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Abstract: Coastal wetlands areas are heterogeneous, highly dynamic areas with complex interac-
tions between terrestrial and marine ecosystems, making them essential for the biosphere and the
development of human activities. Remote sensing offers a robust and cost-efficient mean to monitor
coastal landscapes. In this paper, we evaluate the potential of using high resolution satellite imagery
to classify land cover in a coastal area in Concepción, Chile, using a machine learning (ML) approach.
Two machine learning algorithms, Support Vector Machine (SVM) and Random Forest (RF), were
evaluated using four different scenarios: (I) using original spectral bands; (II) incorporating spectral
indices; (III) adding texture metrics derived from the grey-level covariance co-occurrence matrix
(GLCM); and (IV) including topographic variables derived from a digital terrain model. Both methods
stand out for their excellent results, reaching an average overall accuracy of 88% for support vector
machine and 90% for random forest. However, it is statistically shown that random forest performs
better on this type of landscape. Furthermore, incorporating Digital Terrain Model (DTM)-derived
metrics and texture measures was critical for the substantial improvement of SVM and RF. Although
DTM did not increase the accuracy in SVM, this study makes a methodological contribution to the
monitoring and mapping of water bodies’ landscapes in coastal cities with weak governance and
data scarcity in coastal management.

Keywords: coastal wetlands; remote sensing; coastal cities; RapidEye; machine learning

1. Introduction

Coastal wetland areas are ecotones or interfaces between terrestrial and marine ecosys-
tems, where the lithosphere and hydrosphere interact with highly complex and dynamic
mechanisms [1,2]. These areas are recognized for their importance to the biosphere [3,4]. In
addition, among the most critical ecosystems are estuaries, mangroves, coral reefs, inter-
tidal habitats and deltas, dunes and beaches, seagrass, kelp forest, marshes and swamps,
water bodies, among other habitats [5,6].

These coastal ecosystems provide numerous fundamental services for the develop-
ment of human activities, such as raw materials and food, protection against waves and
storms, erosion control, carbon sequestration, tourism, recreation, and water purification [7].
Because of these multiple benefits, it is possible to find large concentrations of the human
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population and socioeconomic activities around these areas. They host a third of the
world’s population [8,9], presenting a higher population density, growth, and urbanization
than inland areas [10]. They have also contributed to generating transport links, economic
activities, tourism, and industrial and commercial development [11].

The current levels of coastal urbanization have a significant impact on the landscape.
Furthermore, they are considered the main drivers of ecological changes, such as the
conversion, degradation, and overexploitation of natural resources, putting coastal areas at
risk [12]. The previously mentioned aspects can be observed in the reduction in biodiversity
due to anthropic activities [7,13,14] and global losses of wetlands [15,16]. Additionally,
the growth levels of coastal urbanization have reached such speeds and complexities
that they require a quick landscape planning response. Unfortunately, such planning is
unattainable, utilizing traditional methods used by urban planners, such as collecting field
data, reviewing historical documents, and previously developed cartographies [17,18].

Remote sensing (RS) offers a sound alternative to traditional methods given its ability
to provide a systematic and comprehensive view of the Earth. In this sense, the use of
RS has played a significant role, making its technological development indispensable for
urban planning, coastal landscape management, and decision-making processes [18,19].
Moreover, using this technique, it has been possible to automate and improve manual
mapping, the monitoring of land use transitions and the growth of urban centers and
quality of life indicators, population estimates, and evaluate social vulnerabilities, among
others [20–23]. In addition, this technique has also contributed to the development of
thematic and land use maps, especially in cities, enabling the analysis of changes and
trends, and their relationship with urbanization and industrialization processes [24–26]
through a series of methods and classification techniques based on pixels and objects.
Furthermore, it has also contributed to understanding the types of urban growth and their
different underlying issues [27,28]. Finally, advances in the design and development of
analysis techniques have allowed their use in researching and managing coastal ecosystems,
such as wetlands, dunes, beaches, and estuaries [29].

