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Abstract: With the rapid and unregulated nature of urban expansion occurring in Chattogram,
Bangladesh, the adoption of urban growth restriction mechanisms such as the urban growth boundary
(UGB) can provide a robust framework necessary to direct the development of built-up areas in a way
that curtails the growth in environmentally sensitive areas of the city. Using a support vector machine
(SVM)-based urban growth simulation model, this paper examines the areas of future contiguous
expansion of the city to aid in the delineation of the UGB. Utilizing landcover, topographic, and
population density data from a variety of sources for the past twenty years, the SVM method with the
radial basis function (RBF) kernel is used to develop a model based on fourteen predictor variables. A
grid-search is used to tune the hyperparameters and determine the best performance combination of
the hyperparameters for the RBF kernel function used in the SVM. The final SVM model using the best
performance combination of the hyperparameters indicates a high percentage agreement of 91.79%
and a substantial agreement for the Kappa coefficient of 0.7699. The developed SVM simulation
model identifies potential areas that are more likely to undergo urban expansion in Chattogram in
the next twenty years and provides aids for a stringent and strict delineation of UGB for this region.

Keywords: urban growth boundary; Chattogram; Bangladesh; Chittagong; support vector machine

1. Introduction

Bangladesh has experienced healthy economic growth over the last several decades,
largely driven by a transition from a rural agriculture-based economy towards a more
modern urban economy [1]. This has resulted in a surge of migration from the rural
areas into the cities [2] and rapid expansions of urban footprints, particularly among the
largest cities such as Dhaka and Chattogram [3]. However, due to the lack of adequate
forward-looking planning, the city’s expansion has largely taken place in an unregulated
and chaotic manner [4]. For example, in Chattogram (also known as Chittagong), one
of the world largest port cities and the second-largest metropolitan area in Bangladesh,
large-scale housing projects and constructions have taken place without prior approval,
and subdivision/sales of land lack provisions for basic amenities [4]. The encroachment
of agricultural land and lowland areas is also very common to make space for housing
or commercial developments. A large portion of this urban development has occurred
in the form of slums and squatter settlements, which have little to no access to facilities
and services [5]. This form of unregulated growth patterns has led to create negative
environmental issues such as pollution, sanitation, traffic congestion, and crime, putting
severe adverse pressure on the overall ecosystem of the region [4]. There is an immediate
need to revisit the regulatory and policies instruments to address these concerns.

The urban growth boundary (UGB) is a planning/policy instrument that has been
effectively used in various countries, such as China, Saudi Arabia, USA, and Switzerland,
for urban management and to control the haphazard expansion of the city [6–9]. This
paper proposes the implementation of UGB policy to address the issues of sustainable
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growth for the city of Chattogram and explores the methodological tools that could be
potentially used to aid in the application of this policy. Particularly, the paper examines
the implementation of the support vector machine (SVM)-based urban growth simulation
model to aid in the delineation of the UGB for the city. The remainder of the paper is
organized as follows: Section 2 examines the literature and the application of UGB within
developing countries, Section 3 discusses the methodological approach to delineation of
UGB and the SVM, Section 4 provides the results of the urban growth simulation, and
Section 5 provides a discussion and conclusion.

2. Literature Review on the Urban Growth Boundary within Developing Countries

UGBs, in simple terms, can be defined as land regulations that have been put into place,
in most cases, by the local government to prohibit urban growth and development beyond
a defined boundary [9–11]. The UGBs are designed to protect non-urban land outside the
boundary and to promote compact, contiguous, and sustainable urban development [10].
The UGB, as an urban growth policy tool, has been implemented in a wide variety of
cities in both the developed and the developing world. In the United States, several states,
including Oregon [12], Washington [13], and Tennessee [14], have implemented UGBs for
various cities within the state. Outside of North America, developed countries such as New
Zealand [15], Belgium [16], The Netherlands [17,18], and Spain [19], to name a few, have
also effectively utilized UGB as a prominent urban growth-restriction strategy.

The adoption of UGB in developing countries and transitioning economies [20] has
been limited. To the best of our knowledge, there have only been five developing or
transitioning countries where UGB has been explicitly implemented as an urban growth
control mechanism: namely Albania [21], Chile [22], China [23], Saudi Arabia [24], and
South Africa [25]. Although the concept of UGB remains the same in both developed and
developing countries, it should be noted that the planning and implementation of the
UGB for developing countries will require distinctly different approaches as compared
to developed countries, particularly due to differences in the nature of urban expansion
observed in these countries [26]. For developed countries, such as the US, urban sprawl has
been largely signified by low-density, non-residential development, and UGBs have been
used to restrict this expansion [27]. In comparison, for developing countries, urban sprawl,
particularly around the periphery of megacities and emerging cities, is associated with
the expansion of compact and high-density built-up areas, usually consisting of informal
dwellings and slums [28,29]. Furthermore, the urban sprawl in developing countries is
often linked to rapid growth of a city, leading to the inability of the city to provide sufficient
services to its citizens, and hence resulting in poor, unplanned neighborhoods that lack
basic necessities such as sanitation, running water, electricity, and paved roads [28,30].
Thus, when planning for a potential UGB within a developing country, such as Bangladesh,
these additional issues regarding urban growth would need to be addressed in the adoption
and implementation process for the UGB to be successful.

