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Abstract: Seaweeds are attracting increasing attention as an alternative healthy food and renewable
drugs source and as agents of climate change mitigation that provide essential ecosystem services. In
this context, seaweeds represent marine resources capable of supporting and pursuing the objectives
of the Sustainable Blue Economy and the Bio-Based Circular Economy. In this review, we analyze the
state of seaweed bio-based products and research on the Mediterranean Sea from the last 20 years.
Results of this analysis show a large number of investigations focusing on antimicrobial, antioxidant
and anti-inflammatory activities compared to on biofuels and bioplastics. Attempts at seaweed
farming, although generally very limited, are present in Israel and some North African countries.
Lastly, we focus on the Italian situation—including research, companies and legislation on seaweed
production—and we discuss gaps, perspectives and challenges for the potential development of a
sustainable seaweed industry according to the Sustainable Blue Economy.

Keywords: seaweed applications and production; Mediterranean Sea; bio-based products; Sustain-
able Blue Economy; Italian bioeconomy

1. Introduction

Ocean-based natural capital, defined as the world’s stocks of ocean assets that include
biotic and abiotic components, provides to humans a wide range of ecosystem services
(ESs). These include natural goods, such as food, raw materials and genetic resources,
but also carry out functions, such as purification of air and water, climate regulation,
pollination, protection against extreme events and many others ecosystem functions which
benefit human well-being [1]. The ESs framework was, indeed, designed with the aim of
including those benefits into decision-making processes in order to facilitate the transition
of the global economy towards a sustainable state [2–4].

Among biotic resources, seaweeds (or macroalgae) are attracting increasing attention
as alternative healthy food sources to feed the growing human population and as a renew-
able source of food supplements and drugs and as providers of essential ecosystem services
such as the reduction of greenhouse gasses. Although analysis of seaweed production
and its industrial use exists on a global scale, there are no surveys focusing on the entire
Mediterranean area. In this review, keeping in mind ecosystem services delivery and the
Sustainable Blue Economy, we analyze the current state of research and production of
seaweeds in the Mediterranean Sea, one of the world’s biodiversity hotspots. We conclude
with a focus on the Italian context and discuss gaps, prospects and challenges for the
potential development of a sustainable seaweed bioeconomy.

2. The Global Sustainable Bioeconomic Framework

The Blue Growth concept globally recognizes the marine space as an environmental
and socio-economic system in which, through the principles of nature conservation, sus-
tainable development and holistic management of human activities, ‘the potential of our
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seas and oceans for jobs and growth’ can be realized [5,6]. Blue Growth also assumes that
additional value can be gained from managing diverse marine uses (e.g., fisheries, shipping
and tourism) and marine ecosystem services (e.g., food provisioning, coastal protection
and carbon storage) jointly rather than managing them separately [7].

Recently, the EU proposed a new approach named the Sustainable Blue Economy
which is essential for achieving the objectives of the European Green Deal and ensuring
a green and inclusive recovery from the pandemic [8]. Economic activities at sea and in
coastal areas will need to reduce their cumulative impacts on the marine environment, and
value chains will need to transform themselves to contribute to climate neutrality, zero pol-
lution, a circular economy and waste prevention, marine biodiversity, coastal resilience and
responsible food systems. At the same time, the Bio-Based Circular Economy has gained
increasing attention [9,10]. This approach is based on: (i) the use of renewable biological
(bio-based) resources (e.g., crops, animals, seaweeds, etc.) and their conversion into other
products such as feed, materials for manufacturing and energy; (ii) the application of a
closed-loop resource management system (circular economy), using reducing, reusing and
recycling activities throughout; (iii) the maintenance of products, materials and resources
for as long as possible [11,12].

3. The Seaweed Effectiveness: From Ecological Functions to Bioeconomy Contribution

Seaweeds play a key ecological role in marine environments, from temperate to
polar ecosystems, contributing to ecosystem production, biodiversity and functioning.
By producing oxygen and being a primary food source for several marine herbivores,
seaweeds sustain complex food webs, contributing to particulate and dissolved matter
cycling (carbon, nitrogen, phosphorus and other elements) [13–15]. Many seaweeds are
structuring species as they provide a diversity of micro-habitats and ecological niches and
serve as shelters and feeding, reproductive and nursery areas for a very highly diverse range
of associated plants and animals, including species of economic value. The seaweed canopy
provides protection to marine organisms from excessive light and predators and modifies
the environment by changing hydrodynamic and sedimentation rates [16]. Moreover, by
attenuating the energy and the wave motions [17], the canopy can influence sediment
stability and particle retention, thus, protecting tidal areas from erosion [18].

