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Abstract: Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not.
Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis
to understand their characteristics and bias-reduced logistic regression to analyze their severity.
Specifically, 90,696 combinations and 139,955 cyclist accidents were divided into 17 classes. The
variable contributing the most to the classification was the crash location. Common fatality risks
included older age groups and rural areas, whereas other factors differed among crash locations.
Median strips, stop signs, and boundaries between the sidewalk and roadway affected the severity of
crashes at intersections. Moreover, the existence of a median strip, collision partner, and time period
affected the severity of crashes between intersections. On the sidewalks, the fatality risk was higher
when the front part of the bicycle was subjected to the collision.

Keywords: cyclist crash; polytomous latent class analysis; bias-reduced logistic regression

1. Introduction

Cycling has various advantages, including the potential for diminishing obesity;
promoting health; and reducing the noise, air pollution, and CO2 emissions associated
with travel. However, cyclists have a higher risk of death than motor vehicle occupants.
Therefore, understanding how to make cycling safer amid increasing rates of cycling
is important to improving people’s well-being. There is a growing body of research
examining the safety of cyclists and severity of cyclist crashes [1–17]. Recently, Macioszek
and Granà [18] analyzed the severity of cyclist injuries in cyclist–vehicle crashes. Using
a binary logit model, they showed that the factors affecting the crash severity were the
vehicle drivers’ genders and ages, driving under the influence of alcohol, vehicles exceeding
the speed limit, cyclist ages, cycling under the influence of alcohol, the speed of the
cyclist before the incident, vehicle type (truck), incident place (road), time of day, and
incident type.

The characteristics with the potential to influence the severity studied by various
authors (including the characteristics noted above) can be grouped into those concerning
the bicycle, vehicle and vehicle driver, environment, and road infrastructure (including reg-
ulations and signs). Among these, the road infrastructure can be changed by policymakers
to reduce the severity of accidents.

Reynolds et al. [19] reviewed studies on the impacts of road infrastructure on cyclist
safety. Intersection studies have found that multilane roundabouts can significantly increase
the risk to cyclists unless a separated cycle track is included in the design. Other studies
have suggested that sidewalks and multi-use trails pose the highest risk, that major roads
are more hazardous than minor roads, and that the presence of cyclist facilities is associated
with the lowest risk. Helak et al. [20] suggested that simply providing a dedicated space for
cyclists, such as a bike lane or a paved shoulder, did not reduce the severity of the sustained
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injuries in a crash with a motor vehicle. Goerke et al. [21] showed that increasing the miles
of bike lanes was associated with a significant reduction in severe head injuries; moreover,
the miles of bike lanes were not associated with any significant changes in mortality or
mechanical ventilation days when adjusted for other factors.

The factors associated with the severity of cyclist crashes may differ across different
cyclist crash patterns. By considering the systematic heterogeneity of cyclist crashes,
researchers and practitioners can identify the most appropriate safety countermeasures
for different cyclist crash types under different conditions. One way to account for the
heterogeneous nature of this data is to use a latent class clustering approach. A latent class
analysis can segment the cyclist crash data into mutually exclusive and exhaustive latent
classes by assuming latent categorical variables. The class membership of each cyclist crash
can then be inferred from the observed variables.

Kaplan and Prato [22] analyzed the patterns of cyclist–motorist crashes in Denmark
and investigated their prevalence and severity. They obtained 13 distinguishable cyclist–
motorist classes using a latent class clustering approach. The prevalent features allowing
for differentiation of the latent classes were the speed limit, infrastructure type, road surface
conditions, number of lanes, motorized vehicle precrash maneuvers, availability of cycle
lanes, cyclist intoxication, and helmet-wearing behavior. Based on an analysis of these
13 cyclist crash patterns, three types of safety considerations were proposed. These safety
considerations were related to network design and connectivity, road maintenance, and
cyclist road behavior.

Prati et al. [23] identified subgroups of cyclist crashes in Italy and analyzed the different
cyclist crash-type subgroups separately. Using a latent class analysis, a cyclist crash dataset
was segmented into 19 classes. A logistic regression analysis was used to identify the
associations between each class membership and the severity of the cyclist crashes. Finally,
association rules were established for each latent class to uncover the factors associated
with an increased likelihood of severity.

Myhrmann et al. [24] explored the factors related to the injury severity outcomes in
single-cyclist crashes. Three latent classes were identified using a latent class-ordered probit
model. They found that the likelihood of cyclist membership in such classes depended
on the cyclist’s age and gender. Furthermore, the road geometry, maintenance level, and
interactions between the road geometry and maintenance level affected the severity.

Samerei et al. [25] identified factors affecting motor vehicle–bicycle crashes in Victoria,
Australia using a binary logit model and latent class clustering. They found the factors that
increased the risk of fatalities and serious injuries of cyclists in all the clusters were being
an elderly cyclist, not using a helmet, and dark conditions.

