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Abstract: The environmental impact of machining operations such as milling, drilling, and turning, is
often treated as a conflicting interest when compared to other machining factors such as cost, quality,
time, and process settings. It is more beneficial in the long-term for the manufacturer to adjust their
practices to be more environmentally conscious. Currently, there are limited existing research showing
the linkages between environmental impact of machining and other machining factors. The objective
of this study is to create a systems model to examine the linkages of environmental impact with
cutting conditions, cost, quality, and efficiency. The model aims to replicate the machining behaviors
at the unit process level and generate the long-term implications of their techniques and impacts
for engineering decision making. A case study was conducted on a CNC machining operation to
create injection molds for climbing holds. The model simulates tool wear and replacement, cutting,
energy, cost, and surface quality. The result of this study contributes to the manufacturing knowledge
by creating a systems model to quantify and better understand the linkages and trade-offs between
environmental impact and decisions surrounding machining operation parameters and technologies.
The self-governing behavior of the dynamic model can also be used as a decision-making tool for
smart machining control.

Keywords: system dynamics; sustainable manufacturing; machining

1. Introduction

Machining processes such as milling, drilling, and turning, are major components of
the manufacturing and have greatly impacted the history and growth of the industry [1].
Since manufacturing began developing with the growth of industrialization it has been
one of the largest contributors to negative environmental impacts such as greenhouse
gas emissions [2]. Machining processes are highly complex and multi-faceted, requiring
in-depth analysis of interrelated factors such as technical settings, cost, quality, environ-
mental impacts, and human components [3,4]. In past studies of these factors, research
has been focused on individual separate factors such as the quantification or reduction of
the environmental impact of machining processes through specific avenues of change [5,6].
The adjustment of cutting conditions might make the process time faster but quality lower,
or the use of copious amounts of cutting fluids may increase product quality but also
increase manufacturing cost and environmental impact [7]. These factors are dynamic and
overlapping by nature, static individual analysis results in inefficiency and negative envi-
ronmental impacts [3,8]. In order to fully understand the complexities and repercussions of
any decision related to manufacturing processes, it is essential to take multiple factors into
account to generate a more holistic visualization and understanding of the feedbacks of the
machining system. Because these key technical, human, and environmental factors have
not been fully recognized, the complexity is not yet understood [9,10].

2. Literature Review

This section presents a literature review on understanding interconnections among
environmental impact, cost, quality, time, and technical settings of machining processes.
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2.1. Environmental Impact and Cost

Sustainability and cost reduction are often seen as inverse efforts that cannot happen
simultaneously, when in actuality, businesses that strive for excellence in both fields often
see long-term benefits overall. Today, raw materials and energy consumption average up to
or over 50% of the manufactured products’ total cost; as such, reducing these costs through
sustainable efforts result in lower overall product manufacturing costs [11]. The electrical
energy requirement of machining processes is inversely proportional to the process rate,
because the power allotted to the equipment decreased as process rate increased due to
large tare power. The material removing rate (MRR) can be increased through toolpath
modification and using better suited tools such as carbide end or coated end mills. In addi-
tion to higher cutting speeds, these more durable tools extend tool life which reduces tool
costs [12]. Reducing energy consumed in machining operations reduces the manufacturers’
carbon dioxide footprint. Machine selection is highly important, as a micro milling facility
uses 800 times less energy than a conventional machine, making it a sound option when a
micro machine will do the job [13]. It is possible to increase tool utilization by using worn
tools in secondary machining operations, decreasing environmental impact, production
cycle time, cost of tools, and energy consumption. After the major cutting edge wears out
after significant machining, changing the tool setup would allow the lightly worn minor
cutting edge to serve as a ‘new’ major cutting edge [6].

Ways to improve environmental impact include reducing energy consumption, mini-
mizing and eliminating material use (especially cutting fluids and coolants) and reusing
old tools. New coolant technologies and strategies, such as dry or cryogenic machining,
have advantages in improved tool wear and reduced chip-disposal costs because the ma-
chining chips are not contaminated [5]. Reducing consumption of cutting fluids has been
shown to be beneficial to the environment, as the cutting fluid wastewater contains harmful
substances that must be treated which can become costly. Recycling the fluids by removing
contaminants to maximize fluid life minimizes waste while reducing disposal and material
costs [14]. Cutting fluids are used to cool and lubricate work surfaces to reduce friction and
heat generation, which is needed to increase tool life by protecting the tools from abrasion
and diffusion. Current cooling technologies are costly; it is estimated they cost four times
the cost of cutting tools used in the process when considering supply, use, and washing.
Alternative plant-based or gaseous lubricoolants are being shown as effective, sustainable,
and less costly [15]. Cutting fluids are important to increase production rate, surface quality,
and lower heat generation, all of which lower costs in various ways. However, cutting
fluids can be 15–30% of total costs, and cost 2-4 times that to dispose of them in America.
Finding an alternative such as dry machining, improved tool coating, and coolants with
increased biodegradability and reduced toxicity often prove to be the optimal decision [16].