All these ecological functions contribute to important ESs, including climate change
mitigation, carbon sequestration [19–21], regulation of extreme eutrophication and ab-
sorption of toxic substances and heavy metals [22,23]. Moreover, apart from serving as a
primary food source for marine herbivores, seaweeds can be directly consumed by humans
and farmed animals in a wide variety of formats, directly contributing to market benefits
and to human well-being (Figure 1).
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Edible seaweeds can be used for food consumption and as a dietary supplement, provid-
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Figure 1. Functions and benefits of seaweeds and its derived products; data source from
Vincent et al. [24] and references therein.

To date, around 221 species of seaweeds have commercial value, and the global
seaweed industry is worth more than USD 6 billion/year (~12 million tons/year in volume),
of which more than 150 species (85%) are food products for human consumption [25]. Edible
seaweeds can be used for food consumption and as a dietary supplement, providing a
variety of nutrients essential to human health, including high levels of essential fatty acids
and amino acids and low-calorie content [26–28]. Increasing attention is also focusing on
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the nutritional value of seaweed species, due to their high content of natural vitamins,
minerals and proteins [29].

Seaweeds produce a variety of natural compounds called biometabolites, with a
broad spectrum of biological activities (i.e., cytostatic, antiviral, anthelmintic, antifungal
and antibacterial activity) extensively documented in the literature [30–35], which find
application as the active ingredients of drugs or supplements. Biometabolites production
may be different within the same species and dependent on environmental factors. This
plasticity makes seaweeds ideal candidates for the screening of both new and known
compounds with bioactive potential for the development of new sustainable, economic
and environmentally friendly drugs [36].

Different and new bio-based materials produced by seaweeds are continuously being
investigated. The superior performance of their manure compared to the conventional
organic one has been reported, as well as the effectiveness of seaweed as a source of
stimulants in agriculture and horticulture [37,38]. This efficacy covers broad aspects,
such as seed germination, better root development, enhanced frost resistance, increased
nutrient uptake, resistance to phytopathogenic organisms and higher yields with the better
restoration of plant health under high-salinity conditions [39–41]. The use of seaweed
is proposed as an efficient and natural solution to overcome the threats caused by the
extensive use of chemical fertilizers, considering that, in 2014, over 120 million tons of
fertilizer was used, of which, about 15–30% was released into the ocean [41].

Seaweeds rich in polysaccharides show a wide range of industrial applications and are
increasingly used as third-generation biomass. The production of biofuels—biomethane,
bioethanol, biodiesel and bio-oils—can be achieved by different conversion methods of
seaweed biomasses, especially the brown ones, including anaerobic digestion, fermen-
tation, transesterification, liquefaction and pyrolysis processes [42–46]. According to
Suutari et al. [43], however, biofuel production from dedicated seaweed farming is not
yet economically sustainable. These authors suggest that sustainable chain production
could be achieved by using industrial seaweed residues. Recently, research has focused
on sulfated polysaccharides (agar, carrageenan and alginate) as a starting material and an
additive for bioplastic production, helping to generate a sustainable product and, at the
same time, reduce the environmental impact. Furthermore, as reported by Dang et al. [47],
a desirable bioplastic quality can be obtained by the manipulation of specific functional
groups, such as the carboxyl, hydroxyl and sulfate functional groups. In addition to the
plastic for bags and packaging, seaweed polymers are used to replace synthetic polymers
in textiles [48,49], biomedical instruments and drug delivery systems [50,51] and in 3D
modelling [52,53].

The demand for seaweeds and their products is constantly growing globally, leading
to improved materials, cultivation and processing technologies at the same time [54].
Several market studies indicate that seaweed product innovation in Europe is second
to the Asian and the Pacific regions, which achieve more than 80% of seaweed product
innovation [25]. Moreover, the activities related to the use of marine algae fall into those
sectors (i.e., aquaculture, biotechnology, renewable energy) that have a high potential for
sustainable jobs and growth, according to the above concepts of the Sustainable Blue
Economy and the Bio-Based Circular Economy.

4. Seaweed Research, Production and Use in the Mediterranean Basin

The Mediterranean Sea is only 0.82% of the surface area and 0.32% of the volume
of the world’s ocean; nevertheless, it represents the largest and deepest enclosed sea and
marine biodiversity hotspot [55,56]. About 1,124 seaweed species are reported in the
Mediterranean Sea, of which at least 20% is endemic [57]. The current high biodiversity of
the Mediterranean Sea is the result of geological events, such as the closure of the Strait
of Gibraltar and the resulting drastic changes in salinity, climate and sea level, but also
anthropogenic events, such as the opening of the Suez Canal. The Mediterranean Sea has
multiple uses and pressures; fishing pressure, the introduction of non-indigenous species
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(NISs) and climate change cause major changes in Mediterranean marine biodiversity, as
does the presence of humans, such as vessel traffic and tourism, underwater noise and
pollution [58]. Furthermore, since the Mediterranean basin is surrounded by 21 states
belonging to three continents (Europe, Asia and Africa) and is characterized by a vast
political heterogeneity, different coastal management policies and aquaculture activities
are in place. An updated overview of the governance, research and innovation in the
Mediterranean region is reported in the “Blue Economy in the Mediterranean Report” [59],
which includes the marine and maritime economic and safety sectors of particular interest
to the Sustainable Blue Economy. Within this document, “algae” are included in one
of the goals for the diversification of mariculture products to be pursued over the next
ten years [59].

