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Abstract: Agro-management zones recently became the backbone of modern agriculture. Delineating
management zones for Variable-Rate Fertilization (VRF) can provide important ecological benefits
and better sustainability of the new Egyptian farming projects. This article aims to represent an
approach for delineating management zones using Spatial Multicriteria Evaluation (SMCE) within
irrigated peanut pivot situated at the eastern Nile Delta, Egypt. The results indicated that soil data,
such as soil texture, soil type, the elevation of the landscape, and slope, allow for sampling the
study area into similar classes and in smaller units, along with a crop productivity map. The effects
of the variability in soil characteristics within the field on Peanut yields are predicted by the soil
suitability model. In addition, final management zones map a varied amount of nutrients that could
be added to different pivot zones. In conclusion, mapping soil units with a sufficient number of field
observations within each class provided an acceptable accuracy, and a good spatial distribution of
the suitability classification was achieved. Hence, agro-management zones are essentially needed
for policymakers in a specific field in order to furnish an evaluation about the transformations at a
territorial scale and for studying the strategies to realize environmental sustainability and to reduce
the territorial impacts.

Keywords: Salhiya area (Egypt); soil variability; GIS; remote sensing; precision farming

1. Introduction

Recently, a wide range of technologies have been utilized to make modern agriculture
more efficient [1]. The rapid evolution of precision farming or site-specific management
has been made possible by using the Global Positioning System (GPS) with Geographic
Information Systems (GIS) techniques and remote sensing data. These data make farmers
able to understand the site-specific needs of their fields [2]. Farm management practices
affect the quality of soil and productivity of crops on various spatio-temporal scales [3].
Hence, the evaluation of the spatial differences in soil properties and characteristics is very
important for field management on the basis of soil types and units in different regions [3–6]
where farmers collect spatial information using the global coordinate system (GPS) to
produce different maps of soil types and soil units. Therefore, the evaluation of the most
appropriate sampling scheme to be adopted when estimating soil diversity is one of the
important issues of the site-specific system [7]. Sampling schemes following a systematic
grid usually recommended as startup where no information about soil variability was
accessible before the sampling [8]. In addition, the quantity of samples is very important
for the quality of soil variability mapping [9]. Decreasing the space among samples causes
the average or maximal kriging variance to also be decreased [10].
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Grid soil sampling is a perfect tool for identifying soil variability [11,12]. Data mining,
GPS-based geo-referenced data collection, and high-resolution spatial data sets have be-
come standard modes of operation [13], turning the once uniform site management into
site-specific management [14] as one of the most significant subfields in precision agricul-
ture. Color is a key feature used in the identification and the classification of soils [15]. Soil
reflectance has a direct relationship with soil color, as well as to other parameters such
as texture, soil moisture, and organic matter (OM) [16]. Soil samples are usually taken
every few years to minimize the cost of soil sampling [17] in the first use of the data with
three more years of use with potentially many more variable-rate technology applications
of pesticides and fertilizers [18]. Spatial analyses such as kriging and natural neighbor
interpolations were used to evaluate multi-crop yield stability over several years [19] and
showed that kriging interpolation of scaled yields combined with surface features of eleva-
tion, aspect, and slope are able the most information about the field [20]. However, the field
lower elevations spot found to be the most productive areas, while the higher elevations
with southern aspect represented the least productive over a study period of five years [19].
Spatial information technologies were used to determine site-specific management classes
for a center pivot maize field [21].

Leaf area index (LAI) is an important eco-physiological parameter for farmers and
scientists for evaluating the health and growth of plants over time [22,23]. It is defined as
the ratio of the leaf surface area to the unit ground cover; it describes leaf gas exchange [24]
and is used as an indication of the potential for growth development and yield. Leaf Area
Index (LAI) maps are utilized in studying the changes in crop development, thus delineat-
ing the different yield areas annually, which is mandatory for optimal management [25].
Furthermore, soil maps help in identifying the soil characteristics related to the classes of
LAI derived from LAI maps [26].