2.2. Environmental Impacts and Quality

Throughout numerous studies, environmentally advantageous techniques and tech-
nologies have been shown to be more advantageous for manufacturers because of cost
decrease with equal or improved levels of quality. These technologies include vibration or
laser assisted machining, high pressure waterjet cooling, and variations of cutting parame-
ters. With those alternative types of machining, surface quality can be increased, leading
to more effective subsequent layers of protection, increased tool life, and more efficient
machine performance resulting in lower energy expenditure.

When considering the issues that reduce the use of dry machining in standard op-
erations, there are many technologies that are beneficial in closing the gap between dry
and lubricated machining. These include various tool changes in geometry or coating
and assisted machining such as vibration assisted machining and laser assisted machin-
ing which reduce tool contact and chip adhesion, ultimately resulting in reduced cutting
forced, smaller chips, and improved surface finish and tool life [17]. Surface integrity
is defined as the “inherent or enhanced condition of a surface produced by machining
processes or other surface generation operations”. Typical surface alterations that affect
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overall product quality include plastic deformation, micro-cracking, phase transformations,
hardness variations, tears and laps, and residual stress distribution. These qualities can
become unacceptable, as determined by the American National Standard for surface in-
tegrity [18]. Surface roughness influences the effectiveness and quality of added coatings,
decreasing protection against corrosion and resistance in the product, making good surface
finish essential for quality measurements. The key parameters for surface quality and tool
wear to consider are cutting speed, feed rate, and axial and radial cut depth. This study
shows the radial cutting depth has the greatest influence on quality with higher machining
performance with higher levels of radial sheer penetration [19].

In a study specifically focused on milling, high pressure waterjet cooling techniques
were shown to be much more advantageous than commonly used flood cooling, which
is a costlier and less sustainable option. The high pressure waterjet injection method was
shown to reduce cutting force and improve tool life, surface finish, and metal removal
rate, making it a more efficient method of machining for cost, quality, and reduction of
environmentally harmful materials [7]. Operational efficiency is reduced when surface
quality is degraded, which in turn decreases tool life and increases energy expenditure.
Decreased surface quality of a finished part decreases market value, making manufacturing
costs more significant and monetary gain lower [20].

2.3. Environmental Impact and Time

A sizable amount of global energy consumption is due to machining operations.
To make the manufacturing industry more sustainable it is essential to reduce energy
consumption through reduction in machining time. Increasing machine tool efficiency
can be achieved through new technologies and better planning of cutting parameters,
especially feed rate, prior to the operation. Machining time is important to the efficiency
and cost of manufacturing, meaning any alternatives to current operations must meet or
exceed machine efficiency. Comparable rates were found in research done on multiple
environmentally conscious technologies such as cold compressed air.

To reduce global energy consumption and make manufacturing a more sustainable
industry by reducing energy-related environmental pollution, feature-sequencing can effec-
tively cut down on machining time. This study examined the trade-offs between machining
time, deviation, and energy consumption as calculated through feature sequencing. Be-
cause these are multi-objective problems, there are multiple approaches to an optimal
solution, but all proposed solutions are beneficial because of large reductions in some if not
all categories, creating a more efficient and environmentally friendly solution overall [1].
Feed rate optimization is prioritized in researching machining efficiency because of its
importance when trying to shorten machining time. Autonomous systems are becoming
more used because of their ability to find optimal strategies and parameters efficiently,
improving machining performance and cycle time and reducing planning time. Because
machining operations such as milling are flexible, parameters can be highly specified to
best fit the workpiece making it important to be able to know the optimal values for each
new process quickly [3]. Mathematical models are more favorable than the currently and
commonly used method of trial and error, past experience of the process planners, and
machining handbooks. They reduce time spent on the planning needed to find optimal
machining parameters. A mathematical model developed for surface roughness prediction
used Particle Swarm Optimization and was found very useful in optimizing machining
and reducing time spent on planning [21].