Liu et al. [26] analyzed the impacts of various factors on cyclist injury severity at
intersection and non-intersection locations using a latent class clustering analysis and
mixed logit models. The factors with significant impacts on cyclist injury severity at
intersections included cyclists drinking alcohol; driving a van, bus, or single-unit truck;
motorist fault; inclement weather; and dusk or dawn conditions. In contrast, those with
significant impacts on cyclist injury severity at non-intersection locations included the
cyclist gender, drivers drinking alcohol, vehicle speed, speeding, type of area (rural or
urban areas), traffic control, and curved roads.

Despite the above, relatively few studies have used such crash classifications, and
it is not clear which factors contribute the most to these classifications. In Japan, where
the number of cyclist fatalities was the highest among all the Organization for Economic
Co-operation and Development countries in 2009 (see. https://www.cyclehelmets.org/12
58.html (accessed on 21 March 2022).), latent class analyses have not been conducted owing
to data limitations. There have been analyses of each factor and its severity [27,28], but it
remains unclear which factors are the most associated with a fatality risk. The impacts of
various road infrastructure elements also remain unclear.

In addition, relatively few studies have examined and compared the different factors
contributing to cyclist injury severity at different locations [26]. Furthermore, a fatality
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accident is a rare event; thus, ordinary logistic regression is inappropriate. Even with
a large number of observations, the benefits of the loss functions that normal machine
learning algorithms work with may be minimized, e.g., by the machine learning predicting
that all of the inputs are of the majority class. The stronger the imbalance of the outcome,
the more severe the bias in the predicted probabilities. In a previous study, a penalized
maximum likelihood estimation was applied to cancel out this bias [29].

This study focused on cyclist crashes occurring in Japan between 2019 and 2020.
To identify reliable and relevant subgroups of cyclist crashes, we used a polytomous la-
tent class analysis. The polytomous manifest variables included categorical indicators
corresponding to characteristics of the road infrastructure, cyclist(s), vehicle(s), and envi-
ronmental conditions. Specifically, characteristics concerning the infrastructure (road type,
stop sign, and crash location); cyclist (age of the cyclist and collision part); collision partner
(trucks and obstacles); environment (surface conditions and weather); and time period
were employed in the analysis, following Prati et al. [23]. Notably, data concerning cyclist
injury severity were not included in the latent class analysis, as the cyclist injury severity
is considered as an outcome of a crash. We showed that the crash location (intersection,
single road, and other factors) contributes the most to the classification. Then, based on
crash location, we investigated the cyclist injury severity (e.g., fatality or not) using a
bias-reduced logistic regression analysis. This analysis allowed us to identify the factors
significantly affecting cyclist crashes.

2. Materials and Methods

The crash data for the models were provided by the National Police Agency of Japan
(NPA). The original database comprised 690,415 road accidents occurring from 2019 to 2020
on Japanese roads. The NPA database includes all the publicly available data for accidents
in Japan but does not include data prior to 2019.

To narrow down the events to those pertinent to the current study, we extracted
139,955 accidents in which at least one cyclist was injured or killed. The NPA database
distinguishes between road accidents resulting in injuries or fatalities (within 30 days);
however, it does not distinguish between different levels of injury. Table 1 shows the
descriptive statistics of the 15 categorical variables selected for this dataset: (1) accident
location type, (2) stop sign, (3) restricted speed, (4) median strip, (5) boundary between
sidewalk and roadway, (6) road type, (7) road alignment, (8) land uses, (9) surface condi-
tions, (10) weather, (11) time period, (12) collision partner, (13) cyclist’s age, (14) collision
part of the bicycle, and (15) severity of the cyclist crash. According to the Japanese Road
Code, there are five types of roads: national roads, trunk roads managed by prefecture and
municipality, and prefectural and municipal roads. Unfortunately, the speed of the motor
vehicle involved in the incident, speed of the cyclist, and violation of the rules were not
included in the dataset.

There are more than 9.1 billion possible combinations of such accidents, but in actuality,
90,698 combinations are observed. There are two levels of severity, crashes with and without
fatalities. There are 5917 (0.9%) crashes with fatalities in all the accidents, and 807 (0.6%) in
cyclist-related accidents. The fatality rate in cyclist-related accidents is lower than that in
all the accidents; this is because pedestrians, which represent the most vulnerable group,
are not the focus of this research.

These variables and their distributions are shown in Table 1. In relation to land use,
the term DIDs refers to densely inhabited districts, which are a series of census districts
with a population density of 4000 or more per square kilometer and a population of more
than 5000.
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Table 1. Variables and their distributions.

