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Abstract: Series compensation is a cost-efficient way to enhance the system reliability and the
power transfer capabilities of long transmission lines. As a result of series compensation, the sub-
synchronous oscillation (SSO) causes a severe risk of torsional interactions (TT). Therefore, SSO
becomes a serious risk factor in grid-integrated renewable energy systems. Numerous researchers
have evaluated SSO instances in several types of asynchronous generators in power systems. In this
paper, the categorization and the overview of the SSO phenomena have been vital for the different
mechanisms, sophisticated systems, analytical techniques, and multiple reviews that have been
propagated. This study provides SSO analysis for various types of renewable energy power plants.
Finally, while dealing with conventional and new power systems, this study summarizes recent
SSO-damping and alleviation techniques for practical perception and future perspectives.

Keywords: asynchronous generator; converters; renewable energy sources; series compensation;
sub-synchronous oscillations

1. Introduction

Growth in the industrial sector promises an abrupt rise in future energy demand.
To meet this energy demand, renewable energy resources (RER) are the most promising
technology, due to their clean, reliable, and emission-free nature. The vast deployment of
RER (above 20%) into the existing power system network requires short- and long-term
energy storage capacities to maintain grid stability.

The reduction in fossil fuels shifts its energy resources to renewable sources [1]. Hence,
power electronic devices play a crucial role in this kind of power system. While power
electronic technology has several advantages over power supply control, it also has disad-
vantages, such as low inertia, and it is vulnerable to grid hindrances, which give stability
issues to the power system. Additionally, one of the most concerning issues here is multi-
frequency oscillation (MFO), which covers multiple frequency segments, including wind
turbines’ sub-synchronous oscillation (SSO), and shafting torsional oscillation (STO) [2].
Here, SSO occurs between the generator and the external network that contains series-
compensated transmission lines or high-voltage DC. One of the most common formations
of SSO is a constant oscillation of generator torque, and it is undamped [3]. Furthermore,
5SSO is divided into three forms, which are sub-synchronous control interaction (SSCI),
sub-synchronous resonance (SSR), and finally sub-synchronous torsional interaction (SSTI).
Additionally, SSO is seen as a phenomenon in which two or more power systems, such as
HVDC controllers, generator turbines, power electronic controllers, and series capacitors,
change at the same time [4]. The major reasons for SSO might be induction generator
effect (IGE), torsional interactions (TI), and torque amplification (TA). Moreover, the series
compensation network is usually connected to wind systems to improve the power transfer
feature of an existing AC transmission network. However, when torsional interactions
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are considered, the series compensation resonance has a frequency greater than 47 Hz.
However, the resonance frequency of a series compensation network cannot be above 47 Hz.
In addition, the SSO produced by the torsional interaction in WTG is hard to consider [5].
Therefore, it is urgent to identify and monitor the SSO in its mitigated operation and
design [6,7]. As per the IEEE Task force, real word SSO events are stated in Table 1.

The contributions and objectives of this paper are as follows:

1.  This paper provides a comprehensive review on sub-synchronous oscillation (SSO) in
wind, hydro (fixed and variable speed), and solar power plants;

2. The SSO occurrence and analysis method are explained in detail;

Summarizes the comparative analysis for impacts of series compensation on SSO;

4.  Furthermore, state-of-the-art SSO reduction methods are discussed with their benefits
and drawbacks.

@

Table 1. Real World SSO Events.

Year  Country/City Frequency Components Machines Transmission Line
Type 3
2017 China 37 Hz Wind Power 220 kV
Plant (WPP)

2017 California 7Hz Solar Farm -

2019 Australia 7Hz Variable Speed -

2018 Toronto 5Hz Type-4 WPP 230 kV

2020 Australia 19 Hz Variable Speed -

2021 USA 22 Hz Solar Farm 138 kV

In the analysis, research publications from 1975 to 2021 were searched for and used.
This work incorporates primarily scientific published literature; non-science articles are not
examined. The literature search was based on each component and considered relevant
facts, and then found the relevant articles and summarized them individually.

Figure 1 shows the number of research publications that have been published and
selected for analysis. The articles were evaluated and analyzed from 1975 to 2021. Here,
1975 to 1985 published papers were taken to provide details about the history of sub-
synchronous oscillation.
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Figure 1. Year-wise selection.

Figure 2 shows that the graphical chart is based on searching literature from online
databases, including Google Scholar, Science Direct, IEEE Xplore, Springer, ResearchGate,
Wiley, MDP], and etc. For this research, 190 papers were reviewed.
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Figure 2. Journal-wise selection.

Since this paper primarily focuses on the impact of fixed /variable speed hydro, wind,
and photovoltaic on sub-synchronous torsional oscillation, it is essential to have the fol-
lowing insights: classification of sub-synchronous oscillations (Section 1), effects of SSO
in various renewable energy systems (Section 2), a detailed state-of-the-art study on vari-
able speed generation (Section 3), numerous SSO events that have occurred around the
world (Section 4), the detailed analysis and damping methods of SSO (Section 5 and 6,
respectively), comparative study for impact of series compensation over SSO (Section 7),
development in Pumped Storage Power Plant (PSPP) (Section 8), the open challenges of
5SSO mitigation methods and future scope of research work (Section 9), and finally the
conclusion in (Section 10).

2. Classification of Sub-Synchronous Oscillation

As per the IEEE Power System Dynamic Working Group definitions, SSO can be
divided into SSR and device-dependent. The SSR, on the other hand, is divided into three
categories: induction generator effect, torsional interaction, and torque amplification. This
categorization is inadequate for increasingly complicated and growing SSO concerns in
a power system with huge WTGs, since it was originally developed for sub-synchronous
stability difficulties connected to traditional turbo generators [8,9]. Figure 3 depicts the
classification of sub-synchronous oscillations.