A number of studies, related to both developed and developing countries in which
UGB has been implemented, have expressed concerns regarding the overall impact of
UGB on urban expansion, its ability to address the sustainable growth of the city [31–33],
and the containment of built-up urban areas within the designated boundary [34–36].
Specifically, amongst the developing countries, the primary reason for concern regarding
the success of UGB can be attributed to the underlying issues related to urban governance
and political/policy conflicts. Studies of UGBs in Chile and Albania have indicated the
absence of clear regulations, inadequate supporting policies, and an unclear definition of
jurisdiction as some of the leading factors related to issues with effective administration of
the UGB [22,37]. These countries have also suffered from a lack of institutional capacities
needed to support and enforce the property rights [38] and housing policies [39] within the
UGB that have led to large tracts of land being developed outside the designated boundary.
In other countries, including China and Saudi Arabia, the external influences from the
business elite in the urban policymaking process, pressures for economic development-
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driven private businesses and political interests, as well as exploitation of loopholes and
a general lack of oversight have resulted in urban buildup outside of the intended UGB
in these countries [22,23,40,41]. Furthermore, in countries such as South Africa, a lack
of collaborative efforts between the municipal and provincial government has created
disputes over the UGB delineation, which has led to the eventual dissolution of the UGB
itself [34,42].

Following these concerns regarding urban governance, particularly in initial adoption
of the UGB, a lack of effective delineation of the boundary has been seen as a major concern
with regards to its success. For China, the limited success of the UGB implemented in the
first planning period has been attributed to the ineffective delineation that was produced
solely based on the planned-economy architecture that had been used for the past several
decades [35]. The archaic methodology used for delineation vastly underestimated the
10-year growth trajectory of the city, thus leading to insufficient allocation of land within
the UGB and an ineffective UGB [43]. Similarly, for Saudi Arabia, the inefficiencies in the
UGB have also been linked to delineation issues that have mainly arisen from technical
limitations and institutional deficiencies due to the absence of trained planners, surveyors,
and architects in most of the municipalities [44]. These delineation issues were further
exacerbated by the use of outdated base maps and census data, hence leading to an overall
inefficient UGB [44]. For Albania and Chile, the delineation process of the UGB has been
largely arbitrary, with limited use of spatially explicit data used in the delineation process
leading to ineffective implementation of the UGB [45–47].

Despite these criticisms, there has been a growth in popularity of UGB as an urban
growth-restriction tool, with China [48,49], Saudi Arabia [50,51], and South Africa [42,52]
in the forefront. These countries have been in a continuous process of updating and
upgrading the UGB based on the needs and requirements of the cities, with significant
research being conducted on the delineation and implementation of UGB policies [6,50,53,54].
Additionally, over the last few decades, there has been a resurgence in the literature
examining the adoption and delineation of UGB within other developing countries where
it has not been previously implemented. Table 1 provides a list of selected literature that
has examined the potential use of UGB as an urban growth control mechanism within
developing countries and transitioning economies. The literature can broadly be separated
into two categories. The first category comprises of research that has primarily focused
on the methodological aspect of the delineation of the boundary itself. Examples of this
category include research by Bhatta [55], investigating the use of Ideal Urban Radial
Proximity as a delineation methodology for Kolkata, Tayyebi et al. [56], using a distance
rule-based delineation method, and Ismail et al. [57], applying a Binary Urban Suitability
model for UGB delineation. The second category comprises of research that examines
overall application of UGB for a region rather than the boundary delineation. Examples of
this category include research by the World Bank [58] examining the application of UGB in
countries such as Ecuador, India, and China. Bonilla [59] conducted a cost–benefit analysis
of UGB for Santa Tecla, El Salvador, and Zeković et al. [60] investigated the use of tools
such as UGB to manage the urban sprawl of Belgrade.
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Table 1. Selected literature examining the use of UGB as a mechanism to contain the urban footprint
within the developing countries.

Country City Research References

Ecuador Quito
Examined the possible use of a growth management

strategy such as UGB for Quito, Ecuador;
Hyderabad, India; Xi’an, China.

The World Bank [58]

El Salvador Santa Tecla
Conducted a cost–benefit analysis of the application

of urban containment policies including UGB for
Santa Tecla City, El Salvador.

Bonilla [59]

India Kolkata Used Ideal Urban Radial Proximity (IURP) to
designate UGB for Kolkata. Bhatta [55]

Iran Tehran

Used distance-dependent and distance-independent
rule-based spatiotemporal models to predict future
urban growth of Tehran and subsequently delineate

the UGB.

Tayyebi et al. [56]

Israel Nationwide
Evaluated the application of UGB along with other

urban growth management policies based on a
given set of goals for Israel.

Frenkel and Orenstein [61]

Malaysia Iskandar
Used the GIS-based Binary Urban Suitability Model

for delineating urban growth limits for Iskandar,
Malaysia.