We extrapolated data through a literature search covering the past 20 years of research
on the properties and potential applications of Mediterranean seaweeds, which are shown
in Table S1. Among the various phyla of seaweed, Rhodophyta is the most investigated
(Figure 2a). A large amount of published data refers to the antimicrobial activity, followed,
in a smaller percentage, by the antioxidant and anti-inflammatory activities of seaweed
extracts [60–126], whereas only a few studies reported on seaweed bio-products [127–139],
such as biofuels and bioplastics (Figure 2b). Among Mediterranean countries, Tunisia, Italy
and Egypt were the ones with the largest number of published papers focusing on the
potential applications of Mediterranean seaweeds (Figure S1), including NISs.

To date, few Mediterranean countries, such as Spain, Morocco and Tunisia, harvest
seaweed from the wild or farm it and also do so only in low quantities [140,141]. The
harvesting of seaweeds is not an industrial activity practiced in this area since natural
seaweed production is low and not appropriate for meeting industry demand when com-
pared to oceanic resources. Furthermore, the absence of very significant tidal excursions
in most of the Mediterranean basin limits the abundance of accessible raw material and,
hence, the development of harvesting techniques. Mediterranean aquaculture to date has
been primarily focused on the production of fish [142], whereas seaweeds have received
increasing attention only lately and in a few North African countries [140].

By integrating data obtained from a web search with those obtained from the EMODnet
2022 (www.emodnet-humanactivities.eu/view-data.php (accessed on 25 February 2022))
and the Phyconomy Seaweed (https://phyconomy.net/ (accessed on 16 February 2022))
databases, we compiled a list (which is not meant to be exhaustive) of the main companies
and start-ups working on the production and/or processing of seaweed products in the
Mediterranean region (Table 1).

In the eastern Mediterranean basin, Israel is undoubtedly a pioneer country in land-
based seaweed cultivation [143,144], and its advanced technologies have been adopted by
emerging local companies and exported abroad [145]. In Israel, the preferential use of tanks
and ponds for seaweed culture is due to the conformation of its coastline [144]. Detailed
culture techniques and approaches for producing seaweeds were published as early as
1982 [145], whereas cultivation surveys of Ulva sp. and Gracilaria sp. in nets or single-layer
lines were only recently tested [129,146]. These two species are among the most cultivated
by local companies for human consumption (Seakura Ltd., Mikmoret, Israel, www.seakura.
co.il (accessed on 21 February 2022)) or for cosmetics and veterinarian products [145]
(Sealaria Ltd., Haifa, Israel, www.sealaria.co.il (accessed on 21 February 2022)). Along
the Adriatic and Ionian Sea coasts, algal production is restricted to microalgae [67] (e.g.,
Spirulina/Arthrospira) in Greece, whereas seaweeds have received less attention concerning
their biological activities and nutritional composition (Table S1).

www.emodnet-humanactivities.eu/view-data.php
https://phyconomy.net/
www.seakura.co.il
www.seakura.co.il
www.sealaria.co.il
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Table 1. Main companies and start-ups working on the production or processing of seaweed products
in the Mediterranean area. Data from web search with those obtained from the EMODnet 2022
(https://www.emodnet-humanactivities.eu/view-data.php (accessed on 25 February 2022)) and the
Phyconomy Seaweed database (https://phyconomy.net/ (accessed on 16 February 2022)).

Country Industry Name Value Chain Species Products

France Eranova
Farming and
harvesting;

applications
Ulva sp. Bioplastics

Israel Seakura Ltd.
Farming and
harvesting;

applications
Ulva sp.; Gracilaria sp. Nutraceuticals

Israel Sealaria Ltd.
Farming and
harvesting;

applications
Gracilaria sp. Nutraceuticals and

cosmetics

Israel Y.A. Maof Farming and
harvesting Sargassum sp. * Biogas

Israel Biotic Applications Bioplastics

Israel Algaeing Applications seaweeds Textile

Italy FAVINI Applications Ulva sp. *; Gracilaria sp. * Paper

Italy South Agro
Farming and
harvesting;

applications

Ascophyllum nodosum *;
Macrocystis sp. *; Laminaria

digitata *; green and
red seaweeds

Biostimulants and
Biofertilizers

Italy Guam Applications Laminaria digitata *; Fucus sp. *;
Undaria pinnatifida * Cosmetics

Italy Consonni Bioalghe Applications

Ulva sp. *; Fucus sp. *; Undaria
pinnatifida *; Palmaria palmata *;
Chondrus crispus *; Laminaria sp.

