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Abstract: The net primary productivity (NPP) dynamics in arid and semi-arid ecosystems are critical
for regional carbon management. Our study applied a light-utilization-efficiency model (CASA:
Carnegie–Ames–Stanford Approach) to evaluate the vegetation NPP dynamics of a desert steppe
in northern China over the past 20 years, and its response to climate change. Our results show
that the annual average NPP of the desert steppe was 132 g C m−2 y−1, of which the grass- and
shrub-dominated biome values were 142 and 91 g C m−2 y−1, respectively. The average change rate
of NPP was 1.13 g C m−2 y−1, and in the grassland biome 1.31 g C m−2 y−1, a value which was
significantly higher than that in shrubland, at 0.84 g C m−2 y−1. The precipitation and temperature
at different time scales in the desert steppe showed a slow upward trend, and the degree of aridity
tended to weaken. The correlation analysis shows that NPP changes were significantly positively
and negatively correlated with precipitation and temperature, respectively. In terms of temperature,
43% of the area was significantly correlated during the growing season, which decreased to 12% on
the annual scale. In 31% of the changed areas, the average NPP was 148.1 g C m−2 y−1, which was
higher than the remaining significant areas. This suggests that higher NPP levels help to attenuate
the negative effects of high temperature during the growing season on plant productivity in the
desert steppe. This improves the understanding of the carbon cycle mechanism of arid and semi-arid
ecosystems, which is beneficial to improving sustainable grassland development strategies.

Keywords: NPP simulation; CASA model; semi-arid ecosystems; desert steppe; climate change

1. Introduction

The vegetation net primary productivity (NPP) is an important indicator when quanti-
fying ecosystem carbon cycling, services, and sustainability [1,2]. In terrestrial ecosystems,
grassland ecosystems play an important role in global carbon dynamics, climate change,
and food security [3]. Changes in vegetation NPP may alter soil erosion and mineralization
and carbon cycling processes in grassland ecosystems by loss of plant coverage [4], thereby
increasing the risks of soil carbon loss and soil degradation [5]. Climate change plays
a critical role in the driving mechanism of natural grassland productivity change [6,7].
Vegetation productivity has often been clearly affected by climate change and frequent
drought events in grasslands [8]. In addition, climate heterogeneity will cause vegetation
to form a unique community structure and develop efficient light utilization strategies [9].
The spatial distribution of grassland NPP in turn shows corresponding heterogeneity char-
acteristics. Therefore, the response of grassland productivity to climate change at different
time scales and in different vegetation communities needs to be further clarified.

The Inner Mongolian plateau steppe is a major component of the Eurasian steppe,
and its productivity is highly sensitive to climate change. The Inner Mongolian Plateau is
controlled by the strong Mongolian high pressure in winter, and most areas are affected

Sustainability 2022, 14, 5581. https://doi.org/10.3390/su14095581 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14095581
https://doi.org/10.3390/su14095581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-9640-9411
https://doi.org/10.3390/su14095581
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14095581?type=check_update&version=1


Sustainability 2022, 14, 5581 2 of 16

by the East Asian monsoon in summer [10,11]. This makes the vegetation productivity of
the temperate grasslands here one of the most sensitive to climate change in the world.
Previous studies have shown that temperature and precipitation have been rising and
falling in Mongolia’s temperate grasslands, respectively [12,13]. In detail, climate warming
could inhibit the productivity of Mongolian grasslands [14]. Changes in interannual
precipitation could drive changes in net primary productivity [15]. However, the time scale
of these analyses of the impact of climatic factors on NPP is usually of years or growing
seasons. Therefore, the impact of climate variables at different time scales on NPP needs
further research.

In arid and semi-arid ecosystems, frequent drought events may lead to shrub invasion
in grassland ecosystems [16]. Climate change may affect NPP by altering the vegetation
structure and species composition of temperate grasslands. This phenomenon may cause
the original grass-dominated community structure to transition into a shrub-dominated
community. The shrub invasion may change the original light utilization efficiency and
water-use mechanisms of the communities in temperate grasslands [17], thereby affect-
ing the net primary productivity of grassland vegetation [18]. Temperature and water
conditions could regulate the NPP of vegetation by affecting the photosynthetic capacity
of plants [19]. In the remote-sensing model, the regulation of these NPPs is achieved by
correcting the maximum light utilization efficiency [19]. In conclusion, changes in com-
munity structure will change the value of maximum light utilization efficiency, which in
turn will change the estimate of NPP. Therefore, it is necessary to distinguish community
types in the estimation of NPP and the observation of its responses to climate change in
temperate grasslands.