2.1. Effects of SSO in Different Renewable Energy Systems
2.1.1. SSO in Wind System

Figure 4 shows SSO in different power systems. With the immense development
of wind systems, numerous wind turbines have been integrated with power electronic
devices that cause degradation in the stability of system frequency. Meanwhile, a virtual
synchronous generator creates inertia and damping. As a result, an adaptive SSO damping
control approach is developed [10]. Initially, a small-signal model, as well as a model of
state space for the permanent magnet synchronous generator (PMSG), are constructed.
Here, the damping controller for the SSO is established by utilizing the linear matrix
inequality based on a hybrid H2/Heo control approach to resolve the state feedback matrix
of each vertex. Similarly, the probability distribution function (PDF) and small-signal
model of the direct-drive PMSG are analyzed to predict the possibility of SSO through
the least-squares method polynomial fitting [11]. On the other hand, quantitative stability
analysis (QSA) and impedance network modelling approaches were employed to analyze
the SSO in the wind power system [12]. The occurrence of SSO in various generators with
its mitigation method has been summarized in Table 2.
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Table 2. Occurrence of SSO in various generators used in wind farms.

Author Year Type of Generator Mitigation Method
Permanent magnet synchronous
Jun Deng et al. [10] 2020 generator (PMSG) and virtual Hybrid H2/Heco control method
synchronous generator
Direct-drive permanent magnet SSO probability assessment method
Shun Tao et al. [11] 2019 P & with the least-squares method of
synchronous generator (D-PMSG) s 1 Frree
polynomial fitting
. Doubly fed induction - .
Huakun Liu et al. [12] 2018 generator (DFIG) Stability analysis
Meng Wu et al. [6] 2015 DFIG DFIG converter controller dynamics
Xinshou Tian et al. [13] 2019 Static Var generator and DFIG Optimized control parameter
Bingbing Shao et al. [14] 2020 D-PMSG Back-to-back converter model and

system small-signal model
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Table 2. Cont.

Author Year Type of Generator Mitigation Method
. . Open-loop modal proximity and
Wenjuan Du et al. [15] 2020 D-PMSG NESMOR analysis
Tong Wang et al. [16] 2020 DFIG Mixed H2/Hoo control with regional
& & ' pole placemen
Yanhui Xu et al. [17] 2019 PMSG Generalized Nyquist criterion
Y. Han et al. [18] 2022 PMSG Eigenvalue analysis, based on the
’ ' small-signal state-space model
Yanhui Xu et al. [19] 2018 PMSG Small-signal analysis method
Xiaorong Xie et al. [20] 2019 PMSG MW-level HPE and supplementary
sub-synchronous damping control
D. H. R. Suriyaarachchi et al. [21] 2012 Type 3 wind turbine-generators Frequep cy scan an?l
small-signal analysis
Gangui Yan et al. [22] 2021 D-PMSG Impedance model
Li Yunhong et al. [23] 2015 DFIG Time-domain simulation and
eigenvalue analysis
Positive net damping analysis,
Wenjuan Du et al. [24] 2019 DFIG and PMSG impedance model-based analysis,
and open-loop modal
resonance analysis
Babak Badrzadeh et al. [25] 2012 Type 3 turbines Tlmejdomal.n PSCAD/EMTDC
simulation case studies
Rajeev Kumar et al. [26] 2021 Type-2 WPP Whale optimization algorithm
Hossein Ali Mohammadpour et al. [27] 2015 Fixed speed wind turbine Thyristor-controlled series capacitor
generator systems and gate-controlled series capacitor
Yuzhi Wang et al. [28] 2020 PMSG Eigenvalue analysis

2.1.2. SSO in Solar System

The photovoltaic system (PV) is connected to the grid via an extensive transmission
line. Even if the PV system is affected by the SSO, the AC system’s strength can deteriorate.
So, modified IEEE first-benchmark time-domain simulations [29] are used to study sub-
synchronous torsional interactions in a PV system. Here, the PV generator is connected to
the same bus as the synchronous generator. Likewise, sequence impedance model analysis
is performed on the PV system to analyze the impacts of SSO [30].

Similarly, a damping controller is employed based on the Wide Area Measurement
System (WAMS), which is integrated with the primary control loop of a PV system to miti-
gate the SSR [31]. Furthermore, teaching—learning-based optimization (TLBO) algorithm is
utilized to control the optimization issues. The occurrence of SSO in solar systems is shown
in Table 3.

Table 3. Occurrence of SSO in various machines used in solar systems.

Author Year Type of Machine Method
Rasel Mahmud et al. [29] 2020 Synchronous generator Aggregated PV method
Shugiang Zhao et al. [30] 2019 - Impedance-based analysis method
Conventional damping controller based on
M. Khayyatzadeh et al. [31] 2017 PV generator WAMS and TLBO algorithm
Lin Yang et al. [32] 2017 Synchronous generator System small-signal ¥n.ode.l, cigenvalue analysis
and participation factor
Ming Yi et al. [33] 2020 - Small-signal model
Rajiv K et al. [34] 2017 Synchronous generator STATCOM
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2.1.3. SSO in Fixed Speed Hydro System

To mitigate the sub-synchronous resonance in hydropower systems, a time-domain
simulation model is constructed to analyze the small-signal and transient torsional mode
stability [35]. Here, the presented approach is formulated as per the first IEEE benchmark
model. Similarly, the sub-synchronous torsional interaction (SSTI) in hydro-TG units
connected HVDC systems is investigated by varying the inertia ratio of the generator and
turbine [36]. The occurrence of SSO in hydro systems is shown in Table 4.

Table 4. Occurrence of SSO in various generator used in Hydro plants.

Author Year Type of Generator Method
Johan Bladh et al. [35] 2013 Hydropower generator Time-domain simulations
Yin Chin Choo et al. [36] 2008 Hydro—turbme—generator Sub—s.ynchronous
(TG) unit damping controller
Yin Chin Choo et al. [37] 2013 Hydro-TG units Sensitivity analysis

3. SSO in Variable Speed Generators

The motion-induction amplification (MIA) in the doubly fed induction generators
(DFIGs) is mitigated through a motion-induction compensation (MIC) control scheme [38].
This scheme allows the type-III DFIG to function as a type-IV generator in dynamics.
Likewise, the impact of SSO on the DFIG-connected wind farms is analyzed using a time-
domain analysis scheme [39]. In the same way, a multi-machine equivalent aggregation-
based equivalent model is set up to look at the new types of SSO problems [40]. Here,
small-signal analysis and refined frequency scanning were utilized to analyze the features of
SS0. The comparison of the various methods used in variable speed generators is tabulated
in Table 5.