Ismail et al. [57]

Serbia Belgrade

Investigated the possible application of current
urban development policies and urban land use

tools such as UGB to manage the urban sprawl of
Belgrade Metropolitan Area, Serbia.

Zeković et al. [60]

Taiwan Taipei
Provided a theoretical examination of the impact of
hypothetical urban construction boundaries on the

behavior of developers in Taipei, Taiwan.
Lai and Wang [62]

The goal of this study is to combine both aspects by creating a robust framework for
UGB delineation as well as providing a commentary on the application of UGB as an urban
growth-restriction strategy for the city of Chattogram. If implemented properly, a policy
such as UGB for Chattogram can provide a viable pathway towards sustainable urban
development by restricting and directing the growth of the city and ensuring an orderly
transition of undeveloped land to built-up urban land [55].

3. Delineation of UGB
3.1. Methodological Approches to the Delineation of UGB

A review of the literature showed utilization of a variety of methods for the UGB
delineation process. However, there is no one consensus or a universally accepted model
with regards to the delineation of the UGB [55]. Sinclair-Smith [25] divides the process
in which UGBs are delineated into three approaches. For the first approach, little or no
quantitative assessment was performed for boundary delineation, and it was particularly
prevalent in the initial adoption of UGB. The UGB implemented in Saudi Arabia during its
first iteration [40] and the UGB delineated in China during the first planning period [35]
provide good examples of this approach. Due to the lack of an analytical framework sup-
porting the design of the boundaries, spatial plans for the Chinese cities during the period
have been compared to artwork by urban designers rather than a plan to establish growth
boundaries [35]. In Albania, the UGB delineation was based on boundaries separating
agricultural land from urban land for cities with a population greater than 10,000 [45,63,64].
Whereas in Chile, the delineation of the boundary changed numerous times based on the
subsequent political principles guiding these policies [65].

The second approach to UGB delineation is defined as the conventional approach. This
approach is seen as being governed through guidelines provided by planning agencies such
as the American Planning Association (APA) [10] in the Growing Smart Legislative Guide-
book “Model Statutes for Planning and the Management of Change” [10]. Additionally, the
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conventional approach has also relied on systems such as the inventory-based system, as
proposed by Knaap and Hopkins [66], that applies the concept of event-driven inventory
for urban growth management. A large proportion of UGBs in the United States are based
on these approaches. The APA guidelines propose using a future forecast for land demand
to reserve sufficient developable land for the UGB over a set time period, generally over the
next 20 years [10]. It further recommends the integration of 110 to 125 percent of projected
urban growth as a long-term land use planning strategy. Sinclair-Smith [25] explains that
the purpose of including additional land within the UGB, than what is required, is to pre-
vent owners from monopolizing vacant land, thus allowing for effective and competitive
real estate markets. As compared to the time-driven approach, where the expansion of an
established UGB to accommodate future growth occurs at a set time interval, the inventory
control system proposed by Knaap and Hopkins’ [66] is an event-driven approach, where
an increase in the developable land for the UGB is triggered only after the available land
within the UGB is diminished to a predetermined level. The inventory control system for
UGB extension was further revisited by Han and Lai [67]. They translated the inventory
approach into a decision network framework, where rather than the extension of UGB
being based on one single event occurring, the change in the delineation would be based
on the analysis of the complex system of linked actors, problems, and solutions that have
an impact on the expansion of urban areas within the city. In a comparison of the new
Decision Network Framework for the time-driven approach with the event-driven inven-
tory approach, results indicated the Decision Network Framework-supported system to be
more efficient and cost-effective at UGB allocation [67].

