 0.00 0.00 1936.71 
Grassland 21.87 4.41 23,104.08 16.83 35.73 0.18 23,183.10 
Settlement 0.00 0.00 0.00 81.63 0.00 0.00 81.63 
Bare Land 4.59 0.00 31.50 0.81 9044.46 0.00 9081.36 

Others 0.00 0.00 0.00 0.00 0.00 42.03 42.03 
Total Area 5130.99 1908.18 23,226.30 104.04 9080.28 42.21 39,492.00 

Notes: Yellow filled numbers denote the parts of land use that did not change during any two peri-
ods. 

Appendix D 

 
Figure A2. Spatial distributions of the factors for the driving analysis of LULC changes from 2000 
to 2018 in the SRB. Notes: The factor codes are as follows: Z1, temperature; Z2, precipitation; Z3, 
altitude; Z4, population density; Z5, GDP; Z6, GDP per capita; Z7, total water consumption; Z8, 
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surface water supply; Z9, groundwater supply; Z10, distance to the rivers; and Z11, distance to ur-
ban and township centers. The meaning of each factor is detailed in Table 2 in the manuscript. 

Appendix E 

Table A3. Factor detector results of different main LULC changes in the SRB. 

LULC Change 
Type Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 

CTG 0.0181 0.0039 0.0090 0.0152 0.0054 0.0019 0.0162 0.0099 0.0136 0.0110 0.0071 
CTS 0.0092 0.0055 0.0058 0.0108 0.0104 0.0018 0.0125 0.0105 0.0112 0.0025 0.0109 
FTG 0.0307 0.0034 0.0311 0.0196 0.0019 0.0075 0.0201 0.0161 0.0183 0.0102 0.0035 
GTB 0.0122 0.0036 0.0088 0.0056 0.0042 0.0029 0.0070 0.0068 0.0047 0.0014 0.0037 
GTC 0.0032 0.0146 0.0105 0.0030 0.0047 0.0035 0.0048 0.0030 0.0065 0.0033 0.0077 
GTS 0.0123 0.0071 0.0090 0.0064 0.0143 0.0136 0.0200 0.0078 0.0105 0.0028 0.0132 
BTC 0.0033 0.0083 0.0037 0.0001 0.0010 0.0006 0.0006 0.0004 0.0006 0.0012 0.0033 
BTG 0.0119 0.0080 0.0349 0.0060 0.0203 0.0073 0.0049 0.0139 0.0033 0.0445 0.0219 
OTS 0.0041 0.0016 0.0055 0.0009 0.0030 0.0012 0.0075 0.0052 0.0039 0.0032 0.0031 

Notes: The factor codes are as follows: CTG, cropland→grassland; CTS, cropland→settlement; FTG, 
forest→grassland; GTB, grassland→bare land; GTC, grassland→cropland; GTS, grassland→settle-
ment; BTC, bare land→cropland; BTG, bare land→grassland; OTS, other land use conversion types; 
Z1, temperature; Z2, precipitation; Z3, altitude; Z4, population density; Z5, GDP; Z6, GDP per cap-
ita; Z7, total water consumption; Z8, surface water supply; Z9, groundwater supply; Z10, distance 
to the rivers; and Z11, distance to urban and township centers. The meaning of each factor is detailed 
in Table 2 in manuscript. Numbers marked in yellow indicate that the p value was greater than 0.05 
and failed to pass the significance test. 

Appendix F 

Table A4. Discretization methods and levels of potential driving factors of the main LULC changes 
in the SRB. 

Factor Level_1 Level_2 Level_3 Level_4 Level_5 Level_6 Level_7 Level_8 Method 
Z1 

(°C) 
[−0.01, 
0.09] 

(0.09, 
0.16] 

(0.16, 
0.23] 

(0.23, 
0.29] 

(0.29, 
0.36] 

(0.36, 
0.45] 

(0.45, 
0.55] 

(0.55, 
0.67] 

Natural Breaks 

Z2 
(mm) 

[−53.32, 
−9.92] 

(−9.92, 
9.21] 

(9.21, 
23.92] 

(23.92, 
39.37] 

(39.37, 
57.76] 

(57.76, 
79.09] 

(79.09, 
101.90] 

(101.90, 
135.00] Natural Breaks 

Z3 
(m) 

[1228, 
1350] 

(1350, 
1439] 

(1439, 
1579] 

(1579, 
1940] 

(1940, 
2633] 

(2633, 
4795] 

  Quantile 

Z4 
(persons/km2) 

[−2.68, 
−0.78] 

(−0.78, 
2.38] 

(2.38, 
7.77] 

(7.77, 
14.84] 

(14.84, 
24.34] 

   Natural Breaks 

Z5 
(104 CNY/ km2) 

[3.03, 
52.56] 

(52.56, 
83.89] 

(83.89, 
128.36] 

(128.36, 
198.11] 

(198.11, 
261.79] 

   Natural Breaks 

Z6 
(104 CNY/ km2) 

[1.03, 
2.01] 

(2.01, 
3.22] 

(3.22, 
4.27] 

(4.27, 
5.46] 

(5.46, 
7.13] 

   Natural Breaks 

Z7 
(108 m3/ km2) 

[−2.39, 
−2.00] 

(−2.00, 
−1.61] 

(−1.61, 
−1.20] 

(−1.20, 
−0.80] 

(−0.80, 
−0.42] 

(−0.42, 
0.01] 

(0.01, 
0.327] 

(0.33, 
0.79] 

Natural Breaks 

Z8 
(108 m3/ km2) 

[−0.42, 
−0.28] 

(−0.28, 
−0.15] 

(−0.15, 
0.01] 

(0.01, 
0.17] 

(0.17, 
0.31] 

(0.31, 
0.45] 

  Natural Breaks 

Z9 
(108 m3/ km2) 

[−3.35, 
−2.72] 

(−2.72, 
−2.04] 

(−2.04, 
−1.48] 

(−1.48, 
−0.89] 

(−0.89, 
−0.16] 

(−0.16, 
0.54] 

  Natural Breaks 

Z10 
(km) [0, 6.38] 

(6.38, 
14.15] 

(14.15, 
23.26] 

(23.26, 
32.90] 

(32.90, 
43.72] 

(43.72, 
56.96] 

(56.96, 
73.50] 

(73.50, 
98.22] Natural Breaks 
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Z11 
(km) [0, 5.82] 

(5.82, 
10.36] 

(10.36, 
15.21] 

(15.21, 
20.44] 

(20.44, 
26.65] 

(26.65, 
34.35] 

(34.35, 
44.26] 

(44.26, 
63.51] Natural Breaks 

Notes: The factor codes are as follows: Z1, temperature; Z2, precipitation; Z3, altitude; Z4, popula-
tion density; Z5, GDP; Z6, GDP per capita; Z7, total water consumption; Z8, surface water supply; 
Z9, groundwater supply; Z10, distance to the rivers; and Z11, distance to urban and township cen-
ters. The meaning of each factor is detailed in Table 2 in manuscript. 
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