New lubrication/cooling systems include dry machining, minimum quantity lubrica-
tion, cryogenic refrigeration, solid lubricants, and gaseous refrigeration. Cold compressed
air, a form of gaseous refrigeration, uses air, water vapor, carbon dioxide, oxygen, or nitro-
gen to reduce heat through adiabatic expansion or cooling the air with a vortex tube. This
addition to traditional dry machining significantly reduces heat generation because of air’s
convection coefficient, but because the specific heat of water is about four times the specific
heat of air the heat removal capabilities of cold compressed air system is still slightly less
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when compared to cooling by flood. However, the system can extend the life of the cutting
tool, has a high environmental efficiency, reduces costs, and improves surface roughness
values. When testing the cooling system on specific materials, all showed the process to be
a good alternative to traditional techniques for high-speed machining [22].

2.4. Environmental Impacts and Cutting Conditions

Milling parameters cannot be static across processes as they will create long and
inefficient machining times; each new workpiece demands adjustments to reach optimal
efficiency to reduce tool chatter and breakage and energy and material consumption. These
reductions can lead to significant machining cost savings and environmental conserva-
tion. Manufacturers find the optimal parameters for each workpiece, such as cutting force
which can be determined through MRR values, factoring in cutting time, segmental length,
and feedrate. Torque can be found through another equation with cutting speed values.
Reduction in material waste can also be increased through technologies such as dry ma-
chining. Machining without fluid, though environmentally and cost-wise beneficial, limits
the machine to lower cutting speeds which reduces process rate. Finding a balance between
efficiency and fluid amount is essential.

Cutting parameters need to be adjusted based on the workpiece and material. If
optimal parameters are not used the tools will frequently chatter and break, and the force
of the machine will be quite different because of radial cuts and chip thickness. Consistent,
unchanging feedrates are also not optimal, as they lead to inefficient and long machining
times. Through optimal settings energy consumption and waste can be reduced, leading
to monetary and environmental benefits. Multiple equations, commonly included in
optimization programs, are used to find the optimal cutting settings. Cutting force can
be determined through MRR values, factoring in cutting time, segmental length, and
feedrate [3].

Because of high costs associated with the purchase and disposal of cutting fluids, and
the environmental impact of fluid waste, dry or near dry machining is a very attractive
alternative technique. A study showed that 7–17% of total manufacturing costs were
linked to cutting fluids, while tool costs only made up 2–4% of total costs. Machining with
no fluids limit machining to lower cutting speeds, reducing production rate. Finding a
balance between efficiency and fluid amount is a cost-effective way to maintain quality and
efficiency while reducing negative environmental impacts and fluid costs. Process cost can
be found with the machine cost rate, the tooling cost per cutting edge, the process cutting
time, the process auxiliary time, the tool change time, the tool durability time, the cutting
length of the workpiece, the diameter of the workpiece, and the machining allowance. The
total amount of cutting fluid is calculated as both reusable cutting fluid consumption and
non-reusable cutting fluid consumption. The workpiece characteristics have a great deal of
impact of the amount of cutting fluid used and the technical settings needed for the most
efficient manufacturing [4].

The Taguchi method, combined with the grey rational analysis to make the grey-
Taguchi method, has been used to optimize milling process parameters. The goal of this
method is to reduce flank wear, effectively increasing tool life and reducing manufacturing
waste, and reducing surface roughness. Variable parameters included coating type of the
tool used, helix angle, primary relief angle, cutter diameter depth of cutting, width of
cutting, feed rate, and spindle speed. This study found the most significant changes to
the flank wear were dependent on the cutter diameter (40.8% contribution), coating type
(18.4%), helix angle (10.3%), primary relief angle (9.5%), depth of cutting (6.5%), and width
of cutting (6.3%). When considering surface roughness, the feed rate had the largest impact
(41.5%) followed by cutting diameter (28.2%) and so on [23].

2.5. Environmental Impact and Human Components

Collectives must make decisions that affect the environment constantly, so analyzing
what factors tie into the human decision-making process is important in understanding
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what changes are necessary to sway decisions pro-environment. These factors include social
value orientations, situational variables, and psychological variables, all of which influence
the decision making of individuals and collectives and affect the gap between individual
values and actions taken. Perceptions and awareness are major components of changes in
behavior towards eco-friendly actions. Technologies and decisions must minimize losses of
quality, price, and convenience for those making the decisions to be viable.

