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Abstract: The aim of this study was to map the land condition within the area of the Tumen River
Basin (TRB), located on the Sino–North Korean border, using trend analysis of environmental factors.
The normalized difference vegetation index (NDVI) and land surface temperature (LST) trends over
the past 30 years were analyzed to identify areas that have undergone degradation, restoration,
and/or a transition. Landsat NDVI and LST were obtained using the Google Earth Engine (GEE)
platform. Erosion was also gauged over the same period using the Revised Universal Soil Loss
Equation (RUSLE). Our results showed that only 0.3% of the land within the TRB underwent change
that can be characterized as statistically significant within the study period. We therefore infer that
land degradation may not be a major concern in the study area. Areas with a significant upward
trend of soil loss accounted for 0.8% of the basin’s footprint and were mainly distributed upstream of
North Korea. However, more than 80% of the area was found to be suffering from water stress, 10%
of these areas were statistically significant and most were located downstream.
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1. Introduction

Overall land condition is a result of both natural processes and anthropogenic ma-
nipulation [1,2]. Land condition can be reflected in a number of factors including water
balance, vegetation productivity, energy balance, and spatial patterns within these and
other variables [3,4]. Undertaking an assessment of land condition is one of the basic
prerequisites for the implementation of a Land Degradation Neutrality (LDN) project, the
particulars of which are covered under Sustainable Development Goal (SDG) 15, within the
publication “Life on Land” [5]. Several studies have focused on identifying and mitigating
adverse changes to land condition through spatial analysis, seeking to observe degradation
status and restoration progress [6–9]. Less attention has, however, been focused on the
implementation of active measures, arguably being undertaken from the perspective that
“prevention is better than a cure”. Cowie et al. [10] noted that proactive measures taken
to avoid further land degradation should be considered as the first response to LDN. In
other words, it is necessary to find an effective way of detecting so-called ‘transitional areas’
which have begun to exhibit signs of degradation, to plan accordingly and take appropriate
preventative measures within an effective timeframe.

Recent advances in remote sensing (RS) technologies, especially with the advent of
the Google Earth Engine (GEE), have provided stable, reliable, and regularly augmented
Earth Observation (EO) data which are both affordable and easily accessible [11,12]. It is
now possible to study land condition at temporal and spatial scales that were historically
almost impossible. This is particularly true for areas located within the developing world
where fieldwork is especially challenging. Satellite-based trend analysis has been widely
used to detect gradual changes in land condition, such as signs of degradation and/or
recovery [13,14]. The normalized difference vegetation index (NDVI) is a very popular
tool in this field of research, attracting widespread attention in the field of land condition
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diagnosis on account of its ability to represent vegetation cover and productivity [15,16].
In fact, the Global Assessment of Land Degradation and Improvement (GLADA) project,
undertaken by the United Nations, used satellite-derived NDVI measurements to estimate
worldwide land degradation trends between 1981 and 2003 [17]. Of course, limiting any
study to a single dataset has its disadvantages. Using NDVI alone can lead to important
information on land condition being overlooked, information that can be more obvious
from another perspective [14]. For example, bands within the thermal infrared (TIR)
spectrum are useful for their ability to reveal the spatial distribution of evapotranspiration
in ecosystems that depend on groundwater [18]. Land surface temperature (LST) derived
from TIR imagery is an asset for understanding climate change, hydrological cycles, and
surface–atmosphere interactions (water and energy flow) on different scales [19,20]. It is
worth noting that the evaporation-regulated surface cooling/warming inferred from LST
and NDVI characteristics can also be used to observe and monitor changes in soil moisture
content [21,22].

Soil erosion, a symptom of land degradation, often caused by the over-exploitation
of resources, has had a profound and adverse impact on ecosystems from the regional
scale to the global scale [23,24]. Mapping soil erosion and understanding its changing
trends is critical if we are to identify areas that require more detailed research and the
implementation of remedial measures. In general, the type of soil erosion encountered
typically varies according to climatic zone. For example, fluvial erosion prevails in humid
areas [25]. The Revised Universal Soil Loss Equation (RUSLE), an empirical model for water
erosion assessment, has been widely used to estimate and visualize soil surface erosion
in target areas. This is typically performed with the support of geographic information
systems (GISs) and RS techniques, and is popular due to the simple structure, applicability,
and effectiveness of the technique, as well as the ease with which data can be obtained [26].