The third category of approach used in the delineation of UGB utilized growth simula-
tion models that included scientific and quantitative techniques to predict future growth
and, based on it, delineate the appropriate UGB. This included a variety of methodologies
that made use of constrained cellular automata (CA) to support the establishment of UGBs.
Compared to the traditional method, the CA-based system, as used by Long et al. [35],
included containment conditions such as macroeconomic, locational, institutional, and
neighborhood constraints, aiding in the simulation of urban growth within the model. This
in turn resulted in a more effective spatiotemporal simulation of urban expansion and an
overall improvement in UGB delineation [35]. Other CA-based urban land use change
modeling techniques such as SLEUTH have also been used for predicting urban growth
and, based on it, the creation of urban containment policies [68,69]. Bhatta [55] utilized
the Ideal Urban Radial Proximity (IURP)-based design to examine the implementation of
UGB for Kolkata, India. However, IURP does not provide any simulation or modeling of
urban growth processes and patterns, but rather is a theoretical construct that uses a radial
distance from the city center to create a circular urban growth boundary beyond which
urban growth would be restricted. The use of radial distances was also implemented for
the UGB models by Tayyebi, Pijanowski, and Tayyebi [56] for the city of Tehran, Iran. The
authors used artificial neural networks to predict the radial extension of urban areas in
individual azimuth and, based on the growth of the urban area, an urban growth boundary
for each azimuth was designated [70]. Tayyebi, Pijanowski, and Pekin [56] also used the in-
formation on the radial distance from the center of urbanized areas for individual azimuth
to delineate UGB using two separate rule-based methods, the distance-dependent method
(DDM) and the distance-independent method (DIM). DDM used the points on the initial
urban boundary to estimate the growth of urbanized areas and predict the future UGB for
subsequent time periods using percentage increments across individual azimuth. DIM,
on the other hand, used rate of change in distance from the center of the urbanized areas
for two different time periods within each azimuth to predict the boundary for the next
time period [56]. The use of radial distance in delineating UGBs was further investigated
by Tayyebi et al. [71] by using it in conjunction with spatial logistic regression (SLR). The
SLR-UGB model considered the impact of spatially explicit biophysical factors such as
topography to derive its impact on urban growth and hence simulate future urban growth
boundary changes across each individual azimuth. Another interesting approach that has
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been used to allocate UGB is the application of the ant colony optimization (ACO) technique.
Considering UGB as a problem of spatial optimization for land use allocation, Ma et al. [49]
used the ACO method for optimizing land use for UGB delineation with the purpose of
creating a balance between urban growth, planning regulation, and characteristics of the
landscape. While these models provide a dramatic improvement in the methodological
approach over having no systematic approach or even over having a conventional approach
for delineation of UGB, it should be noted that urban development in the future more than
likely will not necessarily follow historical trends of urban development, and subsequently
the UGB delineation approaches might not necessarily produce the optimal UGB for the
city [72]. Therefore, in addition to the delineation of the boundary, specific targets and
constraints in line with the emerging trends along with supporting policies would be
essential to optimize and support the UGB delineation [72].

3.2. Use of SVM in Aiding the Deliniation of UGB

In this study, we investigate the use of support vector machines (SVM) to aid in UGB
delineation through the simulation of future contiguous built-up urban footprint expansion
for the city of Chattogram over the next 20 years. SVM is a well-established methodology
that has previously been used in a wide variety of research related to monitoring machine
condition and faults [73], language and speech recognition [74], diagnosis of diseases [75],
and recognizing human motion patterns [76]. Additionally, SVM has also been extensively
used in examining and modeling urban growth [77–80]. The primary reason for using SVM
in this study is due to the exceptional performance of this methodology as a classifier [81],
and specifically in forecasting land use change and urban growth as compared to other
methodologies, such as the logistic regression approach [78] or the artificial neural network
or decision tree [82].

Factors that have a significant impact on urban growth were used as the input param-
eters for the SVM model, and the past 20 years of data on these factors were used to train
the model. This trained SVM model was then used to simulate the future expansion of the
urban footprints for Chattogram. Unlike the UGB delineation methodologies discussed
previously, the outcome of the simulation is not used as a delineation of the UGB itself,
instead, it is used as a robust methodology that can be employed as a part of the overall
UGB delineation process. The goal is to utilize the SVM approach to provide an insight on
potential areas that are more likely to undergo urban expansion. This information would
be valuable for planners and decision-makers to optimize the delineation of UGB. Results
obtained from the simulation would act as a guide for planners by highlighting the type
of current land cover that is likely to change into urban built-up areas, identifying areas
that are at a higher environmental risk, restricting/regulating growth in these areas, and
subsequently allowing for expansion in areas with lower environmental risk as well as
access to essential services for a more effective delineation of UGB. Additionally, the urban
built-up simulation would provide planners and decision-makers a roadmap to propose
policies directed at addressing these concerns related to sustainable urban expansion of
the city.

3.3. SVM

SVM was initially proposed by Vapnik and Lerner [83] as a new generation of ma-
chine learning algorithms inspired by statistical learning theory and designed as a linear
classifier, which was later extended to include regression [84]. SVM operates by projecting
the input data into Hilbert space, where it can be separated by an optimal separating
hyperplane situated in a multi-dimensional space, maximizing the margin between the
closest data classes to the plane [78,85]. This maximization of the margin between the
two classes allows for minimizing the upper bound of the generalization error [80]. This
approximate implementation of the structural risk minimization (SRM) principle provides
a good generalization performance of the SVM [86]. Furthermore, an n-class classification
in SVM is achieved as a sequence of one-versus-all binary classification to reach the final
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decision [87]. In this study, the SVM-based classification approach was used to provide a
binary classification on areas that would expand into urban built-up areas and those that
would not in the future.

For a linear case of SVM, let us assume a training dataset consisting of k datapoints
that are separable into two classes, as represented by:

T = (x1, y1), (x2, y2), . . . (xk, yk)

with the parameters x ∈ Rn in an n-dimensional space and its corresponding class label
y ∈ {+1, −1} [84].

In the training phase, SVM was used to generate the hyperplane that best separates
the two classes, +1 and −1. This hyperplane can be represented by H1: w′.x + b = +1
and H2: w′.x + b = −1, where a majority of class +1 lies above H1 (w′.x + b > 1) and a
majority of class −1 lies below H2 (w′.x + b < −1). Here, H1 and H2 are the supporting
vectors or decision boundaries responsible for determining the optimal hyperplane, w′ is
the transpose of the n dimensional coefficient vector which determines the orientation of the
hyperplane w, and b is the offset or the bias [80]. The hyperplane itself can be represented
as H: w′.x + b = 0 [88].