A light utilization efficiency (LUE) scheme, the Carnegie–Ames–Stanford Approach
(CASA), has been widely used to estimate the NPP of different vegetation types in terrestrial
ecosystems. The CASA takes into account the relationship between productivity and
photosynthetically active radiation and environmental variables in estimating NPP [20–22].
During simulations using previous versions of the CASA model, the accuracy of the
vegetation-type map has been relatively poor, the maximum light utilization efficiency
of vegetation has been low, and the soil moisture model parameters have been difficult
to measure [23]. These factors increase uncertainty in NPP estimates. Zhu improved the
uncertainty of NPP estimates from the original CASA model [19,24]. In addition, the
cold–temperate desert steppe is located in the transition zone between desert and steppe
in the central part of the Inner Mongolia Autonomous Region. This region consists of
grass-dominated and shrub-dominated biomes. It is an important part of the temperate
steppe and an important livestock production base for northern China, accounting for
about 34.7% of its grassland [25]. Therefore, we applied an improved CASA model to
estimate NPP at different time scales and in different communities of the desert steppe.

We hypothesized that the response of NPP to climate change at different time scales
would differ by biome type. The objectives were to (1) simulate and estimate NPP in
different biomes in the desert steppe from 2000 to 2017; (2) assess changes in NPP over
temporal and spatial ranges; and (3) explore the response patterns of NPP in different
biomes to climatic parameters at different time scales.

2. Materials and Methods
2.1. Study Area

Our study area is located in the transition zone between desert and steppe in northern
China, which is a cold–temperate desert steppe in the southern part of the Inner Mongolian
Plateau (40◦50′ N to 45◦20′ N and 106◦10′ E to 114◦50′ E). Our study area was mainly
distributed over the following counties in the Inner Mongolia Autonomous Region of
China: Sunitezuo, Suniteyou, Erlianhaote, Siziwang, Daerhanmaomingan, Wulatezhong,
and Wulatehou from east to west (Figure 1). The desert steppe has poor climate conditions.
The population density is less than 10 people per square kilometer, but the town is highly
concentrated. This environmental condition provides a relatively independent platform for
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our observations. In addition, the desert steppe is located at the edge of the area influenced
by the East Asian summer monsoon and is therefore affected by the alternation between
temperate continental and monsoon climates. Our statistics show that from 2000 to 2017,
the mean annual temperature ranged from 3 ◦C in the northeast to 8 ◦C in the southwest,
and the mean annual precipitation ranged from 145 mm in the west to 320 mm in the
south. Precipitation mainly occurs from May to September, accounting for 85% of the
annual precipitation. The growing season in the region begins in April and ends in October,
with precipitation reaching its maximum in August [26]. The grassland plant community
consists of grass-dominated and shrub-dominated biomes, and the dominant plant species
include Stipa klemenzii, Stipa breviflora, Stipa glareosa, Salsola collina, Cleistogenes songorica,
and Artemisia frigida. The soils in our study area are dominated by Kastanozems and Calcisols
from east to west (Figure 1).
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Figure 1. Spatial distribution map of biomes dominated by grass and shrubs in the temperate desert
steppe in the Inner Mongolia Autonomous Region. Isolines are for the mean annual precipitation
and mean annual temperature based on data from 2000 to 2017. The inset map shows the northern
limit of the East Asian Summer Monsoon (EASM).

2.2. Simulation of NPP

According to the suitability of the CASA model, we applied the improved CASA
to estimate NPP [24]. The estimated NPP in the model is represented by the Absorbed
Photosynthetically Active Radiation (APAR) and the actual light utilization efficiency (ε).
Therefore, ε can be described by:

NPP (x, t) = APAR (x, t) × ε (x, t) (1)

where ε(x, t) represents the actual light utilization efficiency of pixel x in month t (g C/MJ);
APAR(x, t) represents the light and effective radiation absorbed by pixel x in month t
(MJ/m2/month).