The Tumen River Basin (TRB) has received a great deal of international attention in
the last few decades, ever since the start of the “Tumen River Regional Development Plan
(TRADP)”, initiated by the United Nations Development Program (UNDP) in the 1990s.
China’s recent “One Belt One Road” initiative also drew interest, in part because of the
region’s geographical location on the border between China and North Korea (DPRK), and
also due to wider interest in the economic revitalization of Northeast Asia. The TRB is
important because it provides clean water for residents of two countries and is an important
habitat for endangered flagship species such as the Amur tiger (Panthera tigris altaica) and
Amur leopard (Panthera pardus orientalis). It is foreseeable that in the near future, the
conflict between socio-economic development and natural environmental protection may
intensify, and the results will be reflected in the condition of the land. This study aims to
preemptively observe and map current land condition in the TRB area, mainly through the
use of RS techniques, to support informed land management practices and the gradual
realization of LDN.

2. Study Area and Materials

The TRB is in northeast Asia, encompassing an area of approximately 33,430 km2.
Approximately 70% of this footprint falls within the borders of China, the remainder being
part of DPRK (Figure 1). Elevation within the TRB ranges from −6 to 2531 m, increasing
towards the south, with an overall average value of 669 m. The basin is dominated by a
temperate continental monsoon climate with an average annual temperature of 5.3 ◦C and
an annual precipitation of 647.1 mm, averaged over the last 30 years. The Tumen River
itself is 525 km in length and originates in the Changbai Mountains, ultimately flowing
into the Sea of Japan (or East Sea). Although water resource management is one of the key
drivers in the promotion of socio-economic development and ecological stewardship in the
TRB area, improper land use (1900 km2 of forest has been lost) and over-exploitation of the
available water may have exacerbated water shortages in recent decades [27,28].
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Figure 1. Geographical location of the study area and watershed delineated using Shuttle Radar 
Topography Mission 30 m Digital Elevation Model data provided by NASA (Yu et al., 2019 [27]). 
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convenient and efficient processing. Optical satellite imagery of medium spatial resolu-
tion has been widely used for surface observation, especially Landsat data, which boast 
an imagery archive spanning more than 40 years. Taking the code provided by Ermida et 
al. (2020) [29], the Landsat LST and NDVI data required for this study were calculated and 
downloaded on the GEE platform: a body of data comprised 316 individual images cap-
tured during each growing season (June to early September) from 1985 to 2017. Estimates 
of soil erosion were produced using precipitation data (available at 4 km resolution from 
the TerraClimate database [30]), a 30 m digital elevation model (DEM) (constructed from 
Shuttle Radar Topography Mission (SRTM) data), TRB landcover data (with an accuracy 
of ≥94% [28]) and a digital map of relevant soil properties (obtained from SoilGrids version 
2.0, [31]). 

3. Method 
3.1. Division of Land Condition Classifications 

Symptoms of land degradation or restoration can be identified at a basic level by 
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ascertaining the condition of surface vegetation) [32,33]. Trends in LST, used in conjunc-
tion with any NDVI trends present, were inspected for the purpose for cross-checking 
land condition, which is a variable that is also closely related to land cover patterns [34]. 
Furthermore, the combination of LST and NDVI can also be used to infer groundwater 
conditions because where sufficient water is present, transpiration is promoted within 
surface vegetation. Transpiration effectively cools plants, whilst arid conditions cause 
plants to close their stomata, leading to an increase in leaf temperature. Thus, we can say 
that a lower LST represents stronger evaporative cooling for pixels with the same NDVI, 
and vice versa [21]. Based on the above logic, this study divides the land conditions into 
the following four scenarios (Table 1): (1) Degraded; an area identified as exhibiting a 
downward trend in NDVI and an upward trend in LST. (2) Restored; being the inverse of 

Figure 1. Geographical location of the study area and watershed delineated using Shuttle Radar
Topography Mission 30 m Digital Elevation Model data provided by NASA (Yu et al., 2019 [27]).

GEE is a cloud platform provided by Google for the online visualization and analysis of
multiple global-scale EO datasets. It facilitates access to satellite imagery and data stored on
other earth observation platforms and provides sufficient computing power for convenient
and efficient processing. Optical satellite imagery of medium spatial resolution has been
widely used for surface observation, especially Landsat data, which boast an imagery
archive spanning more than 40 years. Taking the code provided by Ermida et al. (2020) [29],
the Landsat LST and NDVI data required for this study were calculated and downloaded
on the GEE platform: a body of data comprised 316 individual images captured during
each growing season (June to early September) from 1985 to 2017. Estimates of soil erosion
were produced using precipitation data (available at 4 km resolution from the TerraClimate
database [30]), a 30 m digital elevation model (DEM) (constructed from Shuttle Radar
Topography Mission (SRTM) data), TRB landcover data (with an accuracy of ≥94% [28])
and a digital map of relevant soil properties (obtained from SoilGrids version 2.0, [31]).