Management zones can be investigated since they are financial savers to this farming
operation [27], and a simple soil sample test may identify a severe shortage of a certain
nutrient essential to the crop field [28]. This could be corrected with a simple variable
rate technology application and could change the one-acre patch into an average or better
producing yield zone again [29]. The accuracy of land suitability classifications obtained
from predicted soil attributes are compared to those derived from traditional soil maps [30].
The results showed that the precision of the suitability characterization obtained from
predicted soil attributes compares positively with the accuracy of classifications derived
from traditional soil maps [31]. The utilization of interpolation between field observations
gives a better chance of evaluating the precision of the suitability map [32]. The accuracy
of the suitability map is higher for soil usages that endure more extensive scopes of soil
characteristics [30]. Thus, the spatial distribution of the suitability classification obtained
from the predicted soil properties gives a more realistic pattern [30]. This research empha-
sized that the utilization of soil properties obtained from the forecast model gives an option
source of soil data in regions where soil maps are not accessible.

Peanut (Arachishypogaea L.) is one of the main cultivated summer crops in Egypt. The
most common system for identifying peanut growth was defined by [33]. It has been
selected for the current study, as Egypt is a major peanut-exporting country, of which
68% peanut products head to the European market [34,35]. The export value of Egypt
was USD 101.86 million, and the export volume was 33.25 million metric tons in 2016
“https://www.tridge.com/intelligences/peanut/EG/export”; (accessed on 19 March 2022).
The spatial analytical hierarchy method was widely used as a method of multi-criteria
evaluation for determining the most suitable areas for agriculture [36]. It is a powerful
support system determining diverse uses of land suitability issues in the region [32]. It can
be applied to determine land suitability for crops cultivation based on topography, climate,
soil nutrients, and soil physical factors as mandatory inputs to land suitability models [37].
Soil pH is important to the levels of nutrients that are available to the crops [38]. Nitrogen
applications lower the soil pH over time, and lime raises the pH in the soils, so the first
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step in soil nutrient management is to manage the soil pH levels to maximize the nutrient
availability potential for the type of crops being grown [38].

In many cases, grid sampling at the force required to effectively describe variability in
soil and crop parameters demonstrated cost restrictions [17], while other authors concluded
that site-specific agriculture is a management philosophy, including the utilization of
advances in data technology in farming [39]. In last decade, site-specific crop management
(SSCM) has been used for enhancing soil productivity, decreasing environmental impact,
and risk minimization [39]. The aim of this research is to present the results of using
GPS and soil samples for delineating management zones within an irrigated peanut pivot
situated at the eastern Nile Delta, Ismailia governorate, Egypt.

2. Materials and Methods
2.1. Study Area

The Salhiya area is located between 30◦29′00′′ N and 30◦30′00′′ N latitude, and
31◦56′00′′ E and 31◦57′00′′ E longitude and situated at the eastern Nile Delta, Ismailia
governorate, Egypt. The study area represented by 1 pivot within area about 67 hectares,
as shown in Figure 1.
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Figure 1. Location map of the study area, Ismailia governorate, Egypt, overlaid with sentinel-2 image
(false colour composition: NIR, Red, Green) acquired on 9 March 2022.

The field investigation of the site before reclamation showed that, generally, the studied
soil has sandy loam texture with an average electric conductivity (ECe) 3.1 dS m−1, low
value of organic matter (OM), and pH value around 7.8.

2.2. Field Data
2.2.1. Soil Samples

Thirty-three surface soil samples were collected based on the classification results of
Landsat 8 of operational land images (OLI) acquired before plantation. The satellite data
were used to produce an Enhanced Vegetation Index (EVI) map, which incorporated an “L”
value to adjust for canopy background, “C” values as coefficients for atmospheric resistance,
and values from the blue band. The map was classified into different categories based on
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the EVI values, and then the locations of the soil samples were allocated by symmetric
random sampling. Twenty soil samples were also collected before plantation, and another
thirteen soil samples were collected in the different soil zones, during the second growth
stage after sixty days from plantation. Yield samples were collected as symmetric sampling
grid contains 37 locations used to obtain a yield map of peanut. An area about 1 m2 was
sited in each location, and then the peanut was weighed. The yield measured as kg peanut
per m2 and then converted to tons per hectare.