Table 5. Occurrence of SSO in variable speed generators.

Author Year Type of Generator Method
Yunjie Gu et al. [38] 2019 Doubly Fed Induction Generators (DFIG) Motion-induction compensation
Chao Gao et al. [39] 2017 DFIG Time-domain analysis
Liang Yuan et al. [40] 2020 DFIG Small-signal analysis
Fan Yang et al. [41] 2017 DFIG Syif;ﬁiﬁfﬁﬁﬁ}xsf’fd
Yanhui Xu et al. [42] 2019 DFIG Active disturbance rejection control
Andres E. Leon et al. [43] 2014 DFIG Damping control
Sherif Omar Faried etal. [44] 2012 DFIG SuPpleme;‘iﬁﬁzggglairﬁyzge'dOmain
Ulas Karaagac et al. [45] 2014 DFIG Supplemental control
Jing Li et al. [46] 2016 DFIG EVA Method
Bin Zhao et al. [47] 2015 DFIG Auxiliary damping control strategy
X.Y. Bian et al. [48] 2018 DFIG Power sysw;:;;ﬁgii;i;ﬁ?iEr"babﬂism
Javad Taherahmad et al. [49] 2017 DFIG Adaptive cor;;rr(l)tlrzrl\?o(s);pplementary
M. Ghafouri et al. [50] 2017 DFIG Linear-quadratic regulator
Junjie Ma et al. [51] 2019 DFIG Impedance model
Wenjuan Du et al. [52] 2017 DFIG -
F. Bizzarri et al. [53] 2018 Induction machines Stability analysis
Liang Wang et al. [54] 2015 Induction generator Sub-synchronous damper
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Table 5. Cont.

Author Year Type of Generator Method
Penghan Li et al. [55] 2021 DFIG Fractional order sliding mode controller
Xi Wu et al. [56] 2018 DFIG Sub-synchronous damping controller
Liang Wang et al. [57] 2017 DFIG Direct stator-power controller
Wenjuan Du et al. [58] 2017 Variable-speed wind generators (VSWGs) Open-loop modal analysis
Yanhui Xu et al. [59] 2019 DFIG STATCOM

4. Major Events of SSO in Worldwide

Numerous SSO events have occurred in many countries, as shown in Table 6, contain-
ing various events of sub-synchronous oscillation worldwide and their findings.

Table 6. Occurrence of sub-synchronous oscillation worldwide.

Author Year

Occurrence Year

Occurred Region

Country Findings

D.N. Walker et al. [60] 1975

1970

Mohave generating station

A sub-synchronous-based
resonance test was executed. At
different loads, simulations were

USA run to look at the mode shapes,
natural torsional
frequencies, and damping for
each torsional mode.

R.G. Farmer et al. [61] 1977

1975

Arizona—Nevada-Southern

California EHV
transmission system
(Navajo project)

Filters were being utilized for the
natural modes. On the other hand,
a frequency scanning
program was
implemented for torsional
interaction analysis.

USA

Xiaorong Xie et al. [62] 2011

2011

Shangdu power plant

To mitigate the SSR,
supplementary excitation
damping control and
torsional stress relay
were utilized.

China

John Adams et al. [63] 2012

2009

ERCOT system

The screening approach utilized
the electromagnetic
modelling level
analysis for the SSR.

USA

M. Bahrman et al. [64] 1980

1977

Square butte

A transfer function was utilized to
Us reduce the TI between the
generator and the turbine.

D.C. Lee et al. [65] 1985

1985

Ontario hydro unit

Valve linearization circuits and
the filtering of shaft torsional
components in the speed signal
were utilized.

Ontario, Canada

Liang Wang et al. [66] 2015

2012

Wind farm

Eigenvalue analysis and the
time-domain simulation with the
equal circuit were employed to
examine the consequences of the
SSR features.

North China

Dewu Shu et al. [67] 2017

China southern grid

EMT simulations and IM-based

South China method were implemented.

Y.-H. Wan [68] 2013

2011

Oklahoma Gas and
Electric Company

Spectrum-based analysis method

us was executed.

Meng Wu et al. [69] 2014

2013

Jibei power grid

Eigenvalue adjustment-based
sensitivity analysis and parameter
tuning are carried out.

China
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Table 6. Cont.

Author Year Occurrence Year Occurred Region Country Findings

To reduce the FOSSO (frequently
over-threshold SSO), an SSO

Xiangning Xiao et al. [70] 2016 - Hulunbuir power plant China .
dynamic suppressor
was implemented.
Doan Duc Tung etal. [71] 2019 2015 Vietnamese Vungang Vietnam To reduce the SSR, .FACTS devices
thermal plant were considered.

Time-domain simulation,

Xinjiang Uygur small-signal Eigen analysis, and

Huakun Liu et al. [72] 2017 2015 Autonomous Region China impedance of model analysis
were accomplished.
Xiaorong Xie et al. [73] 2017 2012 Power station in Hebei China IM-based feature analysis

was considered.

5. SSO Analysis Methods

The occurrence of sub-synchronous oscillations can be analyzed using eigenvalues,
complex torque coefficients, the frequency scanning method, impedance network mod-
elling, open-loop modal analysis, and unit interaction factor analysis. Figure 5 shows the

analysis methods of SSO.
Eigen
value
. analysis
Unit Complex
Interaction torque
factor coefficient
SSO analysis
methods
Open-loop Frequency
modal scanning
analysis method
Impedance
network
model

Figure 5. Analysis methods of SSO.

5.1. Eigenvalue Analysis

The linearized equations are formulated for each device in the system to analyze the
effects of the SSR in generation systems and power electronic devices [74]. Likewise, by
utilizing the eigenvalue analysis approach, the SSO of the HVDC system is analyzed [75].
Moreover, a small-signal linearized model is formulated to examine the SSO characteristics
with and without involving the SSDC. Similarly, by conducting eigenvalue analysis, transfer
function, electromagnetic transient simulation, and the impact of SSO in the D-PMSG-
integrated wind system are analyzed [76]. On the other hand, the coefficient of torsional
mechanical damping is taken by performing eigenvalue analysis on parallel-linked turbine
generators to analyze the SSO among turbine generators and grid [77]. Additionally,
characteristics of anti-phase mode and in-phase mode are taken.