3. Method
3.1. Division of Land Condition Classifications

Symptoms of land degradation or restoration can be identified at a basic level by
looking for increasing or decreasing trends in a landscape’s NDVI (a reliable proxy for
ascertaining the condition of surface vegetation) [32,33]. Trends in LST, used in conjunc-
tion with any NDVI trends present, were inspected for the purpose for cross-checking
land condition, which is a variable that is also closely related to land cover patterns [34].
Furthermore, the combination of LST and NDVI can also be used to infer groundwater
conditions because where sufficient water is present, transpiration is promoted within
surface vegetation. Transpiration effectively cools plants, whilst arid conditions cause
plants to close their stomata, leading to an increase in leaf temperature. Thus, we can say
that a lower LST represents stronger evaporative cooling for pixels with the same NDVI,
and vice versa [21]. Based on the above logic, this study divides the land conditions into
the following four scenarios (Table 1): (1) Degraded; an area identified as exhibiting a
downward trend in NDVI and an upward trend in LST. (2) Restored; being the inverse of
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Scenario 1, this is an area defined by a positive trend in NDVI and a negative trend in LST.
(3) Water stressed; as a result of the cooling effects exerted by evapotranspiration, these
areas are detected by looking for increasing trends in both NDVI and LST. (4) Waterlogged;
the classification of waterlogged areas is based on downward trends in NDVI and LST,
most likely caused by anthropogenic irrigation or water management practices.

Table 1. Different land conditions defined based on NDVI and LST trends.

Scenarios NDVIslope LSTslope Land Conditions Statistically Significance

1 0 < 0 > Degradation

If p < 0.052 0 > 0 < Restoration
3 0 > 0 > Water scarcity
4 0 < 0 < Waterlogging

In this study, an ordinary least-squares regression approach was used to observe the
pixel-by-pixel change trends of NDVI and LST over the last three decades. After selecting
the greenest and hottest pixels in the growing season, trend analyses were performed using
the following equation:

Slope =
∑n

i=1 xiyi − 1
n (∑

n
i=1 xi)(∑n

i=1 yi)

∑n
i=1 x2

i −
1
n (∑

n
i=1 xi)

2 (1)

where xi represents a year between 1986 and 2017, and yi represents the NDVI/LST in year
xi. The positive slope of the target pixel indicates that the corresponding value experienced
an increasing trend, and vice versa.

3.2. Soil Erosion Estimation

The RUSLE model considers two sets of factors in the process of soil erosion, namely
natural and human factors. The former category includes rainfall erosivity (R), soil erodi-
bility (K), and topographic factors (LS), while the latter category includes factors relating to
land cover and land management (C) and conservation practices (P). An approximation of
average annual soil erosion (SE) can thus be obtained using Equation (2) as follows:

A = R × K × LS × C × P (2)

The R factor [35] represents the ability of rainfall to erode the topsoil from an unpro-
tected surface:

Rann =

[
4.17 ×

12

∑
i=1

(
P2

i
P

)]
− 152 (3)

where Rann is the rainfall erosion factor (MJ mm/ha/year), Pi is the average monthly
rainfall of the i-th month (mm), and P represents the average annual rainfall (mm).

The K factor [36] measures the susceptibility of soil particles to the separation and
transportation effects of rainfall and runoff processes; it is expressed as follows:

K =
{

0.2 + 0.3 exp
[
−0.256SAN

(
1 − SIL

100

)]}
×
(

SIL
CLA+SIL

)0.3(
1.0 − 0.25C

C+exp(3.72−2.95C)

)
×
(

1.0 − 0.75SN1
SN1+exp(−5.51+22.9SN1

) (4)

where SAN, SIL, and CLA represent the content of sand, silt, and clay in the soil, respec-
tively; C is the organic carbon content in the soil; and SN1 = 1 − SAN/100.
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The LS factor [37] is composed of two subfactors: slope length (L) and slope (S). They
reflect the sensitivity of the terrain to erosion and can be calculated using a digital elevation
model (DEM):

LS =

(
FA × cell size

22.13

)0.6( sin(β)/0.01745
0.0896

)1.3
(5)

where FA is flow accumulation, ‘cell size’ represents the size of the elevation data, and β is
the slope.

C represents the ratio of soil loss under different vegetation cover types, whilst P refers
to the impact of land use or farming systems on soil erosion. In this study, these two values
were assigned based on the land cover type [38]. In addition, a soil erosion trend analysis
was also carried out to detect areas where soil erosion increased.