Despite this, in heterogeneous coastal landscapes and the seasonal variability of some
land covers, classification becomes difficult, generating confusion among land covers.
Additionally, the presence of wetlands along with urban areas increases the challenge
associated with land cover classifications, because they present a similar spectral response
to dunes, beaches, and bare soil. Therefore, the heterogeneity of coastal zones and their
highly dynamic conditions make them exceptionally difficult to map [30–32]. Despite the
difficulty of mapping these areas, numerous authors have contributed various techniques
and analyses to improve the classification accuracy and generate reliable maps that can
support decision making [33,34]. These techniques focus mainly on pixel, subpixel, and
object classification methods. Their contributions range from testing new classifiers (para-
metric and non-parametric) to incorporating additional information such as vegetation
indices, texture metrics, and other statistical analyses, such as principal component analysis
(PCA) [35–39].

Additionally, RS is one of the main tools for the delimitation of coastal wetlands,
allowing to know their structure and vegetational and hydrological dynamics [40,41].
However, according to Cowardin [42], Ramsar [43], and Tiner [44], to delimit a wetland,
it is necessary to respect at least two conditions: (1) water covers the soil; and (2) the
presence of hydric or poorly drained soils (3) present temporary flooding at least once a
year. Given these conditions and through RS, it is possible to establish some of these two
criteria. Alternatively, it can be achieved indirectly, by determining the vegetation cover
that is adapted to this environment, also known as hydrophilic vegetation [41,45]. These
criteria are also taken by several countries, such as Canada, Australia, New Zealand, The
United States, and other European countries [44]. For example, in Chile, the delimitation,
protection, and monitorization of wetlands have been drafted in a new law that allows
the protection of urban wetlands, based on the criteria mentioned above and proposing
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the following: (1) the presence of hydrophilic vegetation; (2) the presence of hydric or
undrained soils; and (3) permanent or temporary flooding regime.

For this reason, Chile’s coastal wetlands in urban areas need to be delimited and
monitored urgently. This study aims at classifying land cover in a coastal system embedded
in the metropolitan area of Concepción, Chile, based on a machine learning framework
using high-resolution, remotely sensed data. The area is experiencing urban expansion,
with intense environmental and political conflicts for the conservation and delimitation of
its ecosystems. The specific objectives are: (1) to evaluate the potential of high-resolution
imagery to discriminate land covers in a coastal ecosystem using Support Vector Machine
(SVM) and Random Forest (RF); (2) to evaluate the impact of including additional data both
derived from images and ancillary sources on the performance of the classifiers; and (3) to
compare the best results with the delimitations proposed by public institutions in Chile.

2. Materials and Methods
2.1. Study Area

The Metropolitan Area of Concepción (MAC) is located in the south-central zone
of Chile, from 36◦44′ S to 37◦45′ S and from 73◦10′ W to 72◦73′ W, in the province of
Concepción, which is part of the Biobío Region (Figure 1). It comprises 11 municipalities,
having a total population of 1,072,239 in 2017, which makes it the second most populated
area in Chile after the Santiago Metropolitan Area [46]. It has an approximate area of
2830 km2 [47].

Figure 1. Study area Metropolitan Area of Concepción (MAC): (A) MAC location in the country;
(B) Land cover distribution in the MAC; (B1) Estuary of the Andalién River; (B2) Forest plantations;
(B3) Native forest in the National Park of Nonguén (Protected Area); (B4) San Vicente Bay between
beaches and dunes.

Most of the MAC is in the coastal plains surrounded by the Chilean Coastal Range,
which reaches up to 1500 m above sea level. Lacustrine and dune systems are also found [48].
It has a mild climate, with rainfall fluctuating between 1200 and 2000 mm per year [49].
This area was significantly affected by the 2010 Maule earthquake, which disturbed much
of the central-south zone of Chile (Mw ≥ 8.5), generating a large number of areas altered
by the tsunami and infrastructure damage due to the liquefaction phenomenon along the
coast in landfills areas [50,51].
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The MAC presents several pressures and urbanization processes characterized by
dispersion concentration, drastically altering landscape connectivity [47]. This urban
growth has significantly impacted biodiversity, where urban areas have replaced native
ecosystems, and wetlands have been destroyed, fragmented, filled, and invaded by exotic
species [47,52,53]. Currently, the MAC’s growth is expected to continue increasing and
using the natural spaces around it, mainly growing on wetlands, dunes, and other natural
covers [54].