Variable Category n %

Crash location
Between intersections 43,337 31.0

Intersections 93,367 66.7
Sidewalks 3251 2.3

Stop sign
Not applicable * 47,866 34.2

YES 22,672 16.2
NO 69,417 49.6

Restricted speed

20 2573 1.8
30 20,967 15.0
40 32,888 23.5
50 16,107 11.5
60 69,420 49.6

Median strip

Yes 16,452 11.8
High-brightness paint 170 0.1

Chatter bar 453 0.3
Postcorn 495 0.4

Paint 55,093 39.4
None 67,292 48.1

Boundary between
sidewalk and

roadway

Guard rail 12,015 8.6
Curb 80,437 57.5

White line 23,959 17.1
None 23,544 16.8

Road type

National 19,113 13.7
Trunk- Prefectural 19,222 13.7
Trunk- Municipal 1535 1.1

Prefectural 14,184 10.1
Municipal 85,901 61.4

Alignment

Right curve - up 292 0.2
Right curve - down 313 0.2

Right curve - flat 1441 1.0
Left curve - up 227 0.2

Left curve - down 286 0.2
Left curve - flat 1213 0.9
Straight - down 2667 1.9

Straight - flat 4694 3.4
Straight - up 128,819 92.0

Land uses
(ref) Urban - DID 86,535 61.8
Urban - non DID 38,523 27.5

Rural 14,897 10.6

Surface conditions

Dry 124,271 88.8
Wet 15,506 11.1

Frozen 69 0.0
Snow cover 39 0.0

Unpaved 70 0.1

Weather

Clear 99,374 71.0
Cloudy 27,269 19.5
Rainy 13,083 9.3
Foggy 28 0.0
Snowy 201 0.1

Time period

After dawn 4353 3.1
Daytime 93,833 67.0

Before sunset 10,086 7.2
After sunset 10,471 7.5
Nighttime 19,769 14.1

Before dawn 1443 1.0
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Table 1. Cont.

Variable Category n %

Collision partner

Cars 64,697 46.2
Kei-cars 31,527 22.5

Large truck 4643 3.3
Small/Medium truck 16,495 11.8

Motorcycle 126+cc 1134 0.8
Motorcycle -125cc 5735 4.1

Bicycle 5438 3.9
Pedestrian 5140 3.7
Obstacles 794 0.6

None 4352 3.1

Cyclist’s age

0–24 48,602 34.7
25–34 17,230 12.3
35–44 16,598 11.9
45–54 17,090 12.2
55–64 12,188 8.7
65–74 13,893 9.9

75– 14,354 10.3

Collision part

None 2785 2.0
Front 56,729 40.5
Right 43,647 31.2
Rear 4979 3.6
Left 31,815 22.7

Accident type Injury 139,148 99.4
Fatality 807 0.6

Note: * Collision partner is not motor vehicles.

Methods

To perform the polytomous latent class analysis, we used the poLCA package in R
software [30,31]. The latent class model estimates the observed joint distribution of the
categorical variables in a set of observations and approximates it as a weighted sum of a
finite number R, which is based on a large multiway contingency table.

In this study, we selected the number of classes using the Bayesian information
criterion (BIC). In general, the rule of “the smaller, the better” should be applied when
evaluating fit indices. To ensure that the global maximum likelihood of the latent class
model was achieved (rather than the local maximum log-likelihood), we re-estimated each
model 5000 times and set 10 initial values of the class-conditional response probabilities;
then, we saved the model with the greatest likelihood.

From the analysis, we could determine the amount of each category of each variable
included in each class. Based on the chi-square goodness-of-fit tests and tests of the
differences between the proportions, we ascertained the characteristics of each class based
on whether the proportion was significantly higher (or lower) than the overall proportion
(p < 0.001).

In this study, the most important variable contributing to the classification was the
crash location (e.g., intersections, areas between intersections, and sidewalks). There-
fore, we divided the data by crash location and analyzed the risk of death. However, as
mentioned above, the risk of death was generally very small. Therefore, we employed
Firth’s bias-reduced logistic regression to perform the fitting using pseudo-data represen-
tations [29]. To take advantage of bias-reduced logistic regression, we used an R package
called brglm [32]. The bias-reduced estimator is second-order unbiased and has a smaller
variance than the maximum likelihood estimator. Using the backwards stepwise method,
we estimated the model that minimized the Akaike information criterion and analyzed the
risk factors in fatality accidents.
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3. Results
3.1. Polytomous Latent Clustering Analysis
3.1.1. Selection of Number of Classes

By increasing the number of class settings from two, the optimal number of classes
with the smallest BIC value was obtained. As shown in Figure 1, poLCA software yielded
17 latent classes.

Figure 1. Change in the Bayesian information criterion (BIC) as a function of the number of latent classes.