Soil properties were described insitu [40]. Particle size distribution was carried out
using Hydrometer Method [41]. The soil physical and chemical characteristics of col-
lected soil samples (Table 1) were described insitu and were determined according to [42].
Electrical Conductivity (ECe) was determined in soil paste extract expressed in dS m−1.
Soluble cations (Ca2+, Mg2+, Na+, K+) and anions (Cl−, CO3

2−, and HCO3
−) were mea-

sured in the soil past extracts by titration [34,35]. Available Potassium was measured by
Flame Photometer after extraction by Ammonium Acetate at pH 7 [43,44]. Micronutrients
were determined by Atomic absorption spectrophotometer after extraction by Ammonium
Bicarbonate-DTPA at pH 7.6 [44].

Table 1. (a) Soil and Climate Evaluation Criteria of peanut crop [38–41,44,45]. (b) Field management
practice of peanut crop.

(a)

Land Characteristics Class, Degree of Limitation, and Rating Scale

Rank of Groups Rank of Soil Layers 100–95 95–85 85–60 60–40 40–25 25–0

Soilsalinity

1 ECe dS m−1 0–2 2–4 4–6 6–8 8–12 >12
2 ESP 8–10 10–15 15–20 15–20 – >20
3 pH 6.8–7.0 7.0–7.5 7.5–8 8–8.2 – >8.21

4 O.M.% >2 2–1.2 1.2–0.8 <0.8 – –

Soil Fertility

1 Available P
mg kg−1 6–5 5–4 4–3 3–2 <2 –

2 Available K
mg kg−1 60–50 50–45 45–40 40–30 <30 –

3 Available Fe
mg kg−1 4–3.5 3.5–3 3–2.5 2.5–2.1 <2 –

4 Available Mn
mg kg−1 2–1.9 1.9–1.7 1.7–1.5 <1.5 – –

2

5 Available Zn
mg kg−1 >1.5 1.5–1 1–0.9 <0.9 – –

Soil
physicalcharac-

teristics

Texture L, SCL
SC, Cl,

C < 60, LS
C > 60 v,

S, cS Cm,
SicM1 Si, SL SiC, fS

2 CaCO3 % 0–12 12–25 25–35 35–50 – >503

3 Coarse
fragments % 0–1 1–3 3–15 15–35 – >35

Topography
1 Slope % 0–1 1 -2 2–4 4–6 – >6
2 DEM (m) 0–15 15–30 30–45 45–60 > 60 –4
3 Location 3–6 towers 2nd tower 1st tower 7 pivot tower – –

Climate
1 Humidity % 60–50 70–80<50 60–70 >80 – –

5 2 Day length 15–13 <13 – – – –
(b)

Field Practice Measure Units

Application Rate

Before
Plantation

After Plantation

1st Day 15 Days 30 Days 45–65 Days

Irrigation water mm ha−1 750
Ammonium sulfate N unit ha−1 35.7 35.7 35.7

Super phosphate kg ha−1 55
Potassium sulfate kg ha−1 42
Micro nutrients
Fe, zn, and mn

(1, 1.5, 1)
0.5 g L−1 7.15 L ha−1 950 L ha−1

m = meter above sea level h = hours.
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Sodium Absorption Ratio (SAR) was calculated using:

SAR =
[
Na+

]
/
√
(Ca2+ + Mg2+)/2 (1)

Exchangeable Sodium Percentage (ESP) values were estimated based on SAR value as:

ESP =
100× (−0.0126 + 0.01475× SAR)

1 + (−0.0126 + 0.01475× SAR)
(2)

2.2.2. Deriving of Soil Productivity Maps

The measured soil characteristics such as soil salinity (ECe) dS m−1, soil texture ex-
pressed in sand (%), silt (%) and clay (%), soil pH, organic matter content (mg kg−1), calcium
carbonate (%), and agro-metrological data of the selected area were used in evaluating soil
productivity [45].