2.2. General Methodology

The methodological steps to accurately classify the coastal landscape of MAC are
detailed in Figure 2. First, the necessary radiometric corrections were made to normalize
RapidEye’s high-resolution images. Second, the information was uploaded to Google Earth
Engine (GEE), a platform that made it possible to program the necessary procedures to
carry out the analyses. Third, additional information from the spectral bands and a digital
terrain model (DTM) were generated to strengthen the final product. In the case of SVM,
the optimal parameters of the models were adjusted to improve the classification and
accuracy. At the same time, for RF, each band’s contribution was calculated to understand
the degree of importance in the classification models.

Figure 2. Flowchart of the methodological framework developed.

2.3. Image Data, Pre-Processing, and Digital Terrain Model Data

Four RapidEye images (http://planet.com, accessed on 7 September 2020) (Table 1)
were acquired and mosaicked to cover the entire study area. These images have been
widely used in cities, mainly to delimit urban forms of development, identify vegetation
in urban environments, detect embedded ecosystems in urban areas, and monitor agri-
cultural uses [30,55–58], due to their high spatial resolution. The images had a level 3A,
meaning they incorporate geometric correction and topographic correction based on 30

http://planet.com
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and 90 m DTM and projected in Universal Transverse Mercator (UTM), Zone 18 South,
Datum WGS84.

Table 1. Characteristics of the RapidEye images used.

Characteristics RapidEye Mosaic

Pixel Size 5 m

Spectral Resolution
Red-Green-Blue (440–685 nm)

Red Edge (690–730 nm)
Near Infrared (760–850 nm)

Pixel Depth 16 bit

Product Size (column and rows) 6271 × 9802

Date range images (mm-dd-yyyy)

3-14-2014
3-15-2014
3-13-2014
3-15-2014

The radiometric correction of the images was carried out in two steps. First, absolute
radiance was transformed to top of the atmosphere (TOA) reflectance values. Second, an
atmospheric correction model was applied based on the dark object subtraction (DOS)
method [59].

Additionally, a DTM ALOS PALSAR (http://asf.alaska.edu/, accessed on 13 August
2021) with a 12.5 m spatial resolution was incorporated and used to obtain the slope in
sexagesimal degrees. Finally, both layers were resampled at 5 m.

2.4. Image Processing

Eight spectral indices were calculated from the original bands to increase the discrimi-
nation of the different types of land uses. Table 2 shows the spectral indices derived along
with their definition. Each of these indicators were selected to highlight different aspects of
the selected coverages. For example, some indicators were used to differentiate between
urban and burned areas. Others were intended to differentiate between distinct vegetation
types, while the latter helped to improve the discrimination of wetlands.

Table 2. Spectral indices.

Indicator Formula Reference

Burning Area Index (BAI) 1
(0.1−Red)2+(0.06−NIR)2 [60]

Enhanced Vegetation Index (EVI) 2.5 (NIR−Red)
(NIR+6×Red−7.5×Blue+1)

[61]

Modified Simple Ratio (MSR)
( NIR

Red )−1(√
NIR
Red

)
+1

[62]

Normalized Difference Vegetation Index (NDVI) (NIR−Red)
(NIR+Red)

[63]

Normalized Difference Water Index (NDWI) Green−NIR
Green+NIR [64]

Non-Linear Index (NLI) NIR2−Red
NIR2+Red

[65]

Simple Ratio (SR) NIR
Red [66]

Transformed Chlorophyll Absorption Reflectance Index (TCARI) 3
[
(ρ700− ρ670)− 0.2(ρ700− ρ550)

(
ρ700
ρ670

)]
[67]

Table 2 shows the spectral indices, where Blue, Green, Red, and NIR represent bands 1
to 5 consecutively of RapidEye, and p corresponds to the wavelength (nm).

Texture metrics from the gray-level co-occurrence matrix (GLCM) were also calculated
and applied to improve the discrimination of classes with similar spectral behavior [68,69].

http://asf.alaska.edu/
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The texture metrics were derived from the first PC obtained from the original bands.
Table 3 shows the texture metrics derived [70] with a configuration of 0◦–45◦–90◦ in a
9 × 9 window.

Table 3. Textural metrics gray-level co-occurrence matrix (GLCM).