4. Results

The spatial distributions of the various land conditions detected using NDVI and
LST trends are shown in Figure 2. Land degradation appears mainly to be occurring in
urban areas, including Yanji City and Hunchun City in China, and Musan County in DPRK.
Areas classed as experiencing land degradation account for 5.3% of the TRB, of which 0.3%
showed a statistically significant trend (p < 0.05). Water stress is observable throughout
the watershed, defining approximately 83% of the overall area, of which 10% was found to
be significant. Areas that appear to have undergone notable changes over the course of
the study period can be found mainly in the northeastern part of DPRK, exceptions to this
rule being the two cities in China mentioned above. Waterlogged areas which appear to
have formed in the past 30 years account for 0.3% of the basin and can be found scattered
throughout certain tributary sections of the basin. Areas classed as experiencing restoration
account for 11.6% of the study area and were observed mainly in the southern part of the
TRB with no obvious changing trends.
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Figure 2. Four different land conditions (red, orange, pale blue, and green) and those parts defined
as exhibiting conditions with statistically significant trends (sig), where DGD, WS, and WL refer
to degradation, water shortage, and waterlogging, respectively (purple, yellow, and darker blue).
The cities marked on the map are Yanji City (a), Hunchun City (b), and Musan County (c). Images
(a–c) were obtained from Google Earth.
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The average soil erosion over the last 30 years is estimated to be 3.12 t/ha/year,
with the most serious soil losses occurring in Musan County and on Changbai Mountain
in DPRK. According to the SE level provided by the Ministry of Water Resources of
China (SL190-2007), 89% and 10% of the TRB area can be said to have experienced ‘slight’
(<5 t/ha/year) and ‘light’ erosion (5–25 t/ha/year), respectively. A trend of increasing
SE was found in both countries; this upward trend in SE characterized 15.8% of the TRB,
while the 0.8% of that portion deemed to be statistically significant was concentrated in the
southern part of that portion, lying within the DPRK, close to the headwaters of the Tumen
River (Figure 3).
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in SE (b).

Areas of concern (i.e., statistically significant areas where p < 0.05) were screened based
on the different land conditions and SE trends obtained from the thematic maps shown in
Figures 2 and 3b. These areas of concern are shown in Figure 4. The results showed that
11.2% (3744 km2) of the TRB area required particular attention, of which 4.4% lies in the
DPRK. The land condition delineations exhibit the most obvious change trends (namely
water scarcity and SE) in DPRK, accounting for 38% and 58% of the total, respectively. In
contrast, those areas primarily characterized by land degradation and water scarcity were
mainly concentrated in urban areas on the Chinese part of the study area.
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5. Discussion

According to the TRB land conditions obtained, most of the study area is likely to
experience water shortages. This result corroborates issues pertaining to water scarcity
raised by Yu et al. (2019) [27]; furthermore, recent study observed a downward trend
in actual evapotranspiration [28]. The area classed as suffering from a significant water
deficient trend accounts for approximately 33.43 km2 (10%) of the TRB, primarily lying in
the Tumen River Estuary, including Hunchun city in China and the northeastern portion
of the DPRK. Since the early 2000s, economic cooperation between China and the DPRK
has gradually increased, with Hunchun and Rason (in northeastern DPRK) being the core
areas for this movement, promoting China’s leading role in the construction of the DPRK
Special Economic Zone (SEZ) [39]. A series of infrastructure construction and land use
change projects aimed at encouraging economic development in the area have not only
led to an increase in urbanization and progressive vegetation loss, but have also provided
huge opportunities for the development of tourism. From 2001 to 2017, the Chinese side of
the basin (Yanbian Prefecture) received domestic tourists and tourism revenue increased
by about 10 times and 50 times, respectively. The demand for water in tourism tends
to be extremely concentrated in space and time, which can put considerable pressure
on water resources in areas with a high proportion of tourism revenue [40]. The water
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footprint per tourist is approximately two or three times that of local residents [41], and
even more than ten times in some areas [42]. Statistics show that Hunchun City received
3.05 million tourists (approximately 13 times the local population) and generated RMB
3.25 billion (about USD 0.5 billion) in 2017. These figures are 40 times and 27 times higher
than those of 2005, respectively. The surge in tourist arrivals in Hunchun, coupled with
the development of other industries, may however have placed considerable pressure on
local water resources. This phenomenon is likely to worsen following the 2018 completion
of Yanbian University’s new campus and the anticipated 2021 opening of the large new
amusement park “Happy Valley”, both of which are expected to attract more visitors to the
area. In addition, the DPRK recently approved visa-free one-day trips into the country for
Chinese citizens, including the right to travel to Rason Port by personal automobile. As
access to the DPRK is convenient from Hunchun [39], the area along the Hunchun to Rason
SEZ has also been developed into a tourist area, which may be another cause of the water
shortage observed in northeastern DPRK.