*; Lithothamnum calcareum *;
Saccharina latissima *; Porphyra sp.

*; Himanthalia elongata *

Nutraceuticals and
cosmetics

Italy Aboca Applications Fucus vesiculosus * Nutraceuticals

Italy B&V Italy Applications Gracilaria sp. *; Gelidium sp. *;
Pterocladia sp. * Hydrocolloids

Italy Prodotti Arca Applications Ascophyllum nodosum * Nutrition and
zootechnical products

Italy Java Biocolloid
Europe

Farming and
harvesting;

applications
Gracilaria sp. *; Gelidium sp. * Hydrocolloids

Italy Specialagri Applications brown seaweeds * Biostimulants and
biofertilizers

Italy Forfoods Applications Ulva spp. Food

Slovenia EKOGEA Applications Ascophyllum nodosum * Biostimulants

Spain Mediterranean Algae Farming and
harvesting Ulva lactuca

Cosmetic products;
alimentation;
biofertilizers

Tunisia SELT Marine Group
Farming and
harvesting;

applications

Gracilaria sp.; Gelidium
sesquipedale; Kappaphycus alvarezii

*; Eucheuma spinosum *;
Ulva lactuca

Hydrocolloids

* imported raw materials.

https://www.emodnet-humanactivities.eu/view-data.php
https://phyconomy.net/
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Among the North African countries (southern Mediterranean coastlines), seaweed
has not attracted as much aquaculture interest as bivalves and fish [56]. For example, in
Egypt, massive use of seaweeds is still an emerging field and is limited to pilot studies
on the chemical characterization of some potentially usable species [68,147,148] (Table S1),
including NISs such as Grateloupia gibbesii [147]. In Tunisia, several studies were performed
on the properties of seaweeds (Table S1), and many of these were mainly focused on
the culture of the most promising species, the red agarophytic alga Gracilaria gracilis in
the Bizerte Lagoon. The SELT Marine Group (http://www.seltmg.com/ (accessed on
21 February 2022)) is the only farm industry in Tunisia for the manufacture of agar and
carrageenan, produced from the cultivation of local algae, as well as from algae originating
from non-Mediterranean countries such as Mozambique and Zanzibar. As reported by
Ktari et al. [56], the export of seaweed phycocolloids from Tunisia amounted to 109.7 tons in
2015, 95% of this being agar. The harvesting and cultivation industries present in Morocco
operate mainly with seaweed species from the Atlantic coasts.

Regarding the northern Mediterranean countries, France supports the largest number
of macro- and microalgae companies in Europe; however, 90% of its production originates
from the Atlantic coast [141]. Along the Mediterranean coast, Eranova (/eranovabioplas-
tics.com/ (accessed on 25 February 2022)), a French, pilot, land-based system, uses green
macroalgae stranded on beaches as a resource for the production of bio-based, recyclable
and compostable resins. Several pieces of research on seaweed properties, including the
antifouling activity of Dictyota sp. and the properties of agars from Gracilaria dura and
Gracilariopsis longissima, were conducted in the Brusc and Thau Lagoons (Table S1). In
Spain, the utilization of seaweed resources was mainly developed on the northwestern
coast, where monospecific stands of red and brown macroalgae occur. The Spanish start-up
Mediterranean Algae (https://www.mediterraneanalgae.com/ (accessed on 20 February
2022)) is dedicated to the land-based cultivation of Mediterranean Ulva spp. To obtain
biomass and bioactive compounds with high added value for different applications such as
human food, biofertilizers and cosmetics.

5. Current Status of Seaweeds Production and Research in Italy
5.1. Biodiversity and Traditional Use of Seaweeds

The Italian floristic list of seaweeds includes over 800 taxa [149]. According to biogeo-
graphical origin, seaweed biodiversity is characterized by a high incidence of Atlantic taxa
(41.87%), followed by Mediterranean (25.74%) and cosmopolitan ones (21.51%), whereas
a lower percentage has Indo-Pacific (5.06%), Circumtropical (4.03%) and Circumboreal
(1.79%) origins [149]. Italian seaweed biodiversity is characterized by peculiar paleoen-
demisms, such as the brown algae Saccorhiza polyschides, Laminaria rodriguezii and Fucus
virsoides. Around 65 macrophytes were reported as NISs, the expansion and introduction
of which were facilitated by the presence of human activities [150]. However, according
to taxonomic and molecular revisions, seaweed biodiversity data are constantly being
updated and revised.