Indicator Formula Reference

Mean
Ng
∑

i=1

Ng
∑

j=1
i ∗ P(i, j)

[70]

Variance
Ng
∑

i=1

Ng
∑

i=1
(i− µ)2 × P(i, j)

Homogeneity
Ng
∑

i=1

Ng
∑

i=1

1
1+(i−j)2 P(i, j)

Contrast
Ng
∑

i=1

Ng
∑

j=1
P(i, j)(i− j)2

Entropy
Ng
∑

i=1

Ng
∑

i=1
P(i, j) log(P(i, j))

Second Moment
Ng
∑

i=1

Ng
∑

j=1
{P(i, j)}2

Table 3 shows the textural metrics gray-level co-occurrence matrix, where i is the gray
intensity value of each pixel, P(i, j) is the gray intensity transition from i to j pixels, and Ng
is the number of distinct grey levels in the quantized image.

2.5. Training and Testing Data

Since both classifiers that were used are supervised classifiers, a training dataset was
required for the algorithm to learn the patterns of the different classes to be discriminated.
Thus, a sample of 361 points was collected in the field using a GARMIN Etrex 20x GPS to
train the algorithms. This initial sample was augmented through the visual interpretation
of the images, using the field collected data as reference, increasing the total sample to
1458 points. Finally, the sample was split into a training dataset (70% of the points) and
leaving the remaining 30% of the points as an independent validation set to evaluate the
results of the classifications.

2.6. Coastal Ecosystems Land Covers within the MAC

A critical aspect when classifying an image is the selection of the categories to be
discriminated. In this study, the selection of land covers has been adapted to previous
research in the area, emphasizing the detection of coastal ecosystems inserted in urban
areas for planning coastal cities. For this purpose, land covers similar to Rojas et al. [47]
were proposed for the study area, with eleven categories (Figure 3).

2.7. Classification Algorithms and Accuracy Assessment

Two widely used machine learning algorithms were applied to classify the images.
The first was the non-parametric statistical learning classifier “Support Vector Machine”,
initially formulated by Vapnik [71]. The method’s objective is to find the optimal hyperplane
that separates each set of points according to its class. The optimal hyperplane refers to
a decision boundary that reduces the number of misclassified points. The hyperplane
consists of a line that assumes that the data are linearly separable in their simplest version.
Usually, this condition does not occur in remote sensing applications. It is common to apply
the kernel trick [72] to solve this problem, which projects the data into a higher dimensional
feature space where the classes may be linearly separated. Multi-class problems, such as
classifying land covers, are solved by reducing the problem to a set of binary problems.
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Two approaches can be found, “one against one” and “one against all” [73]. For this study,
the kernel trick was performed by means of a radial basis function (RBF) kernel, commonly
used in remote sensing applications [30,74–76]. The gamma parameter determines the
width of the kernel, whereas the cost parameter controls the penalty associated with
wrongly classified training samples. Finding the optimal values of these parameters is
essential for the performance of the SVM. These optimal values were found using a grid
search approach [77].

Figure 3. Land covers selected for the Metropolitan Area of Concepción, Chile, along with
their description.

The second algorithm applied was “Random Forest”, proposed by Breiman [78]. It
consists of a classifier that uses multiple decision trees (ensemble classifier), each created
using a random sample of training points through replacement sampling. Approximately
two-thirds of the sample are used for training and one-third for cross-validation. Each
decision tree gradually divides the attribute space (feature space), seeking to maximize the
separation of classes. A random sample is selected from the set of attributes to generate
each tree. The number of decision trees and the size of the subset of attributes (features)
are considered hyperparameters. The decision to belong to a class of a pixel is made by
voting the decision trees; each tree gives a class label for each pixel, considering the class
label that most trees chose as a final result [58,79]. Random Forest has been widely used
to classify satellite images [58,80,81]. The hyperparameter tuning was carried out using a
randomized cross-validation search, in addition to finding the optimum number of trees
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and number of features per split for each classification group. Further, the implementation
of the Random Forest algorithm allowed us to obtain the importance of each band for the
detection of the proposed land uses, as described in Section 3.2 of the Results.

Eight land cover classifications were applied, four for SVM and RF, respectively, where:
(1) RapidEye spectral bands were used alone (Group I); (2) spectral indices (Table 2) were
included (Group II); (3) texture metrics were added (Group III); and (4) topographic infor-
mation was incorporated (Group IV). The accuracy of each classification was evaluated
utilizing the metrics derived from the confusion matrix (overall accuracy, omission and
commission errors, and the kappa index). Moreover, because the precision relationship
between classifiers does not necessarily prove the superiority of one classifier over an-
other [82], the McNemar [83] statistic was applied to the best evaluated classifications of
each model (SVM and RF), expressed by the following equation:

X2 =
( f12 − f21)

2

f12 + f21
(1)

In the equation, f12 corresponds to the number of cases that are classified incorrectly
by classifier 1, but correctly classified by 2, and f21 is the number of cases correctly classified
by classifier 1, but incorrectly classified by classifier 2.