The state matrix A is created by linearizing the DFIM mathematical model. The system
is analyzed by extracting its eigenvalues from the state matrix as follows:

A —All=0 1)
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Each oscillatory mode is represented by a complex eigenvalue. The nth oscillatory is
shown by A,, where A, = 0, & jw;,. The nth mode’s damping ratio is calculated by

Ve ?

where the {;; is damping coefficients, 0, is amplitude, and w, is SSO frequency components.

5.2. Complex Torque Coefficient Method

Using the complex torque coefficient and perturbation analysis, a multi-input and a
multi-output linear model is built to study the SSO in multi-machine power systems [78].

5.3. Frequency Scanning Method

This method determines the SSO frequency using the frequency vs. impedance graph.
The SSR in power systems is analyzed by discovering the damping level of the system
through the frequency scanning approach [79].

5.4. Impedance Network Model

The following shown in Figure 6 is the impedance model of doubly-fed induction
machine (DFIM) connected to grid for SSO Study.

ZLoad ZSource
P

Power
DFIM Grid
Point of Interaction
Filter (POI)

Control

Figure 6. Impedance network model for SSO Study.

The sequence-domain frequency-coupled impedance model (FCIM) looks at the SSO
that can happen between weak AC grids and direct-drive wind turbines [80]. Initially, a
fast identification approach for the FCIM is developed to measure the FCIM’s impedance-
frequency curves. Similarly, based on the domain different impedance model, approaches
were presented, such as sequence-domain impedance, polar coordinates impedance, and
dg-domain impedance for maintaining the reliability of the voltage-sourced converters
(VSC)-integrated grid by analyzing the SSO [81].

5.5. Open-Loop Modal Analysis

The SSO in grid-interlinked wind turbine generators is examined by employing the
open-loop modal analysis for single-input, single-output and multi-input, and multi-output
closed-loop models [82].

5.6. Unit Interaction Factor

The unit interaction factor (UIF) analysis approach is utilized to alleviate the SSO in
the huge turbine-generated integrated thermal generation unit by measuring the operating
condition [83]. The comparison based on control parameter and analysis methods is
tabulated in Table 7.
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Table 7. Comparison for SSO analysis approaches.

Author Year Analysis Method Findings
. . . State matrix of multi-machine power systems was
Dong-Joon Kim et al. [74] 2007 Eigenvalue analysis (EVA) constructed to analyze the SSR.
HVDC system’s linearized model was formulated
Dan Zhang et al. [75] 2012 EVA to analyze the SSO with and without the use
of SSDC.
D-PMSG wind system’s electromagnetic transient
Gao Feng etal. [76] 2016 EVA model was formulated for examining the SSO.
Coefficient of torsional mechanical damping for
Peng Zhang et al. [77] 2014 EVA the parallel-coupled generator was obtained to
analyze the SSO.
Biyue Huang et al. [84] 2019 EVA SSO in between D-PMSG and grid was analyzed.
Chengbing He et al. [85] 2019 EVA SSR in 70% series-compensated system
was analyzed.
.. Linearized model for shaft system was constructed
Sujit Purushothaman et al. [86] 2010 EVA to obtain the occurrence of SSR.
Complex torque SSO in multiple generator system was analyzed by
Kun Xueetal. [78] 2011 coefficient (CTC) constructing equivalent model of the system.
Shiwu Xiao et al. [87] 2013 CTC SSO influencing parameters of the Suizhong
system was analyzed.
Benfeng Gao et al. [88] 2014 CTC Electrical damping characteristics was analyzed.
Wei Li et al. [89] 2017 CTC AC/DC grid s.ub'-synchronous. damping
characteristics were examined.
Ahmadreza Tabesh et al. [90] 2005 CTC and frequency Torsional interaction among .turbme generator
response approach units was examined.
Hanhua Zhang et al. [91] 2019 CIC HVDC caused SSO was analyzed.by constructing
the mathematical computation model.
. In frequency domain, the contact between terminal
Xinyao Zhu et al. [92] 2014 c1C current and voltage was analyzed for SSR analysis.
Series-compensated DFIG incorporated
Yijun Wang et al. [93] 2019 CTC transmission system’s small-signal model was
constructed to
analyze the SSO.
. Frequency scanning . .
Nicklas Johansson et al. [79] 2010 approach (FSA) Damping level of the system was obtained.
Malsha et al. [94] 2015 FSA By the radiality factor, the torsional interaction
was analyzed.
Wei Ren et al. [95] 2015 FSA Sub-synchronous control interaction was analyzed.
John Adams et al. [96] 2012 FSA Sub-synchronous control interaction (SSCI)
was analyzed.
Yunzhi Cheng et al. [97] 2019 Series capacitor-based FSA Generator effect (IGE) was analyzed.
M. Sahni et al. [98] 2012 FSA. l?asgd on the current SSTT and SSCI were examined.
injection approach
FSA-based time series analysis
Hwanhee Cho et al. [99] 2018 and nonlinear dynamic 5SSO in wind system were analyzed.
originated approaches
Tuomas Rauhala et al. [100] 2015 FSA and CTC Estlmateq the sub—synchronous
torsional frequencies.
Sub-synchronous damping oscillation were
Tuomas Rauhala et al. [101] 2010 FSA and LCC converter

analyzed at different frequencies.




Sustainability 2023, 15, 113

11 0f 28

Table 7. Cont.