Although, in Italy, the use of seaweed does not have a solid and constant tradition
compared to the countries of central and northern Europe, the first texts on seaweed uses
date back to the period of the Roman Empire. In the De re rustica agriculture treaty by
L. Giunio Moderato Columella (4–70 d.C.), it is reported as “the cabbage, when it has six
leaves, must be transplanted, first spreading the liquid manure root and inserting it in the
earth wrapped in three seaweed bands. For this use is made, so quickly and keeps the
cooking and green colors without the use of soda”.

In the Sicilian Egadi Islands, an aqueous extract made with a mixture of red algae
was widely used to treat worm infections in children, and it was marketed out of the
islands [151]. To date, the use of local seaweeds is limited to food and concerns localized
folk customs, such as the Ulvaceae used in the “Italian fried” in Campania or the salads of
red algae Gracilaria, called mauru, in eastern Sicily.

http://www.seltmg.com/
https://www.mediterraneanalgae.com/
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5.2. Research, Harvesting and Industrial Activity of Seaweeds

The first research activities on seaweed use in Italy were carried on during the Second
World War (1940–1945) as part of a research project funded by the Central Laboratory of
Hydrobiology of Rome for the production of agar-agar used in laboratories. At that time,
the agar-agar was extracted exclusively from Gracilariaceae originating from Japan and
the Indo-Pacific area, and the start of such studies in Italy followed the drastic reduction
of products imported from the East. The red algae Gracilaria and Gelidium harvested from
the Venice Lagoon turned out to be the most promising; consequently, several collection
activities were started by local fishermen, and extraction was carried out by a local com-
pany [152]. With the end of the war, seaweed harvesting ended, although, in the 1980s,
collection activities were still carried out for the production of agar but only for food
gelatin. Since the 1960s, several pieces of research have been conducted to identify and to
extract agar and alginic acid from seaweeds to be used in food and for pharmaceutical or
cosmetic uses and as fertilizers. Caulerpa prolifera, abundant in the Marsala Lagoon (Sicily),
showed good qualities as a technical zoo feedstuff, suggesting an industrial exploitation
potential [153].

In the last ten years (Table S1), research has focused on the potential of seaweed
extracts in the pharmaceutical field as antimicrobics [154–160], anticoagulants [161,162]
and antidiabetics [64]. In the technological field, biomaterial as bio-oils [163] was obtained
from Gracilaria gracilis, whereas chlorophylls from Undaria pinnatifida were tested as dye in
photovoltaic cells [164]. Moreover, a cascade biorefinery approach for Gracilaria gracilis was
developed by Francavilla et al. [163], as well as various extraction protocols [165,166].

Although Italy is among the top three countries in Europe for Spirulina produc-
tion [141] according to FAO [25], it is only in 16th place for production of wild-stock
seaweeds, producing 1200 tons in total, and it is not present among farming countries.
In the early 2000s, the Italian food and pharmaceutical industries imported annually
~2000 tons of products derived from algal processing, as national production was insuffi-
cient [167]. The main reason for the absence of seaweed farmers was probably the high cost
of initial investment and personnel; moreover, the absence of a supply chain made the final
product uncompetitive compared to in other countries.

Industrial use of seaweed biomasses was successfully attempted in some Italian coastal
lagoons. These ecosystems, often rich in nutritive salts, produce high quantities of seaweeds
compared to other coastal environments. As reported by Petrocelli and Cecere [168],
Gracilaria gracilis (as Gracilaria confervoides) was harvested in the Lesina Lagoon (southern
Adriatic Sea) by local fishermen in the years 1970–1990 for agar extraction, yielding up to
~100 tons dry weight year−1. Moreover, following its drastic overexploitation, Gracilaria
field cultivation trials were carried out, increasing biomass to ~1200 tons dry weight
year−1 [168].

According to our web search, the majority of Italian companies import raw material
for their products (Table 1 and Figure 3).

In the Venice Lagoon (northern Adriatic Sea), Shiro Alga Carta is a type of paper de-
signed and manufactured by the Favini Srl company (Rossano Veneto, Italy) (www.favini.com
(accessed on 10 January 2022)). In the early 1990s, production started using the excess
biomass of Ulva species in the lagoon, while, in recent years, the company has been
using algae imported from Brittany to make up for the little biomass produced in the la-
goon. Similar to the Favini company, the multinational B&V Italy (https://www.agar.com
(accessed on 10 January 2022)), since the 1980s, has been using the biomass of Gracilaria spp.
From the Venice Lagoon for the production of a full range of different agar types for food,
bacteriological and technical applications [168]. To date, however, most of the seaweed
biomass is imported from a farm located in Vietnam.

www.favini.com
https://www.agar.com
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Several companies sell mostly liquid and powder biostimulants based on the im-
ported brown alga Ascophyllum nodosum from Atlantic coasts (Table 1). Among these,
SouthAgro (Taranto, Italy) (https://southagro.com/ (accessed on 10 January 2022)) is
the only start-up that, despite importing a quota of allochthonous biomass, cultivates
and uses Mediterranean red and green seaweeds for the production of biostimulants and
biofertilizer compounds.