3.1.2. Estimation Results

We tested the differences between the proportions in the full sample and those in
the class. The categories showing statistical significance for each variable are depicted
in Figure 2.

As an initial matter, the crash location was detected in all classes: C1–8 were inter-
sections (66.7%), C9–14 were between intersections (31.0%), and C15–17 were between
intersections and sidewalks (2.3%). For each of these three locations, we renumbered the
classes in descending order of the fatality accident rates in each class. Vertical items were
classified according to the road structure, environment, driver, and cyclist status. The
categories for which significant differences were found for each variable are shown. If
the categories were spread across multiple classes, they were bundled together. C17 had
the highest fatality rate, followed by C14, 13, and 12. The fatality rate for C17 was 3.1%,
i.e., more than five times the fatality rate for the entire sample. The characteristics of each
variable are as follows.

Among C1–8, where the stop sign variable appeared as a feature within the intersec-
tions, “NO” appeared as a feature in C1 and C5–8. The percentages of the observations by
class for “NO” were 49.6% (total sample), 70.5% (C1), and 82.8%, 84.6%, 98.4%, and 86.8%
(C5–8), respectively.

The restricted speed varied considerably, with “30 km/h” for C2–3, “40 km/h” for C9
and 14, “50 km/h” for C6 and 8, “40 km/h” and “50 km/h” for C7, “60 km/h” for C4–5 and
15, and “50 km/h” and “60 km/h” for C11. The percentages of the observations by class
for each restricted speed were 15.0% (overall), 49.0% (C2), and 29.6% (C3) for “30 km/h”,
23.5% (overall), 73.3% (C7), 47.6% (C9), and 52.1% (C14) for “40 km/h”; 11.5% (overall),
26.1%, 25.8%, 37.9% (C6–8), and 35.5% (C11) for “50 km/h”; and 36.9% (overall), 50.4%
(C4), 61.3% (C5), 56.5% (C11), and 58.6% (C15) for “60 km/h”.
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Figure 2. Characteristics of the 17 classes.

Regarding a median strip, C3, 5, 10, and 15–17 were characterized by “None”; C4, 7,
9, 12, and 14 were characterized by “Paint”; and C8 and 11 were characterized by “Yes”.
C10 was represented as a feature on the side, i.e., with less than the proportion of the total
sample. The percentages of the observations by class for each median strip were 48.1%
(overall), 77.1% (C3), 96.6% (C5), 20.8% (C10), 93.9%, 84.2%, and 90.5% (C15–17) for “None”;
39.4% (overall), 59.8% (C4), 62.6% (C7), 79.0% (C9), and 91.1% (C14) for “Paint”; and 11.8%
(overall), 49.9% (C8), and 48.6% (C11) for “Yes”.

On the boundary between the sidewalk and roadway, C8 and 10 were characterized
by “Guard rail”; C4, 6, 7, 11, and 12 were characterized by “Curb”; C3, 5, and 15–17 were
characterized by “None, white line”; and C9 was characterized by “None”. C9 was
represented as a feature on the side, i.e., with less than the proportion of the total sample.
The percentages of the observations by class for each boundary between the sidewalk
and roadway were 8.6% (overall), 21.5% (C8), and 23.1% (C10) for “Guard rail”; 57.5%
(overall), 71.1% (C4), 82.0% (C6), 81.6% (C7), 82.9% (C11), and 81.6% (C12) for “Curb”;
17.1% (overall), 32.3% (C3), 33.3% (C5), 34.1%, 31.6%, and 32.0% (C15–17) for “White line”’
and 16.8% (overall) and 1.7% (C9) for “None”.

Regarding the characteristics of the road type, “National road” was detected in C11;
“National and trunk-municipal road” was detected in C8; and “Municipal road” was
detected in C2, 3, 5, 6, 12, and 14–17. C6, 12, and 14 were represented as a feature on the
side with less than the proportion of the total sample. The percentages of the observations
by class for each road type were 13.7% (overall), 47.8% (C8), and 41.6% (C11) for national
road; 1.1% (overall) and 5.8% (C8) for “Trunk municipal road”; and 61.4% (overall), 86.0%
(C2), 90.2% (C3), 96.1% (C5), 33.8% (C6), 40.1% (C12), 36.2%, 95.3%, 93.0%, and 95.6%
(C14–17) for “Municipal road”.

Regarding alignment, only one feature was expressed, i.e., “Right curve flat” at C15.
The percentages of the observations by class were 1.0% (overall) and 5.2% (C15) for the
right curve flat.