Compared with water issues, land degradation and soil erosion do not seem to be
the main problems in the TRB area because the results show that statistically significant
areas only account for 1.1% of the basin (Figure 4). Yanji City is the most important
urban area in the east of China’s Jilin Province, and the capital of the Yanbian Korean
Autonomous Prefecture. The speed of economic development in this area over recent years
has been remarkable. Statistics show that the city’s GDP reached approximately RMB
31 billion in 2017, which is 2.7 times that of 2007. It is worth noting that the high-speed
railway station, “Yanji West Station”, was completed and became operational in September
2015. Since then, urban construction programs have shown a preference for land in the
west; many green spaces in that area have gradually become covered with asphalt and
concrete. This may partly explain the greater severity of water stress in the west of Yanji
compared with the east. Musan County, the area with the most severe average annual SE,
contains one of the most important mines in the DPRK. In the past four years, the size
of this mine has at least tripled [43] and it is likely to grow further with confirmed iron
reserves equal to approximately 2.06 billion tons remaining at the site. If annual mining
output at this mine remains steady at 3.5 million tons, it can potentially be mined for a
further 500 years [44]. Considering that mining activities can have a huge impact on both
the quality and quantity of water resources available in a catchment [45] and given that
Mushan County lies mid-stream within the catchment, the water supply in downstream
areas can face considerable challenges. In addition, significant SE trends were identified in
the upper Tumen River on the DPRK side of the basin. These may be related to large-scale
deforestation and cropland expansion currently underway in this area (Figure 5). Although
the soil losses inferred for the area are not yet statistically significant (99% ≤ light erosion),
these changes in southern DPRK still require continuous attention because alterations to
SE rates can severely and rapidly disrupt downstream ecosystems. Meanwhile, surges
in upstream water use (e.g., for agricultural irrigation) can seriously impact the amount
of water available downstream. The Hunchun area is an important habitat for China’s
remaining big cat species [46], and with the establishment of the Northeast China Tiger and
Leopard National Park Administration in 2017 [47], it is expected that human disturbance
in the area will be greatly reduced. However, potential pressure originating from elsewhere
(off-site) will continue to threaten local water-dependent ecosystems by altering the quality
and quantity of water that enters the area.

The land conditions detected by the four different classification scenarios employed in
this study show that the satellite-based method performs well in capturing both historical
and progressive changes, especially in newly formed flood zones (Figure 6). In fact, floods
can be detected spatially and the rate of any resultant land changes can be inferred by
observing the significance based on the p value. Following this study, we look forward
to more widespread future application of the NDVI and LST technique in detecting flood
events at different temporal and spatial scales.
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Although this study helps understand different land conditions in the TRB region,
a few uncertainties and limitations remain. In a previous study, we found that an index
based on the LST-NDVI relationship can explain about 70% of the topsoil moisture (0–5 cm)
state of the TRB [27]. In other words, the water condition inferred in this study may have
corresponding uncertainty. This is probably attributable to the different resolutions of
NDVI and LST and usage of diverse sensors. For instance, the moderate resolution of
Landsat series data probably include mixtures of man-fabricated structures, such as asphalt
and concrete, and natural land forms, thus presenting abnormally high temperatures. In
addition, the high dependence of image quality on the climatic environment is a major
drawback of satellite remote sensing.

6. Conclusions

This study identified and classified different land conditions in the TRB area by means
of various pixel-based trend analyses conducted on data spanning the past 30 years. The
GEE platform and RUSLE model were used to obtain Landsat-derived indices (NDVI and
LST) and SE information, respectively. Among the different land conditions identified,
water deficiency appears to be the most serious issue because the zones classified as being
under water stress occupy a much larger area than the others. According to the statistical
significance of the change trend (p < 0.05), areas showing increased water stress, soil erosion
and land degradation accounted for 10%, 0.8%, and 0.3% of TRB, respectively. Further
observation revealed the fact that different sections of the river system are experiencing
different problems: (1) the downstream of the TRB may be suffering from severe water
loss due to the surge in water consumption on and off the site; (2) although soil loss is
not a main issue in TRB area, the agricultural land formed by largescale deforestation in
the upper reaches and the intensification of mining activities in the middle reaches may
adversely affect the water environment system of the basin. Thus, future study will focus
on water issues, such as physical and virtual water consumption in different industries to
further understand social hydrology in the TRB area. Furthermore, considering that the
ecosystem of China’s Hunchun Nature Reserve is likely to be damaged by disturbances in
the middle and upper reaches of the DPRK, it is necessary to activate information sharing
between the two countries to maintain a healthy ecosystem in this water-sensitive area.
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5. Solomun, M.K.; Barger, N.; Cerda, A.; Keesstra, S.; Marković, M. Assessing land condition as a first step to achieving land
degradation neutrality: A case study of the Republic of Srpska. Environ. Sci. Policy. 2018, 90, 19–27. [CrossRef]