2.2.1. Estimation of APAR

We used remote-sensing data to estimate the fraction of photosynthetically active
radiation (PAR) absorbed by plant leaves (APAR). This process is based on the reflection
characteristics of vegetation in the infrared and near-infrared bands. Photosynthetically
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active radiation (PAR, 0.4–0.7 um) is the driving force for plant photosynthesis, the capture
and utilization of which by plants is a necessary for the origin, evolution, and persistence
of the biosphere. The photosynthetically active radiation absorbed by plants depends on
the characteristics of the vegetation itself and the total amount of solar radiation. Therefore,
APAR can be described by:

APAR (x, t) = SOL (x, t) × FPAR (x, t) × 0.5 (2)

where SOL(x, t) represents the total solar radiation of pixel x in month t (MJ/m2/month);
FPAR(x, t) is the absorption ratio (unitless) of the vegetation layer to the incident light and
effective radiation; the constant 0.5 refers to the ratio of the effective solar radiation that
can be used by vegetation to the total solar radiation (wavelength is 0.38–0.71 um).

There is a linear relationship between FPAR and NDVI within a certain range [27].
This relationship can be determined based on the maximum and minimum NDVI values
for a certain vegetation type.

FPAR (x, t) =
(NDVI (x, t)− NDVIi, min)× (FPARmax − FPARmin)

(NDVIi, max − NDVIi,min)
+ FPARmin (3)

where NDVIi,max and NDVIi,min are the maximum value and minimum value of NDVI that
can appear for the i-th vegetation type during the study period, respectively.

There is a linear relationship between FPAR and the ratio vegetation index (SR), which
can be described by:

FPAR (x, t) =
(SR (x, t)− SRi, min)× (FPARmax − FPARmin)

(SRi, max − SRi,min)
+ FPARmin (4)

where FPARmax and FPARmin are 0.95 and 0.001, respectively, and are independent of
the vegetation type. SR was determined by the following equation, where SRi,max and
SRi,min correspond to the 95th and 5% lower percentiles of NDVI for the first vegetation
type, respectively.

SR (x, t) = [
1 + NDVI (x, t)
1− NDVI (x, t)

] (5)

The FPAR estimated by NDVI is higher than the measured value, and the FPAR
estimated by SR is lower than the measured value. Therefore, we take the mean value as
an estimate of FPAR to minimize the error.

FPAR (x, t) =αFPARNDVI + (1 − α)FPARSR (6)

where α is the adjustment coefficient of the two methods, and we determine it to be 0.5 (the
average of the two).

2.2.2. Estimation of Actual Light Utilization Efficiency

Vegetation has a maximum light utilization efficiency (εmax) only under ideal condi-
tions, while εmax in practical conditions will be affected by moisture and temperature. It
can be described by:

ε(x, t) =Tε1 (x, t) × Tε2 (x, t) ×Wε (x, t) × εmax (7)

where ε(x, t) is the actual utilization rate of light energy, Tε1(x, t) and Tε2(x, t) represent the
stressing effect of low temperatures and high temperatures on the utilization rate of light
energy (unitless), respectively, and Wε(x, t) is the water-stress influence coefficient (unitless).

Tε1(x, t) reflects the limitation of photosynthesis by intrinsic plant biochemistry at low
temperatures and high temperatures and reduces net primary productivity.

Tε1 (x, t) = 0.8 + 0.02 × Topt(x) − 0.0005× [Topt(x)]2 (8)
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where Topt(x) represents the optimum temperature. It is the monthly average temperature
(◦C) when the NDVI value reaches the highest value in a certain region within a year. When
the average temperature of a certain month is less than or equal to −10 ◦C, Tε1(x, t) is 0.

When the ambient temperature changes from the optimum temperature Topt(x) to a
higher or lower temperature, the trend by which plant light utilization gradually decreases
is Tε2(x, t).

Tε2 (x, t) = 1.184/
{

1 + exp
[
0.2×

(
Topt(x) − 10− T(x, t)

)]}
×1/

{
1 + exp

[
0.3×

(
−Topt(x) − 10 + T(x, t)

)]} (9)

where T(x, t) is the average temperature (◦C) of a certain month.
The influence coefficient of water stress, Wε(x, t), reflects the effect of the effective

water condition that plants can use on light utilization. As the available moisture increases
in the environment, Wε(x, t) increases gradually. Its value ranges from 0.5 (in extremely dry
conditions) to 1 (in very wet conditions).

Wε (x, t) = 0.5 + 0.5 × E (x, t) / Ep (x, t) (10)

where E(x, t) is the regional actual evapotranspiration (mm) and Ep(x, t) is the regional
potential evapotranspiration (mm).