The characteristic of the “Urban DID (Densely Inhabitant District) area” was classified
into C1 and C2, whereas that in the “Rural area” was classified in C14. The percentages
of the observations by class for each land use were 61.8% (overall), 83.2% (C1), and 87.8%
(C2) for “Urban-DID” and 10.6% (overall) and 32.2% (C14) for “Rural”. The land uses
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were clearly characterized, with low-fatality values at C1 and 2 and high values at C14,
suggesting that the fatality risk may be higher in rural areas.

Regarding the surface conditions, C3, 6, 12, 13, and 16 showed “Wet” features. The
percentages of observations by class for “Wet” were 11.1% (overall), 97.5% (C3), 97.3% (C6),
97.8% (C12), 99.4% (C13), and 99.3% (C16). Regarding weather, C3, 6, 12, 13, and 16 had
“Rainy” features, i.e., the same classes in which wet was expressed on the road surface. The
percentages of observations by class for “Rainy” were 9.4% (overall), 83.2% (C3), 84.3%
(C6), 82.8% (C12), 79.3% (C13), and 79.1% (C16).

The time period was detected only in C6 and 13, as “Nighttime”. The percentages of
observations by class for “Nighttime” were 14.1% (overall), 30.0% (C6), and 29.0% (C13).

The characteristics of the collision partner were estimated as only “Bicycle” for C1;
only “Motorcycle -125cc” for C2; “None” for C10, 13, and 17; and only “Kei-cars” for C14.
The percentages of the observations by class for each collision partner were 3.9% (overall)
and 100.0% (C1) for “Bicycle”; 4.1% (overall) and 11.1% (C2) for “Motorcycle -125cc”; and
3.1% (overall), 26.1% (C10), 43.4% (C13), and 42.8% (C17) for “None”. Hence, C1 consisted
entirely of cyclist accidents. C2–8, 9, 11–12, and 14–16 consisted of “(Kei-)cars, Truck,
and Motorcycles” as the collision partners, whereas C10, 13, and 17 consisted of “Bicycle,
Pedestrian, Obstacles, and None”.

Similar to previous research, the cyclist’s ages were detected in some classes. C1 and 5
showed “0–24”, and C17 showed “75–“. C1 was represented as a feature on the side with
less than the proportion of the total sample. The percentages of the observations by class
for each cyclist year were 34.7% (overall), 13.5% (C1), and 51.9% (C5) for “0–24” and 10.3%
(overall) and 21.1% (C17) for “75–“. Age “75–“ was shown as a feature only in C17 and had
the highest fatality rate, suggesting that it may be a factor increasing the fatality risk.

Finally, in the collision part, C1 was indicated by “Front”, and C12 and 14 were
indicated by “Rear”. The percentages of the collision part were 40.5% (overall) and 64.6%
(C1) for “Front” and 3.6% (overall), 11.1% (C12), and 12.0% (C14) for “Rear”.

3.2. Bias-Reduced Logistic Regression

As the polytomous latent class analysis revealed that the variable contributing the
most to the classification was the crash location, a bias-reduced logistic regression analysis
was conducted for each crash location. Table 2 presents the estimated results. In the
following section, only those judged to be statistically significant at the 5% significance
level are mentioned. The asterisks *, **, and *** indicate that the coefficients are statistically
different from zero at the 5%, 1%, and 0.1% levels, respectively.

In all crash locations, older age and “Rural areas” are identified as common factors
increasing the fatality risk. In addition, “No stop sign” at an intersection is found to increase
the fatality risk. According to this result, it is believed that the installation of stop signs has
some effect on reducing fatality accidents, although such signs not being applicable may
also increase the fatality risk. However, this is possibly because the majority of collision
partners are pedestrians and because the cyclist is alone during the accident.

Regarding the road type, “Trunk prefectural road” and “Municipal road” have low
risks of fatality accidents within and between intersections. In contrast, “Prefectural Road”
is found to have a low risk of fatality at intersections but a high risk of fatality on sidewalks.
In addition, the fatality risk on sidewalks is also higher for “Prefectural road”.

Regarding the median strip, “Paint and None” increase the risk of fatality accidents
both within and between intersections. “Chatter bar” increases the fatality risk only
at intersections. “High-brightness paint” decreases the fatality risk at intersections but,
conversely, increases the fatality risk between intersections. However, there were only
two fatalities at intersections with the “Chatter bar”, and only one fatality was observed
between intersections with “High-brightness paint”. Therefore, it is possible that these
results were obtained only by chance, and a more detailed analysis is required in the future.
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Table 2. Estimation results.