Human decisions and activities, from individual consumers choosing lightbulbs to
complex multistakeholder decisions about land use, have significant impacts on the envi-
ronment. A decision is defined as pro-environment by the extent that it “positively impacts
the availability of materials or energy from the environment or alters the structure and dy-
namics of the ecosystems or the biosphere.” When approaching a decision, manufacturers
may use a decision-analytic framework, which divides the world into acts (the options
to decide between), states (the possible ways the world might be altered as a result), and
outcomes (the consequences of each act given to each state). Environmental impact can
only be reduced, and positive actions can only be enacted by assessing factors that lead to
individual and collective understanding of environmental problems and commitment to
mitigating the issues. These can include psychological predispositions including personal
values, ideologies, and prior experiences, and environmental values (especially biospheric
values concerned with the welfare of the environment). Pro-environmental decisions often
involve personal sacrifice such as increased cost, effort, and inconvenience, so these psycho-
logical factors that increase an individual or collective recognition that there is long-term
collective good that is valued by those concerned [24].

Psychology is an important field of study when considering people’s attitude and
actions towards environmental issues such as climate change. Individual’s perceptions of
global warming risks are highly influential, as stress, anxiety, apathy, or guilt can all impact
or encourage responses to environmental issues resulting in behavior changes. When there
is lack of information, or lack of evidence of risk or benefit of change, people become fixed
in existing patterns and decisions. Lack of knowledge of how decisions will impact the
environment can cause people to believe their actions are not damaging when they are, that
their actions have less weight than they do, or that the problem and solutions lie outside of
human control [25]. A study linked worker’s safety perceptions to quality outcomes using
the psychological term cognitive dissonance. Efficiently run management systems rely on
employees that are able to work well on teams, recognize problems as they come about,
and strive for continuous improvement. In order for employees to work at their highest
potential they must be motivated, which safety measure have been shown to promote or
decrease. In this way, ensuring the safety of workers has a significantly beneficial effect on
production efficiency and quality [26].

In the past, academics have researched assessing and minimizing environmental im-
pact and investigated the relationships between manufacturing factors such as time, cost,
quality, and technical settings. However, there is a gap in the research of this topic in terms
of understanding how environmentally conscious actions create feedback, affecting the
other manufacturing factors in machining processes [8]. This missing knowledge is essen-
tial to the research community and the manufacturing industry; without the information
designers lack the means to understand the problems holistically, resulting in an incomplete
view of environmental practices and machining process control [27,28]. Negative conse-
quences of this lack of knowledge include design inefficiency, unnecessary manufacturing
expenditure, and detrimental environmental impacts. Therefore, the objective of this study
is to develop a dynamic modeling method to map the interconnections within a machining
operation and use the dynamic model to understand the feedbacks among key factors for
sustainability improvement.

3. Methodology

Systems dynamics models are simulation models that use data inputs to create hy-
pothesized relationships between multiple variables. It was developed by Jay Forrester in
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the mid-1950s. [29]. The goal of systems dynamic modeling is to aid in making informed
decisions when analyzing complex, dynamic systems. It can be applied to social, man-
agerial, economic, ecological, and physiological systems [30]. It was designed to examine
feedbacks of a system, using information in forms of stocks and flows (accumulations),
time delays, feedbacks, and non-linear relationships between variables [31].

In the model, all variables relevant to the scope of the problem are identified then
connected through a network of relationships that capture the feedback complexity of the
system. The mathematical relationships are made explicit, the model is simulated, output
is compared to historical data, and different policies are tested. The purpose of this is to
generate knowledge and insights on various policies.

As shown in Figure 1 the basic elements of a diagram show how information flows
through a stock. It has an inflow where data enters the system, and an outflow where
the data exits the system, each function as rates (data over time). The stock accumulates
data if the inflow is larger than the outflow. This is often compared to a bathtub, where a
facet rate and drain rate control how much water is in the bathtub at any time. Additional
variables not part of the stock and flow structure may affect the rate of inflow and outflow
instantaneously. Through these computer programs, modelers are able to represent and see
the behaviors of the model overtime, and better understand the complexity of the system.
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Figure 1. Stock and flow.

The mathematical formula for a basic stock and flow action is shown in Equation (1)
below, where the left side of the equation is the accumulation in the stock, F(a) is the inflow,
and F(b) is the outflow.