In Figure 1, while there are no datapoints between the H1 and H2 decision boundaries,
the points that are located on H1 and H2 are the support vectors determining the optimal
hyperplane, while other points on the training dataset do not contribute towards defining
the hyperplane [86,88].
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Scaling the coefficient vector and the offset for all datapoints, we get w′.xi + b ≥ +1
for positive examples, yi = +1, i.e., those points lying above H1 when i = 1, 2, n, and
w′.xi + b ≤ −1 for negative examples, yi = −1, i.e., those points lying below H2 when i = 1,
2, n. This is equivalent to [86], yi(w′.xi + b) ≥ 1.

The distance of a point xi from the hyperplane (H: w′.x + b = 0) is given by [86]:

d(w, b; xi) =
|w′xi + b|
||w||



Sustainability 2022, 14, 5546 8 of 21

Based on this, the distance between H1 and H2 can be denoted by:

d(H1, H2) = min
xi :yi=+1

d(w, b; xi) + min
xi :yi=−1

d(w, b; xi)

= 1
||w|| min

xi :yi=+1
|w′x + b|+ min

xi :yi=−1
|w′x + b|

= 2
||w||

Maximization of the distance between H1 and H2 can be obtained by minimizing the
norm of ||w||.

The optimal hyperplane separating the two separable training data classes satisfies
the following [86]:

Minimize: F(w) = 1
2 w′w

Subject to: yi(w′.xi + b) ≥ 1 i = 1, 2 . . . , n
In practice, however, as not all training datasets are perfectly linearly separable by a

hyperplane, these imperfect separations are accounted for by a non-negative slack variable,
ξ, that is incorporated into the constraints to consider the misclassification errors [86].

Minimize: F(w) = 1
2 w′w + C ∑n

i=1 ξi
Subject to: yi(w′.xi + b) + ξi − 1 ≥ 0 i = 1, 2 . . . , n; ξi ≥ 0
Here, ξi is the positive slack variable representing the distance between the misclassi-

fied points, and C is the penalty parameter representing the trade-off between the margin
size and the number of misclassified training points. To minimize the misclassification
error and to maximize the margin size, Lagrange multipliers α and β are introduced and
solved for the saddle point of the Lagrangian function [84].

Minimize: L(α) = ∑n
i=1 αi − 1

2 ∑n
i=1 ∑n

j=1 αiαjyiyj(xi
′xj)

Subject to: ∑k
i=1 αiyi = 0 , 0≤ αi ≤ c, i = 1, 2 . . . , n

Additionally, to extend the linear machine learning to non-linear cases in SVM, the
kernel method is used to map the non-linearly separable classes to higher dimensional
feature spaces, where they can be separated using a linear optimal hyperplane [86]. As
all the training data that appear in the previous equation are in dot product, the kernel
function defined as ∑n

i=1 K (xi, xj) = Φ(xi).Φ
(
xj
)

is introduced, resulting in [89]:

L(α) = ∑k
i=1 αi −

1
2 ∑n

i=1 ∑n
j=1 αiαjyiyjK(xi

′xj)

Some of the common kernel functions include the linear function K(x, y) = xi.xj, poly-
nomial function K(x, y) =

(
1 + xi.xj

) q, and radial basis function (RBF)

K
(

xi, xj
)
= exp(−γ

∣∣∣∣xi − xj
∣∣∣∣2), where q and γ are the parameters for the polynomial

and RBF kernel functions, respectively [86].

3.4. Study Area

The city of Chattogram in Bangladesh was used as the study area for this research.
Located in southeastern Bangladesh, nestled between the Karnaphuli river in the east and
the Bay of Bengal to the west, Chattogram is the second-largest city in the country. It
is also the commercial capital of Bangladesh, having the busiest seaport in the country,
accounting for 92% of import/export cargo [90] and holding around 40% of the country’s
large-scale industries [91]. It contributes 50% of the tax revenue and around 11% of the
GDP for Bangladesh [1]. With a population of just over 4 million, the city of Chattogram
accounts for 9.07% of the overall population and 20% of the overall built-up area of all the
municipalities in Bangladesh [3,92]. This alarming rate of increase in the urban footprint of
Chattogram is driven by industrial growth, infrastructural development, and a massive
rural to urban in-migration, which has come at a cost of a loss of surrounding agricultural
land, vegetation, and lowlands [4].
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3.5. Data Collection and Preparation

The expansion of the city’s urban footprint depends on the interaction between a
variety of environmental, socioeconomic, and topographic parameters. In this study, we
used 14 parameters (Table 2) to estimate urban growth and simulate a future pattern of
urban expansion of Chattogram using SVM. Selection of the 14 parameters used in the
simulation was based on findings from past literature that drew from urban theory and
models identifying key drivers that directly or indirectly influence urban expansion.