2.8. Comparison with Official Surfaces

To validate the resulting surfaces that gave better accuracy, they were compared with
two official boundaries generated by the Ministry of Environment of Chile (MMA). The first
one corresponds to the National Inventory of Wetlands, which used similar vegetation cri-
teria and Landsat OLI 8 (2020) images and was calibrated by the Agriculture and Livestock
Services of Chile (SAG). The second is the Rocuant-Andalién wetland boundary generated
by the Global Environment Facility and the Ministry of Environment of Chile [84] based
on multicriteria analysis. This analysis includes biological, geomorphological-geological,
hydrological, topographical, vegetational, and intertidal aspects. However, only the vegeta-
tion, intertidal, and topography criteria were selected for the comparison.

3. Results
3.1. Hyperparameter Models and Accuracy

The grid search approach for the SVM parameters yielded the values shown in Table 4.
In addition, the results of the hyperparameter search for Random Forest in each of the
groups were incorporated.

Table 4. SVM-RBF calibration parameters for each parameter.

SVM RF

CODE_IMAGE Cost Gamma N◦ Trees N◦ Features

I 3 4 220 3
II 4 1 224 7
III 4 0.5 384 11
IV 4 0.5 312 12

Table 5 shows the performance metrics derived from the confusion matrix obtained
for each classifier and scenario. In general, the SVM and RF models’ performance increased
when incorporating additional information, i.e., indices, texture, and elevation data, except
for the SVM group IV. Thus, the overall accuracy of the SVM classifier began with 82.03%,
increasing by 0.14% when incorporating the spectral indices (group II). A higher increase
was observed with the incorporation of the texture metrics (group III), augmenting the over-
all accuracy by 11.25% compared to group I. Finally, when incorporating the topographic
information (group IV), the accuracy decreased imperceptibly to 92.73% (−0.55% compared
to the previous group). A similar trend was observed for RF, where the performance was
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increased in all groups, starting with an overall accuracy of 86.63% for the original bands
(group I), which later increased by 0.13% for group II and by 4.25% for group III. However,
unlike SVM, RF continued to increase when incorporating the topographic information
(group IV), reaching a final accuracy of 95.88%, that is, 3.15% higher than SVM. The kappa
indices showed similar behavior, increasing from 0.80 to 0.92 from group I to group IV of
SVM, while for RF, it increased from 0.86 to 0.95.

Table 5. Accuracies obtained for each classifier and different variable combinations.

SVM RF

Variable Combination I II III IV I II III IV

Water bodies
User’s 95.45 95.4 98.90 98.89 96.55 96.59 98.88 100.00

Producer’s 93.33 92.22 100.00 98.89 93.33 94.44 97.78 100.00

Native forest
User’s 80.56 75.56 93.58 91.96 80.7 81.82 87.61 97.20

Producer’s 79.09 92.73 92.73 93.64 83.64 81.82 90.00 94.55

Dunes
User’s 58.06 68.57 84.51 88.57 67.09 66.67 83.78 94.37

Producer’s 46.75 31.17 77.92 80.52 68.83 62.34 80.52 87.01

Shrub
User’s 89.55 92.54 97.10 98.53 95.39 96.88 94.12 97.18

Producer’s 84.51 87.32 94.37 94.37 87.32 87.32 90.14 97.18

Wetlands
User’s 91.01 83.9 96.12 94.27 93.89 93.16 93.26 99.61

Producer’s 94.92 95.7 96.88 96.48 96.09 95.7 97.27 99.22

Built-up areas User’s 75.71 76.28 94.31 92.66 86.46 88.02 92.45 94.52
Producer’s 72.6 74.89 90.87 92.24 75.8 77.17 89.50 94.52