Stock(t) =
∫ b

a
(F(a)− F(b))dt + stock[t0] (1)

The stock and flow diagram created through this project quantified and analyzed
the linkages and associated behaviors of various manufacturing factors as they pertain
to the environmental impact of machining. These key variables included cost, quality,
environmental impacts, and tool life.

The overall system is shown in Figure 2, in the following sections the important
behaviors will be highlighted and further explained and analyzed. Details of variable
definitions and mathematical equations in the model can be found in the Supplementary
Materials document.
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Figure 2. Overall stock and flow model.

3.1. Tool Wear and Surface Quality

Tool wear is modeled through the inclusion of multiple auxiliary variables, and the
use of logic statements in the equation of the flow rates. This was done to mimic the
typical behavior of tool wear in a standard tool, shown in Taylor’s tool life equation [32] in
Equation (2) below, while the behavior is shown in Figure 3a and the generated behavior is
shown in Figure 3b which is based on a Tungsten Carbide cutter machining 1045 Steel.

VTn = C (2)

where V is the cutting speed, T is the tool life, n is the slope of the relationship plot between
cutting speed and tool life and it depends on the tool material, and C is the intercept on the
speed axis at one-minute tool life.
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Figure 3. (a) Typical tool wear and (b) Modeled tool wear and replacement.
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The similarity between the curve generated and the anticipated curve gives confidence
and validity to the model’s functionality and accuracy.

The quality of the product, measured through the surface roughness, is measured
through the comparison of the normal smoothness of the surface occurring at the start of
the use of a new tool, to the effect of the tool wear determined by the time of the system
run. The stock and flow diagram of this relationship is shown in Figure 4. This relationship
is shown in Equation (3) below.

ARt =
∫ t

1


(

SRRt − AR(t−1)

)
ATQ

 ∗ dt (3)
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This equation can be defined as Average Roughness (AR), Surface Roughness (SRR),
and Adjustment time (ATQ). Average Roughness is the current roughness of the tool
in operation, determined by Surface Roughness that is determined by an integral of the
Normal Smoothness, which is a set optimal starting smoothness of a new tool and the Effect
of Tool Wear, which is the current wear of the tool in operation determined the length of use
at that moment and the speed at which it is being used, compared to the current Average
Roughness at that moment. The Adjustment Time is the time it takes for the system to
recognize changes in quality.

The Average Roughness stock is a weighted average [29] intended to show a smoothed
curve, giving more weight to the most recent information to inform action.

3.2. Energy

The energy of the system accumulated in a stock, determined using linear equation that
translates the cutting speed, in rotations per minute, to energy expenditure. The stock and
flow diagram is shown in Figure 5. This input relationship is shown in Equation (4) below.

Et = E0 +
∫ t

1

CEt

AT
dt (4)
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This equation is defined by Energy (E), Cutting Energy (CE), and Adjustment Time
(AT). Accumulation of energy is the input into the energy stock, which instantaneously
accumulates that value over time. Cutting Energy is a value determined by cutting power
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calculated based on depth of cut, feed per revolution, cutting speed, specific cutting force,
and machine coefficient. Adjustment time allows for the conversion of minutes per hour to
minutes to match the units of the system running time.

3.3. Cost

The Cost of the production is calculated as a sum of the following cost variables. The
Cost of Tools, generated by keeping a count of the amount of times the tool replacement
flow out of the tool wear stock goes to one, signifying the replacement of a tool, then this
count is multiplied by the average price of a carbide tool. The Cost of Energy is calculated
from the accumulation of energy flow into the energy stock, multiplied by the cost of
industrial energy in Virginia. The last variable, the Cost of Material, is calculated from
the material removal rate, found through the multiplication of current feedrate, depth of
cut, and width of cut. As this study focuses solely on the cutting behavior, labor cost for
setup is not included in the model. The stock and flow diagram is shown in Figure 6. This
relationship is shown in Equation (5) below.

C =
∫ t

1
(CT + CE + CM)dt + Ct−1 (5)
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This equation is defined by the following terms: Total Cost (C), Cost of Tools (CT),
Cost of Energy (CE), and Cost of Material (CM). The Total Cost of the production is found
through an integral of a sum of the following costs: Cost of Tools is the amount of tools
used in the system multiplied by the price of a tool, the Cost of Energy is the current energy
usage multiplied by the price per kilowatt hour, and the Cost of Material is the material
removal rate multiplied by the price per cubic inch of steel, added to the current Total Cost
of the system.