Monthly maximum utilization efficiency, εmax, varies with vegetation types. The global
maximum light utilization efficiency used in the initial version of the CASA model shows
a lower NPP estimate for China. Zhu, Pan, He, Wang, Mou and Liu [23] calculated the
APAR of the pixel, considering the influence of temperature and water stress factors. They
simulated the εmax of each vegetation type by comparing the measured NPP values in the
same time period, following the principle of minimum error. The results show that the
εmax of temperate grassland and shrubland is 0.542 and 0.429 g C/MJ, respectively, which
is well-verified in practical applications [19]. Therefore, this εmax value is also used in
our study.

2.3. Estimation of SPEI

The FAO-56 Penman–Monteith equation was used to calculate the standardized
precipitation–evapotranspiration index (SPEI) and was used to represent potential evap-
otranspiration. The important climatological and ecological index, SPEI, can be used to
explore the extent of drought and its potential impact on ecosystem cycle processes [28]. The
procedure for calculating this index was described in detail in a study by Beguería et al. [29].
The value of SPEI can reflect previous states of water balance or abnormality in different
periods [30]. We applied SPEI to reflect changes in the water status of the study area on
seasonal and annual scales, as well as changes over the entire study period.

2.4. Data Description and Statistics

We obtained the MODIS MOD13Q1 Terra vegetation NDVI from the NASA Reverb
website (https://earthdata.nasa.gov/, accessed on 18 March 2022) from 2000 to 2017, which
we used for the NPP simulation. The MOD13Q1 data had a spatial resolution of 250 m and
a temporal resolution of 16 days. We used the quality assurance band and a composite day
band as ancillary data before the NPP simulation. Cloud contamination was determined
when a point in the time series had a vegetation index usefulness index greater than 8. In
such cases, we used linear interpolation of adjacent points instead. There were extremely
noisy points, with a random NDVI increase or decrease by more than 0.4, on 16 days, and
these were also rejected and replaced by linearly interpolated values using adjacent points.
We then linearly interpolated the unevenly spaced NDVI time series using composite daily
bands. NDVI time-series preprocessing was reconstructed by harmonic analysis of time
series (HANTS) filtering [31].

Land use data from the Inner Mongolia Autonomous Region in 2015 were collected from
the Resource and Environmental Science and Data Center of the Institute of Geographical Sci-

https://earthdata.nasa.gov/
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ences and Natural Resources Research, Chinese Academy of Sciences (https://www.resdc.cn,
accessed on 18 March 2022). The vegetation types in Figure 1 were extracted from a map of
vegetation types in China with a scale of 1:1,000,000 [32]. The meteorological data sources
in the study area from 2000 to 2017 were obtained from the China Meteorological Data
Sharing Service System (http://data.cma.cn, accessed on 18 March 2022). Among them, the
monthly average solar radiation was obtained from 99 national standard meteorological
stations in China, and the monthly average temperature and monthly total precipitation
were recorded by 39 national standard meteorological stations in the Inner Mongolia Au-
tonomous Region. Furthermore, data were statistically analyzed using one-way analysis of
variance (ANOVA) followed by Fisher’s LSD test (p < 0.05). To assess the association be-
tween NPP and climatic factors of precipitation, temperature, and SPEI at <0.05 significance
(p) level, the Pearson correlation (r) analysis was used.

3. Results
3.1. Temporal and Spatial Variation of NPP

The annual average NPP in the desert steppe from 2000 to 2017 was 131.93 g C m−2 y−1

(Figure 2a). The annual average NPP of grass- and shrub-dominated biomes were 141.8 and
90.6 g C m−2 y−1, respectively. This is consistent with the original reference for improved
CASA [33]. The highest NPP value in the study area appeared in the southeast, with an
average value higher than 220 g C m−2 y−1, but the area accounted for only 2.9%. The lower
NPP values appear in the middle and western regions, and 60% of the study areas have
NPP values below 140 g C m−2 y−1. Over the past two decades, the change in NPP showed
obvious spatial heterogeneity (Figure 2b). The average annual change rate of NPP was
1.13 g C m−2 y−1, and 72.4% of the study area had a positive NPP change rate. There was a
trend of NPP decline in the central and eastern areas (from –1 to –2 g C m−2 y−1), but only
in 1.6% of the total area. The areas with significant changes in NPP accounted for 5.5% of the
total area (p < 0.05), of which 98% were significantly increased. Biome comparison showed
that the average increase rates of grassland and shrubland were 1.31 and 0.84 g C m−2 y−1,
respectively, and the former was significantly higher than the latter (p < 0.05).