Crash Location (Fatality Rate) Intersections (0.4%) Between Intersections (0.8%) Sidewalks (3.0%)

Variable Coef. z
Value Fatality n Coef. z

Value Fatality n Coef. z
Value Fatality n

Cyclist’s
age

(ref) 0–24 47 34,898 12 12,846 1 858

25–34 −0.42 −1.20 9 11,360 0.15 0.31 6 5490 2.50 2.43 * 3 380

35–44 −0.45 −1.22 8 10,629 1.20 3.33 *** 18 5510 2.85 2.80 ** 3 418

45–54 0.49 1.92 22 10,832 1.69 5.15 *** 34 5820 1.90 1.99 * 5 438

55–64 1.29 5.85 *** 36 7817 1.86 5.56 *** 29 4035 3.19 3.57 *** 15 336

65–74 1.90 10.37 *** 79 8923 2.84 9.40 *** 80 4573 3.42 3.96 *** 29 397

75– 2.71 16.61 *** 178 8908 3.39 11.56 *** 150 5022 3.43 4.01 *** 43 424

Land uses

(ref) Urban-DID 185 56,928 120 27,671 24 1936

Urban-non DID 0.34 2.77 ** 112 26,813 0.57 3.91 *** 87 10,772 1.16 3.50 *** 25 938

Rural 1.04 7.61 *** 82 9626 1.36 10.03 *** 122 4894 1.87 6.23 *** 50 377

Road type

(ref) National 98 12,724 83 6152 1 237

Trunk-Prefectural −0.48 −2.88 ** 57 12,340 −0.36 −2.04 * 59 6497 −0.06 −0.05 1 385

Trunk-Municipal −0.20 −0.46 5 1087 0.80 1.61 4 425 0.42 0.24 - 23

Prefectural −0.39 −2.17 * 48 9083 −0.30 −1.61 51 4782 2.27 2.30 * 14 319

Municipal −0.81 −5.81 *** 171 58,133 −0.95 −5.79 *** 132 25,481 1.47 1.59 83 2287

Median
strip

(ref) Yes 32 10,279 31 5887

High-brightness paint −0.44 −6.91 *** 109 1.87 2.12 * 1 59

Chatter bar 1.41 2.12 * 2 228 1.00 1.67 . 3 224

Postcorn 1.12 1.68 . 2 306 −0.60 −0.42 - 183

Paint 0.53 2.65 ** 135 32,958 0.57 2.83 ** 198 21,113

None 0.87 4.36 *** 208 49,487 0.46 1.98 * 96 15,871

Stop sign

(ref) Yes 23 22,507

No 1.41 6.63 *** 336 68,926

Not applicable * 2.10 6.90 *** 20 1934
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Table 2. Cont.

Crash Location (Fatality Rate) Intersections (0.4%) Between Intersections (0.8%) Sidewalks (3.0%)

Variable Coef. z
Value Fatality n Coef. z

Value Fatality n Coef. z
Value Fatality n

Boundary
between
sidewalk

and
roadway

(ref) Guard rail 72 7250

Curb −1.03 −7.37 *** 219 53,166

White line −1.22 −6.14 *** 48 16,390

None −1.58 −7.28 *** 39 16,561

Collision
partner

(ref) Bicycle 2 2274

Cars 1.40 2.20 * 76 16,986

Kei-cars 1.39 2.15 * 44 7964

Large truck 2.97 4.63 *** 61 1736

Small/Medium truck 1.97 3.06 ** 44 4683

Motorcycle 126+cc 2.40 3.21 ** 6 375

Motorcycle -125cc 0.36 0.44 3 1736

Pedestrian 0.52 0.67 4 3743

Obstacles 2.80 4.16 *** 17 629

None 2.47 3.88 *** 72 3185

Time period
(ref) Except for nighttime 211 36,687

Nighttime 1.45 11.78 *** 118 6650

Crach part
(ref) Except for front 42 1875

Front 1.26 4.91 *** 57 1376

Intercept −7.22 −22.16 *** −9.29 13.06 *** −11.57 −8.53 ***

AIC 4210 3004 442

AIC (null) 4933 3869 888

Number of samples 93,367 43,337 3251

The asterisks *, **, and *** indicate that the coefficients are statistically different from zero at the 5%, 1%, and 0.1% levels, respectively.
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At the intersection, the boundary between the sidewalk and roadway affects the
severity of the injury. The fatality risk is higher when a “Guard rail” is installed. This result
may be owing to the fact that cyclists cannot “escape” to the sidewalk when they are riding
on the side of the roadway on a road where a guard rail is installed, even if they are in
danger of colliding with a car.

The collision partner is an important factor for severity but only between intersections.
The fatality risk is found to be high in all cases, except for when the collision partner was a
“Bicycle, Pedestrian, or Motorcycle −125cc”, and the fatality risk was particularly high for
“Large track, Obstacles, and Motorcycle 126+cc”. These results suggest that the intensity of
the impact at the time of the accident has a significant effect on the risk of death.

Other findings include that the fatality risk is higher at “Nighttime” between intersec-
tions and when the collision part is the “Front” on sidewalks. Since vehicle recognition is
delayed at “Nighttime” owing to darkness, both of these factors can be attributed to the
inattention of the cyclist.