3.4. Environmental Impacts

The Environmental Impact is a sum of multiple impact variables. The Impact of Tools
is found by the impact factor of tungsten carbide tool, multiplied by amount by density as
found from the volume of tools used. The Impact of Material is found by the amount of
material used multiplied by the impact factor for steel by the density. Finally, the Impact of
Energy is from the energy accumulation flow, multiplied by the impact factor determined
by the Environmental Protection Agency. The stock and flow for this system is shown in
Figure 7. The relationship for this behavior is shown in Equation (6) below.

EI =
∫ t

1
(EIT + EIE + EIM)dt + EIt−1 (6)
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This equation is defined by the following variables: Environmental Impact (EI),
Environmental Impact Convertor for Tools (EIT), Environmental Impact Convertor for
Energy (EIE), and Environmental Impact Convertor for Material (EIM). The Environmental
Impact of the system is determined by an integral of the sum of the following convertors:
The Environmental Impact Convertor for Tools is found by the density of the carbide
tool multiplied by the volume of tools used, multiplied by the impact factor for carbide
tools. The Environmental Impact Convertor for Energy is found from the input of the
accumulation of energy multiplied by the impact factor for energy. The Environmental
Impact Convertor for Material is found by multiplying the material removal rate of the
system by the density of steel, by the impact factor for steel. This sum is added to the
current Environmental Impact of the system.

4. Simulation and Scenario Analysis

The developed model needs to be validated through both structure test and behavior
pattern test [33]. The structure confirmation test assesses the validity of a model’s structure.
It can be carried out by comparing the equations and their form to existing relationships
in the system modeled and to system information reported in the literature [32,33]. The
sensitivity test (scenario analysis), a structure-oriented behavior testing method, indirectly
assesses model structure validity [34,35]. Highly sensitive parameters in the system model
are determined and investigated to ascertain whether the real system would exhibit similar
sensitivity. In this section, three scenarios are tested, different workpiece materials, different
surface roughness standards, and different cutting feeds.

4.1. Scenario 1: Changing Cutting Material

In this scenario, the C-value, a constant given based on machinability of material being
cut, was changed by a 50% increase and a 50% decrease to see how the system reacts to
different materials being milled. The model ran for 240 min. The model self-regulates the
cutting speed changes, influencing cost and energy expenditures, as it recognizes the speed
at which the tool is being worn. The base run C-value is 0.0033, 50% increase is 0.00495,
and 50% decrease is 0.00165.

In Figure 8a shown above, the tool wear for the base run, 50% increase in C-value, and
50% decrease in C-value are shown. The base run tool is replaced 10 times, with a high of
254 one thousandths of an inch wear to the tool. The increase scenario tool was replaced
16 times, with a high of 259 one thousandths of an inch wear to the tool. The decrease
scenario tool was replaced 5 times, with a high of 253 one thousandths of an inch wear to
the tool. This indicates the expected result; the harder it is to machine a material, the more
quickly the tool with wear out, resulting in shorter tool life spans.
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Figure 8. Comparative simulation results in Scenario 1: (a) Tool wear (b) Accumulated environmental
impact (c) Average roughness (d) Accumulated cost and (e) Energy use.

In Figure 8b the environmental impacts of the various scenarios are shown. The base
run final impact is 69,700 kg CO2e, the 50% increase value is 72,000 kg CO2e, and the 50%
decrease value is 68,000 kg CO2e. The trend is that the most difficult material to machine
creates the most environmental impact.

In Figure 8c the roughness of all scenarios is shown comparatively. The base run end
value is 95.5 units roughness, the increase scenario end value is 107 units roughness, and
the decrease scenario end value is 80.8 units roughness. There is a higher variability in
the quality of product surface with less frequent tool replacements, seen in less difficult
machining (lower c-value). Because the tool is replaced at a slower rate, the tool is working
a longer time than other more frequently replaced tools. This results in a wider range of
average produced roughness.

In Figure 8d the accumulation of cost for each scenario is represented. The base run
total is 385 dollars, the increase run total is 625 dollars, and the decrease run total is 194
dollars. This is due to the cost of energy and tools, but primarily it is due to the rate at
which the machine goes through material. The cost of new material represents the speed at
which products are being made. Therefore, if the system were to include an inflow of cost
gained from products being sold, the cost might be closer together.