Author Year Analysis Method Findings
Frequency-coupled Sub-synchronous oscillation was analyzed
Wei Liu et al. [80] 2019 . 4 y-eoup between weak AC grids and direct-drive
impedance model (FCIM) . .
wind turbines.
Sequence-domain impedance,
Liang Yuan et al. [81] 2019 polar coordinates impedance, Analyzed the SSO.
and dg-domain impedance
Harmonic linearization I 1
Saijun Yuan et al. [102] 2019 concept-based impedance Sub-synchronous oscillation Of. grid-integrated
D-PMSG was examined.
network model (INM)
SSO in offshore wind system-integrated
Dengke Qiao et al. [103] 2019 INM VSC-HVDC was analyzed and electromagnetic
transient model of the system was constructed.
Huakun Liu et al. [104] 2017 INM SSR in wind farm was analyzed.
Time-domain simulation and . . .
Ram Nath et al. [105] 2012 frequency-domain SSClin DFIG-integrated wind system
. . was analyzed.
impedance scanning
Sub-synchronous damping calculator (SSDC) and
Xu Zhang et al. [106] 2019 INM the subharmonic voltage source converter (SVSC)
were developed to analyze the SSO.
Shun Tao et al. [11] 2019 INM 5SSO in D-PMSG-integrated wind system
was analyzed.
Wenjuan Du et al. [82] 2019 Open-loop modal analysis S5O in grid interlinked w1pd turbine generators
was examined.
Open-loop sub system with
Wenjuan Du et al. [107] 2019 respect to the near strong SSO in grid interlinked PMSG system
open-loop modal was analyzed.
resonance (NSOMR).
. Open-loop modal Analyzed the frequency drift of sub-synchronous
Wenjuan Du et al. [108] 2018 coupling approach oscillation in DFIG-integrated wind system.
Sub-synchronous interactions in AC grid
Wenjuan Du et al. [109] 2017 Open-loop modal analysis connected multi-terminal DC (MTDC) network
was analyzed.
Phase-locked loop-caused sub-synchronous
Wenjuan Du et al. [110] 2018 Open-loop modal analysis interactions (SSIs) in grid coupled PMSG
was examined.
Z Lietal [111] 2010 Unit 1nterac.t10n factor (UIF) 5SSO in seven nod.e hybrid AC-DC system with
analysis approach distinct working modes was analyzed.
Alleviated Sub-synchronous oscillation in the huge
Yang Yu et al. [83] 2012 UIF approach turbine-generated integrated thermal generation
unit is analyzed.
Damping characteristics of sub-synchronous
Jibo Sun et al. [112] 2011 UIF analysis approach damping Control (5§5DC) compensation

were analyzed.

6. SSO Mitigation Approaches

The SSO can be mitigated by different techniques such as filtering techniques, con-
trollers, converters, and FACTS devices. Mitigation methods for SSO are shown in Figure 7.
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o Sub-synchronous CSC linearized sliding
notch filter mode controller

Figure 7. Mitigation methods for SSO.

6.1. Unified Power Flow Controller (UPFC)

The SSR on the turbine generator shaft is mitigated through the UPFC based on
fractional-order PI (FOPI) [113]. Likewise, the SSR in the series-compensated system is
reduced by incorporating the UPFC with the SSDC [114]. Here, the UPFC control method
includes the dg-decoupling control. Similarly, UPFC is utilized to mitigate the SSR in a
self-excited induction generator (SEIG) incorporated wind system [115]. Likewise, UPFC is
utilized to reduce the SSR and enhance the transient stability during a wind power plant’s
three-phase short circuit fault [116].

6.2. Static Synchronous Compensator (STATCOM)

The SSR in a series-compensated induction-generator (IG)-involved wind system is
diminished by employing the STATCOM with a voltage controller [117]. The eigenvalue
analysis approach is utilized to analyze the impact of SSR in IG through STATCOM.
Similarly, a weighted predictive control algorithm based on model-free adaptive control is
incorporated with the STATCOM to alleviate the SSO [118]. Additionally, by utilizing the
enhanced MFAC approach, the tracking error convergence and reliability of the closed-loop
system are analyzed. Likewise, STATCOM is utilized to lessen the SSO in multi-machine
systems [119-121].

6.3. Supplementary Damping Controller (SDC)

The thyristor-controlled series capacitor-caused SSO is alleviated by employing the
SDC [122]. Furthermore, the particle swarm optimization (PSO) algorithm is utilized for
the phase compensation process. Likewise, in [123] supplementary damping controller
(SDC) is presented based on the active disturbance rejection control to mitigate the forced
oscillation in the high-voltage direct current (HVDC) system integrated with a voltage
source converter.

6.4. Static Var Compensator (SVC)

The SSO in the power system in China is mitigated by introducing an SVC [124].
Furthermore, a system model is constructed based on the real-time digital simulator.
Likewise, series capacitor compensation caused by SSO is mitigated by the damping-
controller SVC based on the generalized phase compensation approach [125]. Initially,
eigenvalue analysis was conducted on a multi-machine system. Similarly, the SSO induced
by the fixed series compensation is diminished by employing the SVC [126]. The impacts of
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SVC were also analyzed, such as transient stability of the ac system, transformer overload,
and relay failure. On the other hand, to reduce SSR, remote signals obtained from the
phasor measurement units (PMU) were utilized [127-129].

6.5. Static Synchronous Series Compensator (SSSC)

The SSO in a series-compensated power system is mitigated by employing the SSSC
with the fuzzy logic controller and SSDC [130]. Furthermore, the Chaotic optimization
algorithm technique is utilized for SSDC parameter tuning. Likewise, an SSDC-integrated
SSSC is utilized in a series-compensated system to diminish the SSR [131]. Here, a chaotic
optimization algorithm is used for SSDC parameter tuning. Similarly, hybrid series com-
pensators were used to mitigate the SSO in DFIG-integrated wind systems such as SSSC
and fixed capacitor.

6.6. Filtering Approaches

The SSO in a DFIG-integrated wind system is mitigated by employing the motion-
induction amplification-based compensation filter and optimal quadratic approach-based
proportional-integral (PI) controller [132]. Likewise, an adaptive extended Kalman fil-
tering approach is presented to reduce the SSO in the series-compensated wind farm by
recognizing the time-varying sub-synchronous component [133-137].

6.7. Converter Control Approaches

Figure 8 illustrates the DFIG-based wind farm integrated with the series-compensated
network [138]. Controlling the active and reactive power are possible using a rotor side
converter in Figure 9 and a grid-side converter in Figure 10, resp.