4. Discussion
4.1. Accident Classification

The results of the polytomous latent class analysis show that cyclist accidents in Japan
can be classified into 17 classes. In previous studies, there were 13 cases found in Denmark
and 19 in Italy [22,23]. Although the number of variables and the categories addressed are
different among these studies, approximately 10,000–70,000 cyclist accidents were classified
into less than 20 classes based on the BIC.

The most important contributing factor to the classification in this study is the crash
location. Interestingly, this result is the same as that obtained in Italy. In contrast, in
Denmark, the area (urban or rural) was the first dividing factor, and crash location was the
third factor. In Japan, the area is also one of the factors for classification but is generally
a more important factor for explaining the severity. In Italy, the area was not included
as a variable. In Denmark and Italy, the rule is for drivers to drive on the right side of
the road, whereas, in Japan, they drive on the left. However, this rule had no impact on
the classification.

4.2. Intersection Accidents

The bias-reduced logistic regression analysis revealed that the factors increasing
the fatality risk for cyclist accidents at intersections were “older cyclist”, “Rural area”,
“National road”, “Chatter bar”, “Paint”, and “None” in the median strip and “No stop
sign” and “Guard rail” in the boundary between the sidewalk and roadway. “High-
brightness paint” in the median strip is also shown to be a factor reducing the fatality
risk. However, the effectiveness of “High-brightness paint” in the median strip remains
somewhat uncertain, as there are only a few sections where this system has been introduced,
and only 109 corresponding traffic accidents were confirmed.

Shen et al. [14] found that urban junctions had a higher fatality risk for cyclists,
although this study found that the fatality risk was lower in urban areas than in rural areas.

The installation of stop signs and median separations may reduce the risk of fatalities
and should be promoted in the same manner as in other countries. However, the existence
of a guard rail is another factor increasing the fatality risk. In Japan, cyclists often ride on
sidewalks or the wrong way [33]. It is possible that the cyclists riding on sidewalks may be
induced to do so by the guard rail. Reynolds et al. [19] mentioned that the existing research
suggests that most studies on sidewalk-riding found that it is a very dangerous behavior
for cyclists. The excessive segregation of vulnerable road users and motor vehicles can
create risks. For example, roadside barriers can encourage motor vehicle drivers to reduce
their attentiveness toward other road users.

It is important to reduce the complexity of conflict points. For example, grade-
separated junctions segregate primary traffic streams by placing them on separate levels;
this measure is used for roads with high traffic volumes. Other treatments to redesign
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junctions include changes in the angles between roads and/or measures to improve the
lines of sight and eliminate objects obscuring approaches. The concept of “daylighting”
refers to the removal of parking spaces in front of curbs around an intersection, thereby
increasing the visibility for pedestrians and drivers. In this study, the median strip was
a factor that both increased and decreased the fatality risk. However, the sample size
used herein may be insufficient. In addition, our data do not reflect physical intersection
structures such as normal crossroads, T-junctions, and roundabouts. Accordingly, further
investigation is required.

4.3. Non-Intersection Accidents

The bias-reduced logistic regression analysis revealed that the factors increasing the
fatality risks of cyclist accidents between intersections were “older cyclist”, “Rural area”,
“National road”, “Paint”, and “None” and, in the median strip, “Trucks as the collision
partner” and “Nighttime”. The factors identified for sidewalks include “older cyclists”,
“Rural area”, and “Prefectural road”.

The increased risk of fatalities at night has been reported in several recent studies [21,25,26,34].
This higher risk of fatalities is owing to a variety of factors, such as delays in detecting
hazards at nighttime owing to poor visibility relative to daytime and higher speeds of
vehicles owing to lower traffic volumes.

Asgarzadeh et al. [20] showed that collisions with large vehicles generally increase
the fatality risk in cyclist accidents; this result was also identified in this study as a factor
that increased the fatality risk in cyclist accidents between intersections. This study also
found that collisions with “Obstacles” and “Motorcycle 126+cc” also significantly increased
the fatality risk. In collisions with “Obstacles”, the cyclist’s inattention to decelerate imme-
diately before an accident may be a contributing factor to the strong impact of collisions,
whereas, in collisions with “Motorcycle 126+cc”, the motorcyclist’s high acceleration may
make accidents more likely to occur at high speeds.

The higher fatality risk found for cyclist accidents in non-intersection rural areas
identified by Liu et al. [26] was also shared by this study. Liu et al. [27] found that the
fatality risk of cyclist accidents was also high in urban areas. This study showed that the
fatality risk was higher in a rural area, “Urban-non-DID area”, and “Urban-DID area” in
that order and identified areas where measures were particularly needed to effectively
reduce the fatality risk of cyclist accidents.