6. Riva, M.J.; Daliakopoulos, I.N.; Eckert, S.; Hodel, E.; Liniger, H. Assessment of land degradation in Mediterranean forests and
grazing lands using a landscape unit approach and the normalized difference vegetation index. Appl. Geogr. 2017, 86, 8–21. [CrossRef]

7. Nendel, C.; Hu, Y.; Lakes, T. Land-use change and land degradation on the Mongolian plateau from 1975 to 2015–a case study
from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595–1606.

8. Mao, D.; Wang, Z.; Wu, B.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China:
Quantified evidence and implications from satellites. Land Degrad. Dev. 2018, 29, 3841–3851. [CrossRef]

9. Hu, T.; Liu, J.; Zheng, G.; Zhang, D.; Huang, K. Evaluation of historical and future wetland degradation using remote sensing
imagery and land use modeling. Land Degrad. Dev. 2020, 31, 65–80. [CrossRef]

10. Cowie, A.L.; Orr, B.J.; Sanchez, V.M.C.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.I.;
Minelli, S.; et al. Land in balance: The scientific conceptual framework of land degradation neutrality. Environ. Sci. Policy 2018,
79, 25–35. [CrossRef]

11. Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Van Bemmelen, J.; Colangeli, G.; Lehmann, A. Knowledge generation using
satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation. Int. J. Appl. Earth
Obs. Geoinf. 2020, 88, 102068. [CrossRef]

12. Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data
applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [CrossRef]

13. De Beurs, K.M.; Henebry, G.M.; Owsley, B.C.; Sokolik, I. Using multiple remote sensing perspectives to identify and attribute
land surface dynamics in Central Asia 2001–2013. Remote Sens. Environ. 2015, 170, 48–61. [CrossRef]

14. Zhu, Z.; Fu, Y.; Woodcock, C.E.; Olofsson, P.; Vogelmann, J.E.; Holden, C.; Wang, M.; Dai, S.; Yu, Y. Including land cover change in
analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014).
Remote Sens. Environ. 2016, 185, 243–257. [CrossRef]

15. Masoudi, M.; Jokar, P.; Pradhan, B. A new approach for land degradation and desertification assessment using geospatial
techniques. Nat. Hazard Earth Sys. 2018, 18, 1133–1140. [CrossRef]

16. Shao, Y.; Jiang, Q.O.; Wang, C.; Wang, M.; Xiao, L.; Qi, Y. Analysis of critical land degradation and development processes and
their driving mechanism in the Heihe River Basin. Sci. Total. Environ. 2020, 716, 137082. [CrossRef] [PubMed]

17. Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2008, 24, 223–234.
[CrossRef]

18. Muro, J.; Strauch, A.; Heinemann, S.; Steinbach, S.; Thonfeld, F.; Waske, B.; Diekkrüger, B. Land surface temperature trends as
indicator of land use changes in wetlands. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 62–71. [CrossRef]

19. Quan, J.; Zhan, W.; Chen, Y.; Wang, M.; Wang, J. Time series decomposition of remotely sensed land surface temperature and
investigation of trends and seasonal variations in surface urban heat islands. J. Geophys. Res. Atmos. 2016, 121, 2638–2657. [CrossRef]

http://www.scidb.cn/doi/10.11922/sciencedb.01195
http://doi.org/10.1098/rsta.2010.0296
http://www.ncbi.nlm.nih.gov/pubmed/21282160
http://doi.org/10.1016/j.earscirev.2014.10.003
http://doi.org/10.1038/s41586-018-0411-9
http://www.ncbi.nlm.nih.gov/pubmed/30089903
http://doi.org/10.1016/j.envsci.2018.09.014
http://doi.org/10.1016/j.apgeog.2017.06.017
http://doi.org/10.1002/ldr.3135
http://doi.org/10.1002/ldr.3429
http://doi.org/10.1016/j.envsci.2017.10.011
http://doi.org/10.1016/j.jag.2020.102068
http://doi.org/10.1016/j.isprsjprs.2020.04.001
http://doi.org/10.1016/j.rse.2015.08.018
http://doi.org/10.1016/j.rse.2016.03.036
http://doi.org/10.5194/nhess-18-1133-2018
http://doi.org/10.1016/j.scitotenv.2020.137082
http://www.ncbi.nlm.nih.gov/pubmed/32044494
http://doi.org/10.1111/j.1475-2743.2008.00169.x
http://doi.org/10.1016/j.jag.2018.02.002
http://doi.org/10.1002/2015JD024354