In the field of wellness products, the Italian Guam brand (https://www.guam.it/
(accessed on 15 January 2022)) was created with the intention of developing an innovative
anti-cellulite preparation based on dried seaweed from Brittany mixed with clay and
natural extracts. To date, the range of products is particularly diverse, and the company
continues to produce them thanks to the algae harvested in northern France.

Finally, a peculiar experience is that of the Java Biocolloids (https://www.java-
biocolloid.com/ (accessed on 15 Juanuary 2022)), a leader company specializing in the pro-
duction of agar and carrageenan, both for use in the food industry and the pharmaceutical
sector. This Indonesian company created a branch in Trieste (northern Italy) to facilitate
product distribution across Europe and to invest in research and innovation.

5.3. Italy’s Commitment to Seaweed Research Projects in the Blue Economy

While companies linked to algal products are mostly distributed in northern Italy,
in recent years, several research projects (Figure 3)—funded at a regional or European

https://southagro.com/
https://www.guam.it/
https://www.java-biocolloid.com/
https://www.java-biocolloid.com/
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level—have been launched in southern Italy. The Apulia region has been particularly active
in the context of the Sustainable Blue Economy and the Bio-Based Circular Economy.

The REMEDIA Life project—“Remediation of marine environment and development
of innovative aquaculture: exploitation of edible/not edible biomass” (2017–2021)—tested
an integrated, multi-trophic aquaculture (IMTA) system in the Adriatic Sea, including
the cultivation of green algae Chaetomorpha linum, Cladophora rupestris and Ulva prolifera
and the red algae Gracilaria dura, Gracilaria gracilis, Gracilariopsis longissima and Hypnea cor-
nuta [64,168] (https://remedialife.eu/ (accessed on 16 February 2022)). The B-BLUE Project
(2020–2022), financed under the Interreg MED Programme, aims to create a cluster in the
Mediterranean in the field of marine biotechnology, including activities in the Adriatic Sea
related to algae production for high-value compounds and sustainable, integrated, multi-
trophic aquaculture (https://b-blue.interreg-med.eu/ (accessed on 15 February 2022)).

Different research projects focused on the extraction of secondary biometabolites
for different uses. The MANGIMAR Project—“Innovative fodders from seaweeds and
marine invertebrates” (2012–2014)—was funded by the Apulian Regional Administration
for the formulation of fish feeds based on the green alga Chaetomorpha linum from the Mar
Piccolo of Taranto. In this coastal lagoon, the ACTI.BIO.MAR Project—“Bioactive molecules
from marine biomasses and their potential employment in pharmaceutics and dietetic”
(2007–2010)—was funded with the aim of obtaining bioactive secondary metabolites from
marine biomass, including polyunsaturated fatty acids (PUFA) of red algae Gracilaria gracilis
and Gracilaria dura as improvers in the formulation of PUFA-rich food [109,168].

Some projects concerned the production of biometabolites or secondary products
obtained from algae, which were used for bioremediation processes. This is the case with
the INNOVAQUA Research Project—“Technological innovation for the improvement of
the productivity and competitiveness of Sicilian aquaculture” (2012–2015)—funded by the
National Operational Programme on Research and Innovation. The project focus was the
use of active biomolecules extracted from Gracilariceae for the prevention and treatment
of diseases of fishes. Actions were concentrated on the discovery of new substances with
antibiotic properties and on the formulation of feed partially using biomass from Gracilaria
spp. cultivated in fish farm wastewater. Gracilaria gracilis and Gracilaria dura from the Mar
Piccolo were tested, as well in the POINT Project, in bioremediation to reduce nitrogen in
seawater derived from mussel farming [168].

In the field of sustainable energy, the BALLO Project—“Biofuels from Algae in the
Lagoon of Lesina and Orbetello” (2010–2011)—was funded by the Italian Ministry for
Agricultural, Food and Forestry Policies with the aim of developing a sustainability assess-
ment and feasibility analysis to produce biodiesel from seaweeds harvested in lagoons.
The research consisted of the analysis of lagoon systems with the calculation of systemic
indicators of environmental sustainability (https://www.ecodynamics.unisi.it/, (accessed
on 15 February 2022)). The SEA ENERGY Project—“Sustainable Energy in Adriatic Regions:
knowledge to invest”—financed under the Adriatic IPA Cross-Border Co-Operation Pro-
gramme (2007–2013) focused on using Italian seaweed biomass harvested in the Adriatic
Sea (Goro Inlet) for energy production. In this context, Ulva spp., Gracilaria spp. and
Chaetomorpha spp. were tested for biogas production through anaerobic digestion [168].