3.2. Changes in Climate Variables

The average annual precipitation in the desert steppe was 186.7 mm, with an annual
increase of 0.41 mm (Figure 3). The average precipitation in the growing and non-growing
seasons was 173.8 and 12.9 mm, respectively. The average precipitation outside of the
growing season accounted for 7% of the average annual total precipitation, with an average
annual increase rate of 2.0%, 0.27 mm y−1. The annual increase rate was significantly higher
than during the growing season, which was 0.12% (i.e., 0.23 mm y−1). In the grassland
biome, the precipitation during the growing season and outside the growing season was
175.2 and 12.4 mm, respectively. In the shrub-dominated biome area, precipitation during
the growing season and outside of the growing season was 166.9 and 11.8 mm, respectively.
Furthermore, the rate of increase in precipitation in the grassland biome was higher than
that in shrubland, especially in the growing season.

The mean annual temperature outside of the growing season increased by about 1.0 ◦C
during the past two decades in the study area, which was higher than that during the
growing season (+0.38 ◦C) and the annual average temperature (+0.59 ◦C). The average
temperature in the grassland biome area was 15.5 ◦C and −9.2 ◦C in the growing and
outside of the growing seasons, respectively (Figure 4). For the shrubland, the average
temperature during the growing season and outside the growing season was 15.7 and
−8.7 ◦C, respectively. The temperature change rates of grass- and shrub-dominated biomes
at different temporal scales were consistent.

The minimum and maximum SPEI values of the desert steppe at the annual scale
were −2.13 and 1.55, respectively (Figure 5). The average annual minimum and maximum
values of SPEI during the growing season were −1.98 and 1.61, respectively. There was a
marked alternation between wet and dry years during the over past two decades.

https://www.resdc.cn
http://data.cma.cn
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evapotranspiration index (SPEI) (a–c); SPEIgs, the SPEI during the growing season (d–f). The shadow
represents the 95% confidence interval of the fitted line.
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3.3. Correlations between NPP Changes and Climate Variables

We explored the potential driving mechanisms of NPP changes in different biomes
by analyzing the correlations between NPP and major climate driving variables (Figure 6).
Overall, the NPP responses of grass- and shrub-dominated biomes to climate change
were consistent. There was a significant positive correlation between precipitation and
NPP change. Precipitation during the growing season had a particular and significant
promoting effect on NPP change. The temperature was negatively correlated with NPP
change. This shows that the temperature increase has an inhibitory effect on the increase in
NPP, especially in the growing season. There was a significant positive correlation between
the SPEI value and the change in NPP. The shows that the NPP variation of the desert
steppe was highly dependent on water conditions.
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Figure 6. Summary of correlations between the NPP and climate variables (Pearson’s r) at different
time scales ((a), grassland biome; (b), shrubland biome; (c), and total area) from 2000 to 2017. NPP—
net primary productivity; Pyr—total annual precipitation; Tyr—average annual temperature; SPEIyr—
annual average standardized precipitation—evapotranspiration index (SPEI); Pgs—precipitation
during the growing season; Tgs—daily average temperature during the growing season; SPEIgs—the
average SPEI during the growing season. Pogs—precipitation outside the growing season; Togs—
daily average temperature outside the growing season. The cross showed no statistically significant
correlation, and the width and orientation of the ellipse represent the correlation coefficient values
and positive or negative correlation.
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3.4. Impact of Climate Change on NPP Dynamics