Sustainability 2022, 14, 5687 11 of 11

20. Aguilar-Lome, J.; Espinoza-Villar, R.; Espinoza, J.C.; Rojas-Acuña, J.; Willems, B.L.; Leyva-Molina, W.M. Elevation-dependent
warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000–2017). Int. J. Appl. Earth Obs.
Geoinf. 2019, 77, 119–128. [CrossRef]

21. Petropoulos, G.; Carlson, T.N.; Wooster, M.J.; Islam, S. A review of Ts/VI remote sensing based methods for the retrieval of land
surface energy fluxes and soil surface moisture. Prog. Phys. Geogr. 2009, 33, 224–250. [CrossRef]

22. Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture
applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [CrossRef]

23. Wang, X.; Zhao, X.; Zhang, Z.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S.; Liu, B. Assessment of soil erosion change and its
relationships with land use/cover change in China from the end of the 1980s to 2010. Catena 2016, 137, 256–268. [CrossRef]

24. Guerra, C.A.; Rosa, I.M.D.; Valentini, E.; Wolf, F.; Filipponi, F.; Karger, D.N.; NguyenXuan, A.; Mathieu, J.; Lavelle, P.; Eisenhauer,
N. Global vulnerability of soil ecosystems to erosion. Landscape Ecol. 2020, 35, 823–842. [CrossRef]

25. Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Poesen, J.; Tsubo, M.; Borrelli, P.; Panagos, P.; Vanmaercke, M.; Broeckx, J.; Yasuda,
H.; et al. Land susceptibility to water and wind erosion risks in the East Africa region. Sci. Total. Environ. 2020, 703, 135016.
[CrossRef] [PubMed]

26. Olorunfemi, I.E.; Komolafe, A.A.; Fasinmirin, J.T.; Olufayo, A.A.; Akande, S.O. A GIS-based assessment of the potential soil
erosion and flood hazard zones in Ekiti State, Southwestern Nigeria using integrated RUSLE and HAND models. Catena 2020,
194, 104725. [CrossRef]

27. Yu, H.; Li, L.; Zhu, W.; Piao, D.; Cui, G.; Kim, M.; Jeon, S.W.; Lee, W.K. Drought monitoring of the wetland in the Tumen River
Basin between 1991 and 2016 using Landsat TM/ETM+. Int. J. Remote Sens. 2019, 40, 1445–1459. [CrossRef]

28. Yu, H.; Lee, W.K.; Li, L.; Jin, R.; Zhu, W.; Xu, Z.; Cui, G. Inferring the potential impact of human activities on evapotranspiration
in the Tumen River Basin based on LANDSAT imagery and historical statistics. Land Degrad. Dev. 2021, 32, 926–935. [CrossRef]

29. Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.M.; Trigo, I.F. Google earth engine open-source code for land surface temperature
estimation from the landsat series. Remote Sens. 2020, 12, 1471. [CrossRef]

30. Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate
and climatic water balance from 1958–2015. Sci. Data 2018, 5, 1–12. [CrossRef]

31. De Sousa, L.M.; Poggio, L.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Riberio, E.; Rossiter, D. SoilGrids 2.0: Producing
quality-assessed soil information for the globe. Soil Discuss. 2020, 1–37. [CrossRef]

32. Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What drives the vegetation restoration in Yangtze River basin, China: Climate change
or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [CrossRef]

33. Li, Y.; Cao, Z.; Long, H.; Liu, Y.; Li, W. Dynamic analysis of ecological environment combined with land cover and NDVI changes
and implications for sustainable urban-rural development: The case of Mu Us Sandy Land, China. J. Clean. Prod. 2017, 142,
697–715. [CrossRef]

34. Jia, W.; Zhao, S. Trends and drivers of land surface temperature along the urban-rural gradients in the largest urban agglomeration
of China. Sci. Total. Environ. 2020, 711, 134579. [CrossRef]

35. Arnoldus, H.M.J. An Approximation of the Rainfall Factor in the Universal Soil Loss Equation; Wiley: Hoboken, NJ, USA, 1980; pp. 127–132.
36. Sharpley, A.N.; Williams, J.R. EPIC-Erosion/Productivity impact calculator. I: Model documentation. II: User manual. In Technical

Bulletin-United States Department of Agriculture; United States Department of Agriculture, Economic Research Service: Washington,
DC, USA, 1990; p. 1768.