Bare soil
User’s 76.1 75.84 88.28 88.28 80.08 82.28 85.96 90.91

Producer’s 86.04 91.89 95.05 95.05 92.34 94.14 90.99 94.59

Overall accuracy 82.03 82.17 93.28 92.73 86.63 86.76 90.88 95.88

Kappa 0.8 0.8 0.92 0.92 0.86 0.85 0.90 0.95

Regarding user’s and producer’s accuracies (Table 5), the performance of some land
uses was highlighted, particularly the dunes, which in the first group of SVM reached
47% precision, increasing up to ~80% for group IV. The water bodies were those with the
highest accuracy, reaching 98.89% and 100% (user’s) for SVM and RF, respectively, while
the worst accuracy recorded for SVM-I are the dunes with 58.06% for user’s and 46.75% for
producer’s, possibly due to their low spectral separability. In contrast, for RF, it was found
in group II with 66.67% for user’s and 62.34% for producer’s. Finally, wetlands showed
notable improvements for both user’s and producer´s accuracy when incorporating the
DTM band, reaching values >90%.

The increase in overall accuracy (Table 5) was visually observed as an increased
spatial coherence of the classifications. For SVM (Figure 4), a decrease in the “salt and
pepper” effect and greater generalization are seen. For the most part, the incorporation
of information helped to eliminate heterogeneity within the same land cover classes,
which can be seen in the first five images of Figure 3, where the water body, wetlands,
urbanization, scrubland, and young plantation use showed important improvements in
surface delineation. Likewise, a substantial improvement in the delimitation of the native
forest located in Nonguén Park can be observed in the last five images of Figure 3, and the
city’s shape and burnt areas.

A similar pattern was observed with RF (Figure 5), where the first variable combina-
tions (see images numbers 2 and 7) show the “salt and pepper effect”. However, as the
model incorporates information, the classification is improved. The previously mentioned
aspects can be seen in images number 5 and 10 in Figure 4, which show the improvement
in the discrimination of the urban, native forest, and wetlands. In addition, dunes and
beaches, bare land, and water bodies eliminate noise and improve the delimitation of their
borders. Burnt areas also showed better delimitation. However, some noise is observed
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for this land cover near the water bodies and dunes and beaches. There is also significant
noise from the native forest in some sectors with forestry plantations.

Figure 4. Coastal ecosystem land cover comparison with SVM-RBF. From 1 to 5 is possible to
observe the Andalién estuary and the marsh, while from 6 to 10 the Nonguén park surrounded by
urbanization with SVM-RBF.

Figure 5. Coastal ecosystems cover comparison with RF. From 1 to 5 is possible to observe the
Andalién estuary and the marsh, while from 6 to 10 the Nonguén park surrounded by urbanization
with RF.

3.2. Random Forest Variable Importance and Statistical Results

The importance was calculated in coastal ecosystems (Bodies of water—Native forest—
Beaches and dunes—Shrub—Wetlands) and built-up areas, on RF-IV (Figure 6), which
showed the best performance (around 95.88% accuracy) and underwent a thorough visual
inspection, showing fewer errors than the other models (Table 5).

Importance was concentrated in the spectral indices and with a higher proportion for
the ancillary DTM data, while the incorporation of texture metrics did not make significant
contributions. For the urban class, it was observed that the most significant importance
was contributed by the bands NDWI (0.19), BLUE (0.18), NDVI (0.14), and MSR (0.11).
Notably, the texture information (see Table 3) had greater relevance for urban use regarding
other uses, having values on average of 0.09. In the case of the water bodies land cover,
the most influential bands were: NIR (0.26), NDWI (0.19), NLI (0.16), DTM (0.15), and NIR
edge (0.13). Meanwhile, for native forest land cover, the most influential bands were the
DEM (0.45) and RED bands (0.21). The key bands for dunes land cover were DTM (0.32)
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and NDWI (0.28). For wetlands, the DTM again reached a maximum value (0.42), which
is the most important band for the delimitation of these ecosystems. Finally, in the case
of scrubland, the most crucial bands were the MSR (0.2), SR (0.2), NDVI (0.2), and DTM
(0.2) bands.

Figure 6. Importance of each band for the RF classifier and group IV.