The fatality risk on sidewalks is higher than that on prefectural roads. Of the 319 accidents,
14 were fatal, indicating a high fatality risk. The reason for this may be that the correspond-
ing surfaces are less well-maintained than those of national and municipal roads. Since
one of the parts of a bicycle involved in collisions is the front, it is conceivable that the
holes in such sidewalks could lead to serious accidents. Uneven roads may exist as a result
of insufficient road maintenance. Therefore, promoting these improvements may reduce
the risk of death. Unfortunately, we did not collect data regarding the surface pavement
conditions of the sidewalks and roadways. Thus, further research is necessary.

Finally, at both intersections and non-intersections, the restricted speed, weather, and
surface conditions did not affect the severity of cyclist accidents. This result is different
from that of previous studies [4,11]. However, the reasons for this are unclear, owing to the
impossibility or inability to obtain detailed or specific data for such analyses.

5. Conclusions

In this study, we analyzed and classified cyclist crashes occurring in Japan between
2019 and 2020. We employed a latent class analysis using categorical indicators related to
the infrastructure, road users, vehicles, and environmental/time characteristics to classify
cyclist crashes. We identified 17 classes of cyclist crashes with different causes, degrees of
severity, and profiles of road users. The variable contributing the most to the classification
was the crash location. Common fatality risks included older age groups and rural areas,
whereas other factors differed among the crash locations. The existence of median strips,
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stop signs, and boundaries between sidewalk and roadways affected crashes at intersections.
The median strip, collision partner, and time period affected crashes between intersection.
On the sidewalks, the fatality risk was higher when the collision part of the bicycle was
the front.

The results of this study suggest that it is important to implement countermeasures
based on the crash location. At intersections, the installation of stop signs and median
separations may reduce the risk of fatalities. It is common for cyclists to decelerate when
approaching a stop sign and check to ensure that there is no vehicular or pedestrian cross-
traffic before proceeding through the intersection rather than putting a foot down. Many
different parties can be liable for a bike accident at a stop sign, including the cyclist.

This study showed that a median separation was one of the factors reducing the sever-
ity, and the installation of guard rails potentially increases the risk of death. Wang et al. showed
that tree separation for non-motorists increased the injury severity of e-bicyclists [35]. It
would be worthwhile to investigate other separation treatments that could better protect
e-bicyclists from crashes.

The presence of bumps and obstacles, particularly on rural roads with low pedestrian
traffic, has rarely been reported to road managers, which may lead to an increase in single-
vehicle accidents. Regular road maintenance of the shoulders and other non-roadway
sections is important.

However, this study has the following issues regarding the data and methods. The
first challenge regarding the data limitations is the definition of severity. In this study, only
two classifications were used: fatal or non-fatal. Fatalities are extremely rare, and future
analyses by subdividing the injuries such as hospitalization or not may yield different
results. In addition, the data collected in this study do not include detailed attributes of
cyclists. Previous studies have analyzed the factors such as alcohol consumption, helmet
use, and improper behaviors such as violations of the law [4,5,11]. It is important to take
these factors into account in the analysis of the fatality risk. Furthermore, the lack of
traffic flow data for motor vehicles, cyclists, and pedestrians is a major deficiency. For
example, the installation or removal of guard rails and utility poles should be considered
not only for cyclists, but also for pedestrians and motor vehicles. In Japan, there are many
cases of cyclists running on the wrong side of sidewalks and roadways and automobiles
parking in bicycle lanes. On urban roads without a bike lane, the vehicle speeds with and
without cyclists were found to be negligible [36]. On-road bicycle lanes and parked cars
also reduced the passing distance [37]. It is desirable to analyze these infrastructures on the
severity combined with the mean and variances traffic volume by various road users and
land use along roadsides data.

Regarding the methodology, latent class analysis provides the best fit when modeling
the data but does not provide an indication of how well the clusters are separated. The
popularity of such methods might be explained by the apparent implication that the results
show clear (i.e., separate) clusters, which are then assumed to represent a qualitatively
distinct group of people with an existing disease entity. However, it should be noted that the
classes formed are relative to each other and do not necessarily have an inherent meaning.

Finally, Billot-Grasset et al. [15] pointed out that road user behavior influences each
step in the chain of events leading to an accident. Ma et al. [16] showed that cyclists’ crash
risks were directly predicted by risky cycling behaviors and cycling anger and that the
effects of cycling anger, impulsiveness, and normlessness on crash risks were mediated by
cycling behaviors. These psychological aspects of cyclists and drivers are important for
understanding accidents. The development of bicycle spaces will ultimately lead to the
creation of safe travel spaces for all road users [38]. Although underreporting biases has
been noted [39], not simply the severity but also the probability of accidents need to be
examined further.
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