Italy was involved as a partner in several EU projects investigating industrial processes
and applications of microalgae and seaweeds, such as INTERCOME (INTERnational COm-
mercialization of innovative products based on MicroalgaE), SALTGAE (demonstration
project to prove the techno-economic feasibility of using algae to treat saline wastewater
from the food industry) and in the active COST Action (CA20106) on Ulva species as a
model for an innovative mariculture.

https://remedialife.eu/
https://b-blue.interreg-med.eu/
https://www.ecodynamics.unisi.it/
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6. European and Italian Strategies and Regulations on Seaweed Bioeconomy

Current EU political priorities (e.g., the EU Blue Growth Strategy, the European Green
Deal and the EU Bioeconomy Strategy) favor a transition towards a sustainable economy,
which favors the development of the algal-based, green industrial sector and the use of
algae for sustaining the health of aquatic ecosystem.

In 2012, the European Bioeconomy Strategy ‘paved the way for a more innovative,
resource-efficient and competitive society that reconciles food security with the sustainable
use of renewable resources for industrial purposes, while ensuring environmental protec-
tion’ [169]. Italy has the third largest bioeconomy in Europe after Germany and France,
with EUR 330 billion annual turnover and two million employees [170]. In 2019, the Italian
Bioeconomy Strategy (BIT) was implemented (BIT II) [171] for greater interconnection of
the key pillars: primary production, the food industry, bio-based industry and the blue
bioeconomy. The main goal of BIT II is a 15% increase in turnover and employment in
the Italian bioeconomy by 2030. Based on Italy’s strategic geopolitical position in the
Mediterranean basin, BIT II also includes actions to improve sustainable productivity, social
cohesion and political stability through the implementation of bioeconomy strategies in
this area. In addition to the BIT II, the National Program for Fisheries and Aquaculture
supports the production and use of seaweeds at the national level (Figure 4).
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Several pieces of European legislation regulate seaweed end use and production, as
well as its environmental monitoring and conservation. In addition, three Italian ministerial
and legislative decrees regulate algal production (MD 03/04/2019) and algal use in medical
products (LD 219/2006) and as fertilizers (LD 75/2010) (Figure 5).
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7. Gaps and Perspectives of the Seaweed Based Bioeconomy in Italy

There are several limitations and gaps that need to be addressed in order to improve
seaweed-based bioeconomy development in Italy. Here, we point out some of these
limitations and provide potential perspectives, from basic research to that on the sustainable
management of seaweed resources.

7.1. Research and Development

Although Italian aquaculture provides 150,000 tons of aquatic products farmed in
800 aquaculture sites based on land or in transitional and coastal waters, seaweeds are
scarcely cultivated and are mainly imported from areas outside of the Mediterranean
Sea. Very few industries use local raw materials, and only a small number of seaweed
genera are currently being investigated in pilot-scale farming projects. Although, in the last
20 years, Italy has conducted numerous pieces of research on the application potential of
seaweeds (Figure S1), the industrial level has not yet been developed. To achieve a robust
research and development plan, it is necessary to invest in knowledge of seaweed biology
(e.g., diseases and pests, reproduction, etc.), as well as in the optimization of farming
technologies, including farm design and seeding techniques, by increasing collaboration
and attracting skills from abroad. Other relevant issues are related to genetic conservation
and the maintenance of biodiversity, including the evaluation of the seaweed natural
capital. As reported by Barrento et al. [172], an essential tool for producing better strains
for commercial seaweed species is the creation of national germplasm banks, which ensure
the preservation of desirable local traits and genetic diversity at the same time.
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7.2. Economy

Although there are important deficiencies in legislation and in new technology ap-
plications, the bioeconomy offers an interesting new approach, able to transform some-
thing unwanted or little valued into a resource. In this context, the major challenge is
related to obtaining increased funding for the creation of a new supply chain that leads
to socio-economic development, as well as to the sustainable management of seaweed
production. In this sense, different international and national initiatives could contribute
to a greater synergy among researchers and companies, i.e., the Blue Italian Growth Tech-
nology Cluster (BIG TC) (https://clustercollaboration.eu/content/blue-italian-growth-
technology-cluster-big-tc (accessed on 7 March 2022)), the Safe Seaweed Coalition (https:
//www.safeseaweedcoalition.org/ (accessed on 16 February 2022)), Biovoices (https://
www.biovoices.eu/ (accessed on 23 March 2022)) and others.

7.3. Resource Management and Conservation

New original ideas and visions of sustainable seaweed production in Italy and in
the whole Mediterranean basin are needed and might even consider the coupling of
integrated aquaculture and mariculture activities with environmental restoration and
conservation practices.