The statistical results show that RF-IV versus SVM-RBF III yielded a chi-square of
32.29 with a p-value <0.001. Therefore, they have significant differences. The aforemen-
tioned indicates that RF-IV has statistically significant differences in SVM accuracy, and
consequently provides a classification with fewer errors.
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3.3. Comparison of Results with Official Limits

Once the best classifiers of each group were determined, the overlap between the
boundaries of coastal wetlands was assessed (Figure 7). RF-IV gave an area of 860 ha,
which corresponds to the smallest area detected through the RapidEye image. It is possible
to find fragments of wetland detection that were not cataloged by the boundaries of NI
(2020) and GEF-MMA (2021). SVM-III detected an area of 1084 ha. Although it is similar to
RF-IV due to having the same criteria, it is possible to observe that it detected wetlands in
areas close to the dune body and confusing parts of the urban area. Although the official
boundaries differ by 349 ha, both contain a large part of the area of wetlands detected by
the study.

Figure 7. Comparison of the classification results with the official limits. In (A) it is possible to
observe the distribution of the classifiers and the official limits, in (B) the difference of the calculated
surfaces can be observed.

4. Discussion
4.1. Model Uncertainties

During the last two decades, a wide variety of machine learning algorithms have
been proposed to study land-use coverage, with RF and SVM showing the best results to
date, surpassed only by neural networks [81]. Although its implementation should not be
considered an important advance in the development of classifiers, due to the large number
of existing studies, this study sought to highlight its efficiency and versatility to improve
inventories and the monitoring of coastal wetlands with the incorporation of spectral,
textural, and topographical variables [38,85,86]. One of the main characteristics of these
classifiers is their ability to handle multidimensional data, deal with the non-linearity of the
variables, show tolerance to unbalanced samples, and reduce processing and calculation
time [87–89].

Regarding these characteristics of the classifiers, this study is not an exception. Both
classifier methods obtained similar accuracies and patterns when incorporating additional
information, with similar results to other studies [30], obtaining an overall accuracy of
93.07% when using RapidEye images and classifiers SVM and RF in the coastal landscapes
in the MAC. SVM showed promising results, with an average overall accuracy of 88% in
all models used. It showed improvement when increasing information in at least three
scenarios (I–III), especially when incorporating the texture metrics, which have also been
reported by other authors [90]. Meanwhile, incorporating topographic information did not
increase accuracy in the classification, but a negligible decrease.

RF showed a more stable behavior, reaching an average overall accuracy of 90%.
According to the literature, it is a model built for multiple weak learners, decreasing
variance. Additionally, it is resistant to noise and overfitting [81]. In this study, RF effectively
incorporated the DTM information, which had the most significant importance in terms of
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accuracy for the majority of the classes. Therefore, both classifiers yielded results with a
few differences, with SVM being superior in group III.

Considering all groups generated, the training areas used in this study allowed to
obtain results with over 90% accuracy. However, the literature has shown that it is ideal
to have a large number of samples for RF, as this is directly related to accuracy [91], while
SVM has shown to be efficient with limited numbers of samples [92]. Nevertheless, SVM is
particularly sensitive to the calibration of the hyperparameters (Gamma and Cost), which
is a critical factor when classifying [92,93].

In terms of land cover, the main challenges found for SVM-I and II were among
the urban-bare, urban-sediment, plantation-native, burnt-bare, wetlands-agriculture, and
wetlands-young plantations and uses. These confusion issues were reduced in SVM-III for
urban-bare, urban-sediment, and bare-sediment. However, for SVM-IV, the errors from
I and II returned, reducing accuracy. Meanwhile, the main errors for RF I and II were
urban-bare, urban-sediment, and native-plantations. By incorporating texture and the
elevation model in RF III and IV, they were reduced to bare-sediment and plantations-
young plantations. These results coincide with some studies where the use of spectral and
texture information has led to obtaining precise ground use classifications [38,94].

4.2. Comparison with Chilean Cases

Chile has a great diversity of wetlands, is highly productive, and is considered a vital
biodiversity hotspot due to their high endemism [95–97]. However, authors agree that
they are strongly subjected to the pressure of human activities, reducing their extension,
connectivity, and biodiversity [95,98]. The MAC area is no exception to this trend since, if
we compare the results of the classifications on a total of 9253 ha with the latest studies
carried out with Sentinel-2 using the RF classifier [99], we can establish that in the period
of 2014–2019, there was a 494 ha increase in urbanization, while wetlands lost were 1696 ha.
This loss trend in wetlands in the coastal zones was already described by Pauchard [52]
and Rojas et al. [47,54].