Turbine

I RLC Network E

% Filter

——

RSC GSC

Figure 8. DFIG system linked with series-compensated network.
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Figure 9. Rotor side converter (* is for reference values).
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Table 8 summarizes the comparative analysis of converters discussed in this paper.
Table 8. Comparative analysis of converters.
Author Year Type of Converter Position of Converter
Current-controlled Dy
Lennart Harnefors et al. [139] 2007 voltage-source converter (VSC) Grid side
Khaled Alawasa et al. [140] 2013 Pulse-width-modulated (PWM) VSCs Grid side
Aikang Chen et al. [141] 2018 AC-DC and DC-AC converter Rotor and grid side
Tianshu Bi et al. [142] 2017 DC-AC converter Grid side
P. Fischer de Toledo et al. [143] 2010 line-commutated current source converters Rotor side
Jian Zuo et al. [144] 2017 AC-DC and DC-AC converter Rotor and grid side
Lin Zhu et al. [145] 2020 AC-DC converter Rotor side

6.8. Controllers

The energy-shaping controller (ESC) is developed to reduce the sub-synchronous
control interaction (SSCI) in DFIG-integrated wind system [146]. Initially, a Hamiltonian
model is formulated to examine the system, and the SSR in a series-compensated system
is alleviated by employing the conventional damping controller based on Particle Swarm
Optimization (PSO) and Fuzzy Logic-Based Damping Controller [147]. Additionally, the
stability of the system is analyzed by time-domain simulations, FFT analysis, and a per-
formance index. Similarly, a Feedback-Linearized Sliding Mode Controller (FLSMC) is
developed to mitigate the sub-synchronous control interaction (SSCI) in a DFIG-contained
wind system [148]. Furthermore, electromagnetic transient simulation and eigenvalue
analysis were carried out to evaluate the FLSMC.

7. SSO in Series-Compensated System

A single-line diagram of power system with series-compensated system is shown in

Figure 11.
Fubine @ .)
Generator Transmission Series
Transformer line Capacitor )
Infinite
Bus

Figure 11. Series-compensated system.
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In the IEEE first benchmark system in torsional modes, the SSR is analyzed with
the impact of FACTS-based AC power control-loop damping in both constant-angle and
power modes [149]. Similarly, by utilizing bifurcation theory, SSR with the IEEE second
benchmark method is determined [150-153].

Furthermore, damping SSO is examined using EMTDC through time-domain imple-
mentation on the IEEE first benchmark model [154]. Initially, a DFIG-based wind farm
is analyzed, producing unstable SSR with negative resistance at slip frequency. So, to
overcome this a PMSG-based wind farm is utilized to enhance SSR with oscillation fre-
quency [155]. However, to alleviate SSR-based DFIG wind farms, SSRDC and power
system oscillation is enhanced with system reliability [156]. By analyzing eigenvalues,
SSR is estimated with series-compensated lines-based SCSEIG in IEEE first benchmark
with LLLG fault at remote-compensated lines [157]. Likewise, in a real-world DFIG, RSDC
performance through CHIL controller is implemented to restrain SSCI [158]. The Argen-
tinian power systems have been introduced to improve the generation levels in substantial
offshore and onshore reinforcements, as well as that of Scotland, which potentially lead to
SSR [159]. Additionally, to implement a controller in real time HVDC test rig is utilized.
To allow a secure integration and stability system for DFIG-based wind farms to transmit
series compensation, SSI is analyzed [160-162].

Impacts of Series Compensation

EHAVC transmission line uses series compensation to improve power transfer capa-
bility and improve bus voltages. Table 9 summarizes the comparative analysis for impacts
of series compensation on SSO.

Table 9. Comparative analysis for impacts of series compensation.

Series

Author Year Compensation Level

Transmission Line Power Plant Impacts

North American electronic

o, . . Type 3 wind farm Voltage and significant current
reliability corporation 2011 345 kV 80 miles long 50% ; .
(NERC) [163] (485 MW) waveform distortion.
Transmission line The SUB mode’s damping
Muhammad Taha Ali et al. [164] 2019 connected with 7.5 KW, 35% to 90% for 2.5 s DFIG-based proportion is reduced and
power system becomes negative when the
311V system . L
compensation level is increased.
Sub-harmonic oscillations were
investigated, with the higher
o . 60% (240 MVAR 150-MW type 3 usage of wind generators which
K. Narendra etal. [165] 201 54-mile-long 345 kV line series capacitor) wind farm fed EHV and HV utility networks
with series-compensated lines
along with the nearer vicinity
SSR might be raised due to the
interaction between the natural
500 KV operatin, Wind farm modes of oscillation of turbo
Carlos E. Ugalde-Loo et al. [166] 2013 p g 20, 50, 80% generators and network natural
at 60 Hz (892.4 MVA generator) £ .
requency when the series
compensation is not
carefully executed
Reactance of fixed The dynamic results showed that
Mohammad Reza Alizadeh 2011 500 kV compensated capacitor for three cases 892.4 MVA GCSC devices operated in the
Pahlavani et al. [167] transmission line such as 0.318, 0.236, and synchronous generator open-loop control method which
0.152 (p.u.) damped the SSR.
The STATCOM had prevented a
larger overshoot in the shaft
Akshaya Moharana et al. [117] 2014 892.4 MVA 50-60% S00-MW dot_lble-cage torque, and it also stabilized the
IG-based wind farm )
generator speed, electromagnetic
torque, and PCC voltage.
The SSO is mitigated by
. o DFIG wind farm increasing the wind pace, only
Chao Gao et al. [39] 2017 500kV line 1.97% (3000 MVA) when the series compensation

degree is increased.
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Table 9. Cont.