As a response to multiple stressors, including eutrophication, increasing coastal sedi-
ment loads and the impacts of urbanization, wild stocks of Mediterranean seaweeds are
being lost at alarming rates [173]. It is, therefore, widely recognized that a transition from
wild harvesting to seaweed aquaculture is needed to meet the growing industrial demand,
while avoiding the overexploitation of wild stocks. In order to maintain algal genetic
diversity and wild stocks, resource conservation strategies should be put in place. There
are several advantages to be gained from improving restoration measures (in addition to
protection and conservation) of declining natural seaweeds stocks, as their health status is
a prerequisite for maintaining ecosystem services and preserving genetic diversity. Restora-
tion is possible only if basic information about seaweeds species, protocols and the areas
to be restored are carefully addressed [174]. In this regard, a roadmap for Mediterranean
macroalgal restoration has been recently proposed to assist researchers and stakeholders
in decision making and considering the most effective methods (which also include the
outplanting of farmed seaweeds) in terms of cost and cost effectiveness [173].

Seaweed cultivation for commercial use is only slowly attracting attention in the
Mediterranean area, since several problems still persist, mainly in relation to the availability
of suitable sites and nutrients and to their potential impacts on the surrounding environ-
ment. In particular, in this area, the high level of competition for coastal space utilization
suggests that moving production offshore could be a solution (e.g., exclusive economic
zones) [145]. Moreover, in these waters, the scarcity of nutrients could be overcome through
the development of integrated, multi-trophic aquaculture systems. These could be designed
by coupling, for example, offshore fishing production with the farming of filter-feeder
invertebrates and macroalgae, which act as efficient reducers of fish cage wastes [175].
Although offshore algal biomass production holds promise for its sustainability, it remains
an extremely challenging endeavor due to logistical and cost implications [145].

A further interesting perspective could consider the use of NISs [176] as an oppor-
tunity for combining environmental management and bioeconomy benefits, as seaweed
NISs’ commercial uses could encourage their harvesting and control [177]. For example,
the species Undaria pinnatifida has caused concern all over the world because it has invaded
coastal environments, significantly altering non-native habitats and disturbing naviga-
tion. In Italy, this species produces a large amount of biomass during its seasonal blooms,
causing inconveniences for navigation activities. Lately, polysaccharides extracted from
U. pinnatifida showed promising antithrombotic [160,161] and antimicrobial [158,160] activi-
ties, opening up new perspectives on NIS uses and waste conversion into valuable biomass.
Despite monitoring and reports on NISs carried out in Italy in the last decade, there are
no specific dedicated plans for their prevention, control and management. The time has

https://clustercollaboration.eu/content/blue-italian-growth-technology-cluster-big-tc
https://clustercollaboration.eu/content/blue-italian-growth-technology-cluster-big-tc
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come for new approaches that are able to integrate the correct environmental management
of NISs with economic opportunities [36]. Moreover, real, sustainable seaweed resource
management should be integrated within the Maritime Spatial Planning (MSP) framework,
for example, by allocating the most suitable spaces for farming to reduce the competition
with other human activities, i.e., ship traffic or tourist and recreational activities. This
process should also include social and stakeholder acceptance and co-participation. At
the same time, a new cultural approach is needed, both for producers—the cultivation
and harvesting of algae would also allow greater diversification of fishing activities—and
consumers, shifting the stereotype of seaweeds as organisms associated with polluted
environments to those associated with the enhancement of properties and benefits.

8. Final Remarks

Sustainable Blue Economy development and efficient use of resources are the main
methods for managing and coping with the uncertainty of our future.

In this article, we gave an overview of the knowledge of the potential uses of Mediter-
ranean seaweeds with a focus on the Italian context. The open perspectives could be “food
for thought” for the development of the seaweed bioeconomy in other Mediterranean
countries. Although Italy has conducted numerous pieces of research on the potential
application of seaweeds, there are important deficiencies in industrial-scale applications in
conjunction with environmental management.

In this context, possible actions to promote a seaweed-based bioeconomy are:

- to invest in research on seaweed biology and farming technologies, also increasing
synergy between research and industry;

- to support the production of autochthonous species, which are recognized for their
uses, promoting a new seaweed-based supply chain;

- to combine correct environmental management of NISs with economic opportunities;
- to put in place conservation and restoration strategies for seaweeds within MSP with

the aim of creating a real, sustainable supply chain; those strategies should include
actions of co-participation to promote social and stakeholder acceptance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14095634/s1, Table S1: Potential applications of seaweeds from
the Mediterranean Sea; Figure S1: Number of reports on seaweed properties for each Mediterranean
country.
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118. Čagalj, M.; Skroza, D.; Razola-Díaz, M.d.C.; Verardo, V.; Bassi, D.; Frleta, R.; Generalić Mekinić, I.; Tabanelli, G.; Šimat, V.
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