37. Kijowska-Strugała, M.; Bucała-Hrabia, A.; Demczuk, P. Long-term impact of land use changes on soil erosion in an agricultural
catchment (in the Western Polish Carpathians). Land Degrad. Dev. 2018, 29, 1871–1884. [CrossRef]

38. Wang, Y.; Dai, E. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study
of Hengduan Mountain region in Southwest China. J. Clean. Prod. 2020, 264, 121573. [CrossRef]

39. Gao, B. China’s Economic Engagement in North Korea; Palgrave Macmillan: Singapore, 2019.
40. Hadjikakou, M.; Miller, G.; Chenoweth, J.; Druckman, A.; Zoumides, C. A comprehensive framework for comparing water use

intensity across different tourist types. J. Sustain. Tour. 2015, 23, 1445–1467. [CrossRef]
41. Xiao, Z.; Muhtar, P.; Huo, W.; An, C.; Yang, L.; Zhang, F. Spatial and Temporal Differentiation of the Tourism Water Footprint in

Mainland China and Its Influencing Factors. Sustainability 2021, 13, 10396. [CrossRef]
42. Styles, D.; Schoenberger, H.; Galvez-Martos, J.L. Water management in the European hospitality sector: Best practice, performance

benchmarks and improvement potential. Tour. Manag. 2015, 46, 187–202. [CrossRef]
43. Bogle, J. History of the Musan Iron Mine. AccessDPRK. 2020. Available online: https://mynorthkorea.blogspot.com/2020/08/

history-of-musan-iron-mine.html (accessed on 5 June 2021).
44. Yoon, S.; Jang, H.; Yun, S.T.; Kim, D.K. Investigating the Status of Mine Hazards in North Korea Using Satellite Pictures. J. Korean

Soc. Miner. Energy Resour. Eng. 2018, 55, 564–575. [CrossRef]
45. Yang, Y.; Guo, T.; Jiao, W. Destruction processes of mining on water environment in the mining area combining isotopic and

hydrochemical tracer. Environ. Pollut. 2018, 237, 356–365. [CrossRef]
46. Li, Z.; Kang, A.; Gu, J.; Xue, Y.; Ren, Y.; Zhu, Z.; Liu, P.; Ma, J.; Jiang, G. Effects of human disturbance on vegetation, prey and

Amur tigers in Hunchun Nature Reserve, China. Ecol. Model. 2017, 353, 28–36. [CrossRef]
47. Song, T. The exploration of China’s National Park System Pilot Project: Taking Northeast China Tiger and Leopard National Park

System Pilot Area as an example. Int. J. Geoheritige Parks. 2020, 8, 203–209. [CrossRef]

http://doi.org/10.1016/j.jag.2018.12.013
http://doi.org/10.1177/0309133309338997
http://doi.org/10.1016/j.rse.2017.05.041
http://doi.org/10.1016/j.catena.2015.10.004
http://doi.org/10.1007/s10980-020-00984-z
http://doi.org/10.1016/j.scitotenv.2019.135016
http://www.ncbi.nlm.nih.gov/pubmed/31734497
http://doi.org/10.1016/j.catena.2020.104725
http://doi.org/10.1080/01431161.2018.1524604
http://doi.org/10.1002/ldr.3775
http://doi.org/10.3390/rs12091471
http://doi.org/10.1038/sdata.2017.191
http://doi.org/10.5194/soil-2020-65
http://doi.org/10.1016/j.ecolind.2018.03.029
http://doi.org/10.1016/j.jclepro.2016.09.011
http://doi.org/10.1016/j.scitotenv.2019.134579
http://doi.org/10.1002/ldr.2936
http://doi.org/10.1016/j.jclepro.2020.121573
http://doi.org/10.1080/09669582.2015.1044753
http://doi.org/10.3390/su131810396
http://doi.org/10.1016/j.tourman.2014.07.005
https://mynorthkorea.blogspot.com/2020/08/history-of-musan-iron-mine.html
https://mynorthkorea.blogspot.com/2020/08/history-of-musan-iron-mine.html
http://doi.org/10.32390/ksmer.2018.55.6.564
http://doi.org/10.1016/j.envpol.2018.02.002
http://doi.org/10.1016/j.ecolmodel.2016.08.014
http://doi.org/10.1016/j.ijgeop.2020.10.001

	Introduction 
	Study Area and Materials 
	Method 
	Division of Land Condition Classifications 
	Soil Erosion Estimation 

	Results 
	Discussion 
	Conclusions 
	References