Table 2. Parameters used in SVM for simulation of future contiguous urban expansion.

Data Description

1 Population Density Raster showing population density
2 Slope Derived from DEM
3 Distance to Road Euclidean distance of a cell to roads
4 Distance to Commercial Areas Euclidean distance of a cell to commercial area
5 Distance to Rail Euclidean distance of a cell to railway lines
6 Distance to Ponds Euclidean distance of a cell to ponds
7 Distance to Rivers Euclidean distance of a cell to rivers
8 Distance to Forest and Parks Euclidean distance of a cell to forest and parks
9 Neighborhood Urban cells Number of urban cells in 3 × 3 neighborhood
10 Neighborhood Vegetation cells Number of vegetation cells in 3 × 3 neighborhood
11 Neighborhood Agriculture cells Number of agriculture cells in 3 × 3 neighborhood
12 Neighborhood Water cells Number of water cells in 3 × 3 neighborhood
13 Neighborhood Barren cells Number of barren cells in 3 × 3 neighborhood
14 Urbanization Allowed Cells where urbanization is allowed

The pressure from increasing population density is a critical driver of urban expansion
of an area [93], and thus was also included in the analysis. The topography of a particular
region also significantly affects the potential for future urban build-up [94]. When consid-
ering a location for urban expansion, there is a higher likelihood of new urban build-up
occurring in areas that are flatter as compared to areas with steeper slopes [95]. As a
result, the slope parameter was considered in this study. Availability of transportation
and access to transportation have also been identified in numerous studies as important
drivers of outward urban growth, with a higher degree of urban build-up occurring along
with transportation nodes and routes [96,97]. Taking this into consideration, in this study
we used distance to major roads and distance to major railroads within Chattogram as
transportation parameters. With regards to economic factors, proximity to job sites and
infrastructures, particularly in and around the central business districts, have been seen
as prime drivers of urban expansion [98]. To account for this, distance to big commercial
areas and industrial parks within Chattogram were also included in the analysis. Envi-
ronmental factors such as access to greenspaces [70] and water bodies such as rivers and
canals [99] have been an important draw for urban growth. In order to incorporate these
environmental factors into the analysis, distance to the Karnaphuli river, upon which banks
Chattogram lies, distances to the numerous ponds, an important part of the landscape that
are scattered throughout Chattogram, and the distance to Kerfa Bagan forest were consid-
ered in the study. Neighborhood characteristics also play a critical role in understanding
the probability of land converting to urban areas [100]. Additionally, with current land
cover also having a significant influence on the future land cover of a region [80], land cover
information on Chattogram for 1990, 2000, and 2019 (Figure 2) that was derived previously
from Google Earth Engine using Landsat data was used in the analysis (see [2]). The 3 × 3
Moore’s Neighborhood of each cell for each of the land cover classes was then calculated
and used in the analysis. Finally, areas where urbanization is not allowed (i.e., areas that
are not protected areas, areas that are not a water feature, and areas designated for parks)
were identified and excluded from the analysis. The remaining areas were designated as
areas where urbanization is allowed and were included in the analysis.
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With contiguity of urban areas being an important part of the UGB [101], contiguous
urban patches were created using cells classified as urban in the land cover data. Due to
the scattered pattern of built-up urban areas, particularly around the fringes of the city core
of Chattogram, isolated patches of built-up urban areas were disregarded, and the largest
contiguous patch was selected for the analysis [70]. Cells within the contiguous built-up
urban areas were allocated the value of +1 and all other areas were allocated the value of
−1. This variable was taken as the target variable for the SVM.

One of the limitations of this simulation has been the minimal use of socioeconomic
parameters in the analysis, particularly due to the limited availability of spatially explicit,
fine-scale data for the region. Inclusion of these parameters, such as GDP per capita [102],
migration patterns [103], along with availability of schools, hospitals [104], and other ameni-
ties/civic institutions [105,106] discussed in the literature that drive land use change, could
provide a better understanding of externalities that trigger urban expansion [107]. Further
research would be essential to collect such socioeconomic data that would aid in future
urban expansion simulation and the subsequent delineation of the UGB for Chattogram.

Although the availability of up-to-date, high-resolution, spatially explicit data and
digital maps for developing countries including Bangladesh has been limited [4], all the
data used in this study were collected through freely available sources. Preparation of
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the spatial data, including computation of Moore Neighborhood, calculation of Euclidean
distances for proximity, conversion from DEM to slope, extraction of contiguous areas,
and reclassification of data, was performed using ArcGIS 10.7 software [108]. All the
datasets were converted into 30 by 30 m resolution (Figure 3) and exported in ASCII
format. However, the large water bodies surrounding Chattogram (Karnaphuli river and
Bay of Bengal) were excluded from the analysis. As the scale of the feature vectors has a
significant influence on the SVM results, and with normalization of the features providing a
considerable superior generalization performance [109], normalization between the values
of 0 and 1 was performed for all the predictor datasets. To train the SVM, as classifiers tend
to perform poorly in an imbalanced training dataset [110], a balanced training dataset was
created containing an equal number of randomly selected cells that changed to urban cells
from 2000 to 2010, and those that remained the same over the given time period.
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3.6. Model Implementation