In Figure 8e the comparative energy used in each scenario is shown. The base run
energy use is 9.81 kWh, the increase scenario value is 10.1 kWh, and the decrease scenario
value is 9.57 kWh. These values are so close because the system is self-regulating and
speeds up when tool wear is high. The energy usage is higher the harder it is to machine the
tool because the speed increases at the end of the tool’s life to increase quality of product.
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The harder it is to machine the material the quicker the tool generates wear, explaining this
relationship.

This scenario testing shows that the higher the C-value, meaning the higher the
difficulty to machine the material, the higher the cost and tool replacement rate by a
significant ratio. These conclusions align with expected results and confirm the model
represents this component accurately.

4.2. Scenario 2: Changing Tool Replacement Standard

In this scenario, the tool replacement standard is altered. The tool replacement stan-
dard determines the maximum amount of wear the tool is allowed to have before it is
necessary to swap in a new cutting tool. Therefore, the higher the standard value the looser
the requirement for roughness, or the lower the standard value the stricter the quality
requirement. The base run standard is 250 one thousandths of an inch, the standard is
changed by a 50% increase resulting in 375 one thousandths of an inch, and a 50% decrease
resulting in 125 one thousandths of an inch.

In Figure 9a the comparative tool wear for each scenario is shown. This graph shows
how much more frequently the tool is replaced when the standard is stricter, 17 times, and
how much less frequently it is replaced when the standard is looser, 9 times, compared to
the base run replacement rate of 10, almost 11 times in the 240 min period. The highest
amount of tool wear for each run is 254 one thousandths of an inch wear during the base
run, 393 one thousandths of an inch wear during the increased scenario, and 134 one
thousandths of an inch wear during the decreased scenario.
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Figure 9. Comparative simulation results in Scenario 2: (a) Tool wear (b) Accumulated environmental
impact (c) Average roughness (d) Accumulated cost and (e) Energy use.
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In Figure 9b the accumulated environmental impacts are shown for all scenarios. The
base run total is 69,700 kg CO2e, the 50% increase total is 84,500 kg CO2e, and the 50%
decrease is 60,900 kg CO2e. The simulation result shows that the looser the standard the
higher the environmental impact, because when it is close to the end of the tool life the
cutting parameter needs to be compensated to reach the same cutting dimension thus
requires higher energy use. The cutters will be recycled after they are replaced.

In Figure 9c the roughness of each scenario is shown. The base run end value is
95.5 units roughness, the 50% increase end value is 156 units roughness, and the 50%
decrease is 40.1 units roughness. The strictest standard has the lowest roughness, and the
looser standard allows the roughness to get the highest. The quality is smoothest, therefore
least variable, in the decreased scenario. This is because of the graphical function of tool
wear over time, as shown in Taylor’s Equation. Strict standard does not allow the tool
wear to reach the final sharp increase, replacing the tool first, resulting in a smaller range
of tool wear. All average roughness values eventually reach an equilibrium over long
cutting period.

In Figure 9d the cost of the scenarios is shown. The loosest standard has the highest
cost at a total of 513 dollars per unit product, the base run has the lowest cost total at
385 dollars, and the strictest standard has a total cost of 362 dollars. The reason the stricter
standard is not the highest cost, as would be expected, is because the tool never reaches the
point in the process where cutting speed needs to increase to maintain quality of product
while the tool reaches high amounts of wear. The cost of energy remains low in each cycle
before tool replacement. Therefore, despite the increased cost of tools with more frequent
replacements, it is least cost efficient to let the tools wear out completely. Therefore, it is
not best to let the tools sustain large amounts of wear, nor is it best to reduce the limit of
tool wear to be very low. The base run had the lowest cost, showing there is a balance to be
found regarding the limit of tool wear’s effect on cost; it is not a linear relationship.

In Figure 9e the energy use is shown for each scenario. The highest energy use run is
the loose standard with a total of 11.9 kWh. The base run has a total of 9.81 kWh, and the
strictest standard has the lowest energy use at 8.58 kWh. As discussed above, the energy
is highest when the tool reaches higher wear, so the decreased standard being the lowest
amount of energy usage follows the results above.

From these scenarios it can be concluded that the looser the tool replacement standard,
shown through an increase in standard, the higher the environmental impacts, energy
consumption, and the higher roughness (meaning the quality of product is lower). The
cost is not a linear relationship and is lowest during the base run. The quality of the
product is best and most consistent when the tool is replaced more frequently due to the
stricter standard.