Series

Author Year Transmission Line N Power Plant Impacts
Compensation Level
No SSR transactions were
observed when the wind farm
was associated with the LCC
Akshaya Moharana et al. [168] 2012 - 55% 700 MW type HVDC transmission system and
1 wind farm the series compensation line.
There were no discovered
relationships between the current
regulator and the rectifier station.
- No interaction between a rectifier
Akshaya Moharana et al. [169] 2014 400 MW transmission 50 to 90% 700 MW IQ-based station current regulator and
line (type 1) wind farm . .
torsional system is found.
Garth D. Trwin et al. [170] 2011 345KV line 50% DFIG (type 3) -
wind farm
The resonance frequency from
the original system of 4.9 Hz is
Yang Wu et al. [171] 2018 20kvV a‘mc.i 500. kv 25% 220 MVA wind farm diminished to 4.3 Hz and 4.8 Hz
transmission line
and the resonant frequency
is reduced.
Only when the power reaches a
Tang Yi et al. [172] 2011 Serles'—cor.npensated 500 MW wind certain degr&?e, will the series
capacitor is 12.35 uF power system compensation level have a
role on SSR.
C. Zhu et al. [173] 2012 [nfinite bus (constant 10 0 90% 2 MW DFIG system System unstable due to high
voltage source) series compensations.
The frequency and damping of
Huakun Liu et al. [174] 2016 500 KV 40% 15 szfﬂlgl;lﬁ?ﬁased SSR are exactly calculated

through the circuit parameters.

8. Development in Pumped Storage Power Plant (PSPP)

Single pump turbine as well as DFIG-involved long penstock PSPP’s dynamic response
is analyzed [175]. The output power of the system is maintained through a rotor-side
frequency converter. Furthermore, by using the isochronous PI governor, the unit running
speed is also controlled by the system’s dynamic response. Similarly, an extended Fourier
amplitude sensitivity text approach is utilized to compute the parameters’” interactions
in a pumped storage system (PSS)-integrated hybrid power system [176]. Likewise, the
operating stability of hydropower generating systems is directed to exhibit the features for
the issues that emerge in ultra-low frequency oscillations [177]. Here, the theoretical stability
is directed based on the Routh-Hurwitz criterion and the stability margin region. On the
other hand, a framework for optimal scheduling of hydrothermal systems with multiple
hydro reservoirs is introduced [178]. This framework is ideally fit for medium- and long-
term hydrothermal generating scheduling and captures complex system limitations through
fine time resolution. Similarly, in a day-ahead electricity market, a bidding strategy is
devised for managing multi-unit PSPP [179]. Here, an Evolutionary Tristate Particle Swarm
Optimization (ETPSO) is utilized, in which the tristate coding approach and mutation
operation were utilized for a faster convergence process [180]. This model is established
based on detailed gate valve modelling and a shared-penstock function.

Similarly, an approach and software were developed to calculate the parameter of the
PSPPs [181]. Here, the energy characteristics of PSPPs and electro-chemical Accumulator
Batteries (ABs) is examined. As a result, PSPPs are equal to electrochemical Accumulator
Batteries in terms of economic qualities. Likewise, the prospect of optimizing the penetra-
tion of wind energy into a pumped storage multi-reservoir system is investigated [182].
Here, the optimization is carried out based on the Genetic Algorithm (GA) code. Fur-
thermore, the possibilities of reservoir storage, wind condition, flow, and the curves of
equipment parameters are examined based on power generating problems of hydroelectric
power plants-wind power plants (HPP-WPP) and PSPP-WPP [183-188].
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Recent Advancement in Pumped Storage Power Plant (PSPP)

A Schematic diagram of a variable speed hydro generating unit fed to high-voltage
lines is shown in Figure 12. The 765 kV EHYV lines are connected to a DFIM for vari-
able speed pumped storage plant prone to sub-synchronous resonance oscillation (SSRO).
The HTSG's running temperature distribution of 250 MW with a basic electromagnetic
of 870/300-28 is investigated [189] using a three-dimensional commercial Finite Element
Analysis (FEA)-based software package at MagNet 7.5 under various phases operating
interlude of overloads. In Tehri PSPP (India), the 250 MW DFIM pump turbine’s regenera-
tive braking and smooth starting performance with sensor faults and power converter is
designated. The following are the distinguishing characteristics of variable speed pumped
storage power plants [190]:

Renewable and sustainable;

Total control of real and reactive powers;

Improved energy efficiency;

Limited power converter;

Control of active and reactive power flow is decoupled;
Reliable grid connection.

SR S e

SERIES COMPENSATED HIGH VOLTAGE LINES TO VARIABLE SPEED PUMPED STORAGE UNITS

[

Power House
Power Transmission
lines

Figure 12. Variable speed hydro generating unit fed to high-voltage lines.

9. Challenges and Future Scopes

Various SSO analysis and alleviation approaches were reviewed in this paper. Based
on the research we looked at in the previous sections, it is clear that the current meth-
ods for SSO analysis and minimization face several practical, economical, commercial,
and environmental problems. Typically, eigenvalue analysis, complex torque coefficient
analysis, a frequency scanning approach, an impedance network model (EMT), open-loop
modal analysis, and unit interaction factor analysis are used to investigate SSO. Moreover,
series compensation plays a significant role in the occurrence of SSO. In addition, series
and parallel compensation components, DFIG controllers, and auxiliary controllers have
combined to construct an ideal controller that effectively reduces SSO.

9.1. Challenges in SSO Mitigation

1.  The SSR phenomena might affect any WPP coupled with the series-compensated
transmission line.
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2. The main demerit of the time-domain analysis is the huge computational overhead.
As aresult, time-domain evaluations are not utilized for grid compatibility and system
impact assessments of huge power systems.

3. The frequency scanning approach is unsuitable for analyzing the SSCI and SSTI
because this approach does not include the controller’s dynamic characteristics. Addi-
tionally, the effectiveness of this approach is very low.

4. When the series compensation level of the system becomes greater than 50%, there is
a possibility for SSO occurrence, which leads to an increase in fault current.

5. The sslip power determines the size of the power converter. As a result, the slip power

increases with increasing speed adjustment range relative to synchronous speed,

increasing the size of the needed converter.

Eigenvalue analysis approach is not suitable for complex nonlinear systems.

7. Because of their huge generator-to-turbine inertia ratio and viscous damping torque,
hydro systems are typically not susceptible to SSR and have a reduced vulnerability
for torsional mode instability. As a result, prior research has yet to focus on the SSR
analysis of hydropower facilities, even though the modern hydro system includes the
DFIM with PEC for variable speed operation, which influences SSR.