To reverse this trend, Chile subscribes to the Ramsar convention allowing the protec-
tion of 16 wetlands (363,927 ha). Most of these wetlands are delimited based on biological
criteria identifying hydrophilic vegetation and aquatic biota [100]. Additionally, the pro-
mulgation of the Urban Wetlands Law allows the protection of wetlands totally or partially
inserted in urban limits, thus generating the need to start delimiting ecosystems. The
previously mentioned has led the Ministry of the Environment of Chile to elaborate the
National Wetlands Inventory, which was elaborated using the re-classification of spectral
indicators, specifically of NDVI [101], which led to a series of errors of interpretation and
omission of other areas with temporary flooding [102]. However, this was corrected with a
new guide for the delimitation of wetlands [101], which suggests identifying the surface
using RS that must be complemented with other information from scientific knowledge,
such as hydrology and fieldwork.

These differences in delimitation methods could explain the results that we obtained
through the comparison with the surfaces proposed by official institutions. These showed
differences possibly due to the different classification methods, the vegetation criteria, and
the differences in spatial and spectral resolution scales of the images (RapidEye vs. Landsat
8 OLI) [41]. However, the costs of the images must be considered mainly in the context of
the limited access to resources [103].

4.3. Coastal Wetland Worldwide Implications

These classifiers have been widely discussed due to their success and application
in various types of landscapes [81]. Moreover, their implementation in heterogeneous
coastal landscapes has been successful, and their application has also served as a validation
method for new classification methods, such as deep learning [30,104,105].

Regarding the RS data utilized in this study, RapidEye images were widely used
because of their high spatial resolution that, together with their red edge band, allowed
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to obtain precise classifications and achieve users’ objectives. This is particularly true
in heterogeneous landscapes or those dominated by agriculture, urban areas. and wet-
lands [106–109]. In some cases, these images are critical for differentiating some of the target
classes, especially in classes of small areas, such as wetlands areas and dunes. There are also
other more advanced classification methods, such as deep learning and object-based classifi-
cation. These classification methods have proven to be superior to the traditional ones (SVM
and RF), but they require greater user knowledge in RS in addition to lacking expertise in
public institutions, which could be a weakness in developing countries [110,111].

According to the results obtained, these are practical limits and represent a first
approximation for decision makers, with surfaces close to those proposed by official limits.
However, as discussed above, these results must be improved by incorporating studies
on the periodicity of floods, the inclusion of radars, indicators of hydric soils, and the
recognition of the composition of plant communities [112].

5. Conclusions

This study showed the ability of high spatial resolution satellite imagery to map
land covers in a coastal ecosystem (urban wetlands) of urbanized areas, characterized
by its high dynamics and tsunamis and flood risk. SVM and RF, two machine learning
algorithms, proved their capability to accurately discriminate land covers when applied to
high-resolution imagery. The case of RF provides insight into whether the variables can aid
in improving these classifications. It also showed that, by incorporating spectral and texture
information and topographic information, all classifiers improved their performance, except
for the SVM group IV, which reported a negligible decrease in accuracy when using
topographic information, with texture being more helpful. The main findings indicate
that RF performed better than SVM when all the information was applied, with DTM
being relevant for detecting coastal ecosystems. However, the SVM results should not be
disregarded, as once textural information was incorporated, this classifier obtained results
with 93% accuracy, only 2% lower than the best result achieved by RF.

These results contribute to detecting the land covers in coastal areas pressured by
urban growth using tools, such as high-resolution satellite images. The methods allowed
differences in similar land cover classes as wetlands, sediments areas, beaches, and be-
tween urban areas and bare lands with precise accuracy. However, it is always necessary to
carefully manage the confusion between urban-bare, urban-sediment, and bare-sediment.
In this regard, the calculation of vegetation indexes, texture metrics, and additional infor-
mation improves the processing of classifications of coastal ecosystems.

In addition to their low cost and easy access data, RapidEye images proved to have
enough spatial and spectral resolution to successfully differentiate the different covers that
were considered. Likewise, both classifiers (SVM-III and RF-IV) showed to be accurate and
could be used in decision-making and urban planning processes, especially in cities that
lack governance. Furthermore, these techniques decrease the amount of post-classification
work and facilitate the supervision of cities’ growth in the habitat fragmentation and
ecological connectivity of coastal ecosystems.

Finally, the processes applied in this work can be easily replicated for other coastal
wetlands, since the platform in which they were applied is freely available, in addition
to generating reliable delimitations, allowing decision makers to accelerate the delimita-
tion process.
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