In arid and semi-arid regions, changes in annual precipitation often have a significant
impact on NPP. In our study, NPP was significantly positively correlated with changes in
annual precipitation (Pyr) and growing season precipitation (Pgs), and the area proportions
with significant correlation were 91% and 89%, respectively (Figure 7). There was a signif-
icant positive correlation between NPP and precipitation outside of the growing season
(Pogs) in the eastern part of the study area (1.7% of the total area). This indicates that the
increase in NPP in the desert steppe may benefit from the increase in precipitation outside
of the growing season.
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Figure 7. The spatial distribution of the correlation between NPP and temperature (Pearson’s r) at
different temporal scales ((a,b), annual; (c,d), growing season; and (e,f), outside the growing season).
Blue areas in the inset map indicate statistically significant correlations, white areas indicate no
statistical significance. Pyr—total annual precipitation; Pgs—precipitation during the growing season;
Pogs—precipitation outside the growing season.
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Based on the correlation analysis of temperature and NPP, there was a significant
negative correlation of NPP changes with Tyr, Tgs, and Togs, respectively, and the area
proportions were 12%, 43%, and 0.4%. It was shown that temperature increases at different
time scales had negative effects on NPP (Figure 8). In the eastern part of the study area, with
higher latitude, there was a positive correlation between NPP and Togs. This indicates that
the temperature increases outside of the growing season may promote NPP. In comparison,
it was found that the temperature rises in the growing season had a significant negative
effect on NPP in 43% of the area. This was a significantly larger area than the 12% seen for
significant responses to annual temperature changes.
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Figure 8. The spatial distribution of the correlation between NPP and temperature (Pearson’s r) at
different temporal scales ((a,b), annual; (c,d), growing season; and (e,f), outside the growing season).
Blue areas in the inset map indicate statistically significant correlations, white areas indicate no
statistical significance. Tyr—average annual temperature; Tgs—daily average temperature during the
growing season; Togs—daily average temperature outside the growing season.
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SPEI could be used to determine the occurrence, duration and intensity of droughts. In
our study, more than 80% of the area represented a significant positive correlation between
NPP and SPEIyr and SPEIgs (Figure 9). The annual NPP changes represented a significant
positive correlation with SPEIyr and SPEIgs in 90% and 82% of the study area, respectively.
The average values of both SPEIyr and SPEIgs were less than 0, which also proved that NPP
in the study area was significantly affected by wet and dry conditions.
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Figure 9. Spatial pattern of the correlation (Pearson’s r) between NPP and the standardized
precipitation—evapotranspiration index (Pearson’s r) at different temporal scales ((a,b), annual;
(c,d), growing season). In the inset map, blue areas show statistically significant correlations and white
areas show no statistically significant correlation. SPEIyr—annual mean standardized precipitation—
evapotranspiration index (SPEI); SPEIgs—the SPEI during the growing season.

4. Discussion
4.1. NPP Magnitude and Distribution

Accurately quantifying vegetation NPP of different community types is an important
condition for understanding the ecosystem carbon cycle and predicting the impact of
climate change [34,35]. The sensitivity of desert steppe NPP to environmental changes
determines the importance of its NPP dynamics in terms of the regional and terrestrial
ecosystem carbon budget. The annual average NPP of the study region over the past
two decades was 131.93 g C m−2 y−1. Compared with the grassland types adjacent to
the desert steppe, the annual average NPP of the temperate typical steppe and meadow
steppe were usually greater than 150 and 250 g C m−2 y−1, respectively [36]. The annual
average NPP of grass- and shrub-dominated biomes were 141.8 and 90.6 g C m−2 y−1,
respectively. The value of the grassland biome was higher than that of the shrubland,
mainly due to the canopy coverage caused by habitat differences [37]. This difference
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indicates the necessity of distinguishing vegetation biomes in the study of NPP dynamics
in desert steppe ecosystems.

Spatially, the annual average of NPP in the south was greater than 200 g C m−2 y−1,
and generally higher than the value in the north by about 100 g C m−2 y−1. The spatial
distribution of NPP in the desert steppe was similar to the precipitation contour, which
shows the importance of climatic variables in the spatial distribution of NPP. The study
area is affected by the East Asian monsoon climate, and the distribution of precipitation
decreases from south to north and west. Therefore, the spatial distribution of NPP may be
dominated by climatic factors in the desert steppe.

4.2. NPP Dynamics and Main Driving Processes

The poor habitability of the study area provides an independent observation platform
with a relatively specific environmental disturbance factor for this study. The average
annual change rate of NPP was 1.13 g C m−2 y−1, with an insignificant increase. However,
there was a significant increase in only 5.5% of our study area. This phenomenon mainly
appears in the western and northern parts of the study area, and the NPP was usually less
than 150 g C m−2 y−1. Therefore, the regions with relatively low NPP in the desert steppe
showed a more obvious vulnerability to climate change.