The SVM model for this study was developed using Kernlab [111], a kernel-based
machine learning library available through the R library. Past literature indicates that
the RBF kernel is a widely implemented kernel function in land cover and urban growth
simulation [80,89,112] and performs better than other kernel functions [79,113–115]; thus,
the RBF kernel function was used for the analysis. The RBF kernel function requires the use
of two hyperparameters, C and γ [80]. These hyperparameters used in the model have a
significant impact on the model [116]. The C hyperparameter is the penalty parameter that
adds a penalty for misclassification of datapoints. A lower value of C indicates a smaller
penalty for misclassified datapoints, so a larger decision boundary is chosen in the model
at the expense of misclassification of datapoints. A higher value of C indicates a larger
penalty for misclassified datapoints, so a smaller decision boundary is chosen in the model
to minimize the misclassification of datapoints. Very low values of C will likely underfit
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the training data and very high values of C will likely overfit the training data [116]. The γ
hyperparameter impacts the distance of influence of the training datapoints. A lower value
of γ indicates a larger radius with more datapoints grouped together, while a higher value
of γ indicates a smaller radius with fewer datapoints being grouped together. Very high
values of γ decrease the accuracy of the training dataset [116].

For this study, the SVM model was first trained using predictor variables from the
2000 dataset and the built-up urban area target variable for the 2010 datasets using the
RBF kernel function. Next, the trained model was applied to the 2010 predictor dataset
to simulate the built-up urban area target variable for 2019. The hyperparameters for the
RBF kernel function used in the SVM model were tuned through a grid search process
for each pair of C ∈ {0.1, 1, 5, 10, 50, 100} and γ ∈ {0.1, 1, 5, 10, 50, 100} to determine the
best performance combination of these hyperparameters for the model. Lastly, the best
performance combination of the hyperparameters obtained from the grid search was used
to create the final SVM model, which was applied to the 2019 predictor data to simulate the
growth of built-up urban areas for 2040. A detailed representation of the model is shown
in Figure 4.
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4. Results of Urban Growth Simulation

For the SVM model, the best performance assessment of the RBF kernel hyperpa-
rameters was conducted by comparing the percent agreement of the built-up urban areas
simulated by the model for 2019 with the actual built-up urban areas for 2019 and its
Cohen’s Kappa statistics [117]. The percent agreement indicated the overall accuracy of
the correct predictions made by the model, while Cohen’s Kappa coefficients indicated the
magnitude of agreement between the two beyond those that occur due to chance [118].
Results from the hyperparameter turning showed that a C value of 5 (Table 3) and a γ value
of 0.1 (Table 4) provided the best performance combination for the model. This combination
produced an overall percentage agreement of 91.79% and a Cohen’s Kappa coefficient of
0.7699, showing a substantial agreement [119].
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Table 3. Results from the grid search examining percentage agreement between predicted built-up
urban areas for 2019 and actual built-up areas for 2019, with best performance of γ value shown
in italics.

Gamma (γ)

0.1 z1 5 10 50 100

Cost (C)

0.1 90.50% 91.28% 21.75% 21.64% 24.40% 22.40%
1 91.50% 91.67% 90.83% 57.34% 24.40% 22.40%
5 91.79% 91.49% 90.75% 60.75% 24.40% 22.67%

10 91.70% 91.30% 90.72% 60.75% 24.40% 22.67%
50 91.68% 90.87% 90.69% 60.63% 24.40% 22.67%
100 91.64% 90.73% 90.68% 60.58% 24.40% 22.67%

Table 4. Results from the grid search examining Cohen’s Kappa coefficient between predicted built-
up urban areas for 2019 and actual built-up areas for 2019, with best performance of Kappa value
shown in italics.

Kappa

0.1 1 5 10 50 100

Cost (C)

0.1 0.7446 0.7513 0.0092 0.0002 0.0000 0.0000
1 0.7652 0.7618 0.7165 0.2473 0.0100 0.0036
5 0.7700 0.7530 0.7133 0.2786 0.0144 0.0050

10 0.7685 0.7472 0.7122 0.2784 0.0144 0.0050
50 0.7639 0.7349 0.7113 0.2773 0.0144 0.0050
100 0.7619 0.7309 0.7112 0.2768 0.0144 0.0050