8. The impact of series compensation on DC link stabilization in terms of long-term and
short-term stability needs to be identified with a proper damping controller.

.0\

9.2. Future Work

1.  The damping features of the power system, along with the traditional turbine genera-
tor and other kinds of wind farms, are to be scrutinized, including SSCI, IGE, and TL
As a result, an appropriate damping controller needs to be designed.

2. The comparison of DFIG converter controllers and FACTS devices is to mitigate
the SSR, which needs to be researched in the form of cost, efficiency, and rating of
converters.

3.  To satisfy the grid code demands, the design and investigation of robust DFIG con-
verter controllers with SSR damping control and self-tuning need to be inspected.

4. The solidarity of GSC control and RSC of DFIG control has to be inspected.

5. The open challenge for a practical and effective SSCI mitigation strategy is the simul-
taneous monitoring of fundamental and sub-synchronous frequency components.

6. Compared to the FSC, using GCSC and TCSC series compensation in the DFIG wind
farms is more flexible. These solutions based on FACTS are observed to be more
expensive comparatively. So, it is possible to dampen the SSR by using DFIG grid-side
converter controllers if the FSC is utilized in the transmission network.

7. By adopting a new auxiliary control in DFIM, the neighboring synchronous genera-
tor’s SSR difficulties and torsional oscillation would be prevented. The hydropower
unit’s torsional mode durability margins must be examined to accomplish this.

10. Conclusions

In this paper, a literature review of the recent analysis and damping methods for SSO
in renewable energy systems is done. The authors have attempted to include most of the
advances in the SSO, considering the extremely large number of papers that are published
in this area each year. Power electronics devices are widely utilized in power systems
due to the increasing power demands. Because of this, SSO failure is seen as a major
problem in power systems around the world. At present, several studies have discussed
the SSO in terms of every sort of power system and the corresponding method analysis.
From those reported in the previous years, the features and the mechanism of SSO in the
latest practical incidents have been identified differently. The three major classifications
of the SSR phenomenon are SSCI, SSTI, and SSR. The SSTI occurred at the control unit in
the components of the HVDC system and wind farm, which is considered an emerging
oscillation type that has been studied recently. The most commonly utilized methods of
5S0O/SSI are eigenvalue analysis, frequency scanning analysis, impedance-based Nyquist
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stability analysis, and time-domain simulation analysis. The small-signal model could
be analyzed easily, and is useful in the SSDC design. On the other hand, the solving of
the non-linear features of the power electronics needs to be considered. Hence, in future
perspectives, the major challenges are as below:

1.  An investigation of SSR features with different FACTS devices in the multi-area
system, which includes multi-machine as it might need variants of a FACTS device
along with multiple converters with common DC link capacitors such as GUPFC,
UPFC, and IPFC;

2. Design a suitable SSDC for mitigating IGE and TI in power systems with wind power
generation and turbine generators;

3.  Employing the appropriate and effective converter for a series-compensated transmis-
sion line system;

4.  Identification of the induction generator effect for variable speed pumped storage fed
to an extra high-voltage series-compensated transmission line is a major concern;

5. Converter controllers from DFIM were used to optimize the steady-state voltage
profile, which was found to be a good way to reduce SSO.
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Abbreviations

3L-NPC Three-level diode clamped converter

ADRC Active disturbance rejection control

BDF Bypass damping filter

BTB Back to back power converter

CHIL Controller hardware in the loop

COA Chaotic optimization algorithm technique
DFIM Doubly fed induction machine

DPC Direct stator-power controller

D-PMSG  Direct-drive permanent magnet synchronous generator
DPWM Discontinuous pulse width modulation
DsC Directed rotor-speed controller

EMT Electromagnetic transient simulation
EMTP-RV  Electromagnetic transient RV program
ESC Energy-shaping controller

FACTS Flexible AC transmission system

FCIM Frequency-coupled impedance model
FEA Finite element analysis

FFT Fast furrier transform

FLBDC Fuzzy logic-based damping controller
FLC Fuzzy logic controller

FLSMC Feedback-linearized sliding mode controller

FOSSO Frequently over-threshold sub-synchronous oscillation
GSC Grid-side converter

GWO Grey wolf optimizer algorithm

HFR High-frequency resonance
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HPE Hydrogen production equipment
HPP-WPP  Hydroelectric power plants-wind power plants
HTSG Hydro turbine synchronous generator
HVDC High-voltage direct current
IEEEFBM  IEEE first benchmark model
IGE Induction generator effect
INM Impedance network modelling
LCC Line-commutated current source converters
LOE Loss-of-excitation
LQR Linear-quadratic regulator
LSM Least-squares method
MFAC Model-free adaptive control
MFO Multi-frequency oscillation
MIA Motion-induction amplification
MIC Motion-induction compensation
NSGA-III' Non-dominated sorting genetic algorithm
NSOMR Near strong open-loop modal resonance
PDF Probability distribution function
PLL Phase-locked loop
PSO Particle swarm optimization
PSPP-WPP  Pumped-storage power plants-wind power plants
PV Photovoltaic system
QSA Quantitative stability analysis
RSC Rotor-side converter
RSDC Rotor side damping controller
SCSEIG Single cage self-excited induction generators
SEDC Supplementary excitation damping controller
SHPP Small hydro power plant
SNFs Sub-synchronous notch filters
SPSG Salient pole synchronous generator
SPWM Sinusoidal pulse width modulation
SSDC Supplementary sub-synchronous damping control
SSI Sub-synchronous interaction
SSO Sub-synchronous oscillation
SSODS Sub-synchronous oscillation dynamic suppressor
SSR Sub-synchronous resonance
STO Shafting torsional oscillation
svC Static var compensator
TA Torque amplification
TCSC Thyristor-controlled series capacitor
TI Torsional interactions
TLBO Teaching-learning-based optimization
T-PSH Ternary-pumped storage hydropower
UIF Unit interaction factor
VSWGs Variable-speed wind generators
WAMS Wide area measurement system
WOA Whale optimization algorithm
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