Our study found that the regions with significant changes in NPP generally had
lower precipitation in the desert steppe. This result is consistent with the results of the
correlation analysis between NPP and precipitation in the temporal dimension, showing
that precipitation was an important driving factor for NPP changes in arid and semi-
arid ecosystems. In terms of time-scale comparison, the effects of precipitation changes
in the desert steppe’s productivity in the growing season and on the annual scale were
consistent. The impact of precipitation changes outside of the growing season on NPP
was not significant in grass- nor shrub-dominated biomes. In contrast, previous studies
have shown that precipitation outside of the growing season is significantly beneficial
to the carbon sequestration of grassland biomes, and that it causes carbon biomass to
increase [38]. However, neither the NPP changes of the grassland biome nor the shrub-
dominated biome showed a significant response to precipitation outside of the growing
season in our study. This may be due to the fact that precipitation outside the growing
season has a more significant effect on the underground part of the vegetation in the
desert steppe. Precipitation changes significantly affect soil microbial community structure,
quality and activity in arid regions, which in turn interfere with root growth and exudates of
grasses to limit total plant biomass [39,40]. However, this phenomenon cannot be estimated
at the regional scale by the photosynthetically active radiation model (CASA) based on
satellite observations. Therefore, the effects of precipitation outside the growing season on
the desert steppe’s productivity and carbon cycle need to be further verified by reasonable
field experiments.

Temperature is an important limiting factor of productivity dynamics in mid-latitude
steppe ecosystems in the Northern Hemisphere [41,42]. Our study shows that there was a
negative correlation between temperature and NPP in both grass- and shrub-dominated
biomes during the growing season. The effects of annual and outside-of-growing-season
temperature changes were not significantly different between the two biomes. However, in
the spatial dimension, the area where the temperature was significantly correlated with
NPP accounted for 12% (average NPP was 144.6 g C m−2 y−1) on the annual scale and 43%
(average NPP was 139.8 g C m−2 y−1) during the growing season. The average NPP of the
remaining 31% of the region was 148.1 g C m−2 y−1, which was significantly negatively
correlated during the growing season but not on the annual scale. This suggests that the
higher the productivity of desert steppe vegetation, the stronger the stress resistance and
resilience to large temperature changes during the growing season. This may be due to the
fact that vegetation with higher productivity usually has a more developed root system,
which in turn imparts stronger nutrient uptake and transport capabilities [43]. This will
help the vegetation maintain normal physiological and metabolic activities under extreme
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temperature events. Therefore, vegetation with higher productivity in the desert steppe
has better resistance and resilience to temperature changes during the growing season.

4.3. Uncertainties and Limitations

Light-use-efficiency models have been widely used to estimate the net primary pro-
ductivity of regional vegetation. To perform regional-scale simulations, we applied kriging
interpolation to scale the site data to the pixel level. The more stations there are in the inter-
polation process, the less uncertainty in the results [44]. There were six national standard
weather stations in the study area, as well as other extra-regional weather stations in the
east, south, and west. In future research, meteorological data from outside of China to
the north will be supplemented, which will improve the accuracy of our data expansion.
In addition, the towns in the study area are few and concentrated, and the local govern-
ment has implemented extensive policies related to steppe enclosure management and
controlling grazing intensity. However, grazing is still one of the most important factors
affecting the accuracy of NPP estimation. Therefore, in order to accurately simulate the
driving mechanisms of NPP, we need to improve the constraints of the above conditions in
future work.

5. Conclusions

The annual average NPP of the desert steppe in Inner Mongolia was 131.93 g C m−2 y−1,
and the average NPPs of the grass- and shrub-dominated biomes were 141.8 and
90.6 g C m−2 y−1, respectively. The NPP increased faster in the grassland biome than
in the shrub-dominated biome. Precipitation and temperature at different time scales
showed a slow upward trend, and the degree of aridity tended to weaken. Precipitation
and temperature changes have significant effects on desert steppe NPP, with precipitation
changes being the dominant factor. As for our hypothesis, the results indicate that the
grass- and shrub-dominated biomes did not show significant differences due to changes in
climatic variables. However, we found that when the net primary productivity of the desert
steppe vegetation was greater than 150 g C m−2 y−1, it was beneficial to the vegetation’s
resistance and resilience to high temperature during the growing season. We conclude
that, if vegetation maintains high productivity levels and the area adheres to controlled
grazing intensity, the vegetation will be better able to adapt to frequent high-temperature
and drought events in the mid-latitude region, and the sustainable development of the
steppe ecosystem will be maintained.
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