The SVM model based on the best performance combination of the hyperparameters
was applied to the 2019 dataset, using it as the predictor variable to simulate the future
built-up urban areas for 2040 in Chattogram. Keeping in mind the overall goal of the UGB
to promote contiguous urban growth, isolated patches of built-up urban areas simulated
by the model that appeared outside of the largest contiguous built-up urban area were
excluded from the analysis. The results from the SVM model-based simulation for 2040
(Figure 5) predicted an increase of 18.27 km2 of contiguous built-up urban areas from
base 2019 levels over the next twenty-year time period for the city of Chattogram. A
majority of growth in the built-up urban areas is expected to occur in the north-eastern
region (5.33 km2) and along the south-western region (3.81 km2) of Chattogram (Figure 6).
Alarmingly, a large portion of this expansion in the south-western corner of Chattogram
is expected to occur in areas with a high risk of flooding due to its proximity to the bay.
The other regions of the city showed limited expansion of built-up urban areas. When
examining the land cover change (Figure 7), current agricultural land cover, with 6.07 km2,
is predicted to be the biggest land cover type to be converted into the contiguous built-up
urban land cover. This is followed by the inclusion of 5.28 km2 of built-up urban land cover,
that were previously scattered outside of the contiguous area and are now included as a
part of the contiguous region for 2040, and nearly equal amounts of vegetated (3.76 km2)
and barren (3.75 km2) land cover being converted as a part of the contiguous built-up
urban region.
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5. Discussion and Conclusions

With Chattogram experiencing increasing population growth and rapidly and uncon-
trollably expanding urban build up areas, adoption of UGBs for the city could provide
the robust forward-looking policy/regulatory framework necessary to curtail this hap-
hazard growth by restricting and directing the expansion of built-up urban areas while
emphasizing sustainable urban growth. The areas highlighted in red in Figure 5, the con-
tiguous built-up urban areas, provide a strong foundation and an excellent starting point
for city planners and decision-makers to examine an establishment of a potential UGB for
Chattogram for the next 20-year time period. This simulation of future contiguous urban
growth for year 2040 was specifically created based on the business-as-usual assumption,
without accounting for any unforeseen future influences from unprecedented changes
in population, economy, environment, policies, or politics [55]. Additionally, the urban
growth simulation was performed using only land cover data, topographic features, and
population density information due to limited availability of free datasets.

Results from the SVM-based simulation indicate the north, north-east, and south-
west as regions where the majority of future expansion of the city is expected to occur. A
large portion of the north-east region is already experiencing urban expansion through
the development of scattered urban built-up areas and is expected to continue with this
trend. Most of the expansion of the urban footprint in this region is expected to occur over
agricultural areas and around the scattered urban built-up areas. Similarly, in the south-
west region, a large portion of the expansion is also expected to occur over agricultural
land, scattered urban buildup, and baren lands adjacent to the beach. In this situation,
delineation of UGB would need to be targeted at restraining the current buildup of scattered
settlements and encouraging the urban development within the boundary. UGB delineation
could be effectively used to guide the direction of future urban growth of the region, with
the aim to lower the overall environmental cost of the development while providing access
to the essential services in the region.

The future expansion of the urban footprint of the city in the north is particularly
alarming due to its proximity to the hill and forested areas. Most of the expansion in this
region is expected to occur over vegetated areas, thus resulting in issues of encroachment
and further degradation of forested hill areas that continue to plague the region [4]. Taking
this into consideration, there would need to be a stringent and strict delineation of UGB
for this region to limit the damage to the environment. While a complete restriction in
development and urban expansions of an economically vibrant city such as Chattogram is
impossible, the goal of UGB is to direct the growth of the city towards areas that are more
sustainable and less detrimental to the overall environment.

For the actual delineation of UGB and successful implantation of the policy for Chat-
togram, in addition to the simulation of future expansion of the urban footprint, further
investigation into the social, economic, and environmental aspects of the city would need to
be considered. Supplemental research in terms of collecting social and economic datasets,
including data on slum settlement, industrial/economic activities and how they could be
incorporated as a part of the UGB policy, and of knowledge-based boundary delineation
processes, would be needed. A successful implementation and realization of a multifaceted
and complex policy tool such as a UGB would require a holistic approach involving coop-
eration and coordination from different levels of government, non-government, and the
private sector [120]. The success of a policy such as UGB for Chattogram will be contingent
on the formulation of supporting policies inspiring good urban governance that comple-
ment and work in synergy with the proposed UGB [121]. Furthermore, these supporting
policies will need to address underlying issues related to the haphazard and uncontrolled
urban expansion within Chattogram, such as management of informal settlements and
strict enforcement of these boundary lines. These supporting policies and regulations will
be essential in strengthening the UGB and ensuring its overall success.

Moreover, along with the physical variables used in this study to simulate future
urban growth, the urban expansion of Chattogram is likely to be highly impacted by other
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exogenous and unforeseen factors that are difficult to account for in the model, such as
influences from private developers and political influences. As a result, although the
simulation of future built-up urban areas that was based on past trends would provide a
good approximation, the actual urban expansion would not strictly follow these historical
trends [72]. Thus, the UGB policy and the delineation would inherently need to be dynamic
in nature. It would require frequent monitoring and adjustments to the delineation based on
any changes to the various factors impacting the expansion of built-up urban areas. These
changes would need to be in adherence to the concepts of sustainability and sustainable
urban growth. Finally, it is more than likely that the delineation of UGB for the city of
Chattogram, if actually adopted, will look different from the boundaries projected in this
study. However, the lessons learned and the insights gained from this study will certainly
be valuable for planners and policy-makers and encourage the debate on the need for
sustainable urban growth for the city of Chattogram.
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