4.3. Scenario 3: Changing the Feed

By changing the feed of the machining in these scenarios the human inputs’ effect on
the system can be tested. The feed is the speed at which the machine runs the material
through the milling process operation. The base run feed is 0.0017 inches per revolution, 50%
increase is 0.00255 inches per revolution, and 50% decrease is 0.0085 inches per revolution.

As shown above in Figure 10c, and Figure 10e the Tool Wear, Environmental Impacts,
Energy Use, and Roughness values do not change with the scenario testing. This is
because the developed model is regulating itself to a sustained machining quality over long
machining period by adjusting other machining parameters. For averaged values, they
do not show clear difference. The only thing that changes in this scenario testing, is the
cost and throughput. This model allows the machine to self-adjust cutting condition for
quality control.
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Figure 10. Comparative simulation results in Scenario 3: (a) Tool wear (b) Accumulated envi-
ronmental impact (c) Average roughness (d) Accumulated cost (e) Energy use and (f) Number of
products made.

As shown in Figure 10c the cost of the scenarios changed due to the material removal
rate (MRR) increasing, and the number of products made increasing along with the MRR
as shown in Figure 10f. The unit of this cost is accumulated dollar which measures the
cost of material cutting over time. This cost of the base run has a total of 385 dollars, the
50% increase in feed had a total of 387 dollars, and the 50% decrease in feed had a total of
382 dollars. However, as we know increased feed reduces cycle time, the cost per unit will
decrease with higher feed value.

5. Discussion and Conclusions

This study investigates and quantifies the complex and dynamic relationships in a
sustainable machining model, specifically between tool wear, environmental impacts, cost
of machining, energy usage, and quality. This analysis was conducted using systems
dynamic modeling to optimize key variables and determine how human decisions might
interact with the system. The result of the systems dynamic model created in this study
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was a functioning, self-regulating system that can be used to inform complex machining
decisions in automation.

The model was tested through three scenarios, changing various inputs to evaluate
the optimized outputs. The scenarios demonstrated the outputs of human alterations of
the material type simulated through change in cutting material, a change in desired tool
wear limit, and change in feedrate of machining. As discussed in the scenario analysis,
there are trade-offs that could be analyzed according to manufacturing priorities to find the
optimal human inputs. The main outputs that were affected in this testing was the cost of
machining, quality of product surface, and amount of tool wear.

Conclusions from this study were gleaned through scenario analysis. More frequent
tool replacements due to more rapid wear from materials with lower machinability reduces
the quality and variability of the quality of surface being milled. The Tool Wear Standard
limits variability in quality; Manufacturers that prioritize consistency in product would be
interested in the lower variability in roughness values that resulted from decreasing the
acceptable amount of tool wear. Energy usage has the largest impact on Environmental
Impacts, therefore reduction of tool wear, delaying the increase of the speed of machining
and higher energy consumption, lowers both Energy Use and Environmental Impact.
Lastly, allowing tools to reach a large amount of wear before replacing them is the least cost-
effective option in the scenario tested, followed in effectiveness by the run that restricted
tool wear to minimal amounts before replacement. There is a balance between the two
extremes, closer to the base run, that is the most cost effective even without the factor
of the quality of product being reflected in the price point achievable on the market.
Loosing standard resulting into higher cost contradicts commonly perceived knowledge in
production as the indirect consequences on energy and quality are not as clear as the direct
benefit in tool use.

As seen in all three scenarios, the self-regulating system identifies trade-offs to opti-
mize the system and reach desired goals. The model eliminates human operator decision-
making, optimizing the quality of the product and tool wear amount depending on desired
standards. The fact that in scenario 3 the only thing that changed was the cost, and in other
scenarios the values maintained their roughness and acceptable tool wear amounts, exem-
plifies that the system is self-contained and balances all variables to reach desired goals.

This model is an affordable way for manufacturers to test different inputs and goals,
and see how different quality, cost, environmental, energy, or tool wear goals result in
varying effects on all other outputs in the machining system. Human inputs that can be
modified include the type of material desired for machining and the goals of production
such as quality in terms of acceptable surface finish, tool replacement standard, or oth-
ers. The build of the model itself, which produces a functioning representation of tool
wear in a typical machining operation, is valuable to the engineering and manufacturing
research community.

One limitation in this study is that the results of the proposed model and the scenario
analysis are based on theoretical calculations and literature data. More experiments need
to be conducted to validate the results from an actual machining operation. Therefore,
future research would include testing scenarios with different case studies of various other
machining operations. Additional future research will be to evaluate the possibility of
implementing this decision-making model into smart machine control of CNC operations.
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