Soil and agro-metrological evaluation criteria were used as the inputs of SMCE in
ILWIS software. ILWIS package is opensource software and can be downloaded free of
charge from “http://52north.org/” (accessed on 30 May 2018). The SMCE was used to
calculate soil suitability based on the crop requirements and using rank sum statistical
analysis method as a combination rule [38–41].

Data processing into SMCE included several phases (Figure 2). First, all gathered
soil samples were analyzed and then converted to soil maps using simple kriging spatial
interpolation technique [42,43]. Second, the input layers were rasterized to cell size 30 min
order to make an effective weighted overlay as the resolution of all the factor maps were not
same. Third, the ranges of suitability for each soil class were determined while ordering soil
layers into different criteria groups were selected to express the importance of each factor
relative to other factor effects on crop yield [38–41,44–46]. The criteria groups were salinity,
fertility (available K, P, Fe, Mn, and Zn), topography, soil physical characteristics, and
climate (Table 1). Fourth, the criteria factors and the criteria constraints were selected [47,48],
and the excluded areas were considered as constraints such as outside the boundary of the
pivot and very saline soils.
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Then, the factors in the five groups were defined [48]. The fifth step was data stan-
dardization for all the factors into units, enabling comparing and multiplying processes
in the SMCE model [41,44,45]. Finally, Spatial Multi Criteria Evaluation approach was
used to overlaying different attribute layers according to crop requirements using ranking
sum equation as a combination rule; moreover, the output maps were reclassified into four

http://52north.org/


Sustainability 2022, 14, 5437 6 of 26

productivity levels including high production, good production, moderate production, and
low production [49–52].

2.2.3. Field Management Practices—Salhiya Site

The field investigation in Peanut pivot, Salhiya area, showed that the farm depends
on irrigation system by adding fertilizer rates based on results of previous research. The
fertigation program includes adding 107 Nitrogen units per hectare divided equally into
three dates: first application after plantation, 15 days after plantation, and 30 days after
plantation (Table 1). The Nitrogen units were applied as ammonium sulfate form (20.6% of
Nitrogen). Additionally, the application rates of other fertilizers were, namely, 55 kg ha−1

super phosphates (15% of P2O5), 42 kg ha−1 of potassium sulfate (48% of K2O), and micro
elements in 0.5 g L−1 concentration mixed form. Super phosphates and potassium sulfate
were added as a soil application during land preparation and before plantation. The
micronutrients were Fe, Zn, and Mn in combination (1, 1.5, 1, respectively); they were
added twice with rates 715 L ha−1 and 950 L ha−1, respectively. Moreover, peanuts were
planted after moisturizing the soil using a planter machine which delivered 5 seeds per
30 cm of row with 15 cm depth. The pivot takes 12 h to complete 1cycle where the pump
station produces a pressure about 6 bars to maintain water flow of approximately 80 L per
second through the center pivot nuzzles. The tillage practices were performed in the pivot
area using pre-blow before plantation and the ridge after plantation to format the peanut
lines in 40 cm width and 30 cm depth. Saline areas were identified using the ECe map
and the satellite data acquired before plantation, then treated using additional subsurface
plough and tillage in order to break any subsurface hard pans in 40 cm depth.

2.3. Statistical Analyses

The collected soil data and final yield were analyzed by the following statistical
methods:

A. A simple correlation procedure was applied by computing simple correlation coeffi-
cients matrix between peanut yield and soil characteristics [53]. Correlation analysis
is utilized to quantify the degree to which yield data and soil variables are related.

B. Multiple linear regression (MLR) accompanied with (R2), which refers to partial coef-
ficient of determination, was calculated for yield to evaluate the relative contribution
of each of soil properties and to simulate the prediction model for peanut yield (Y)
with a measure of goodness of fit.

C. Multiple Linear Regression analysis using a Stepwise selection procedure was used to
determine each variable accounting for the yield variability majority as, multiple linear
regression involves the fitting of a response to more than one predictor variable [53].
The stepwise selection method can be a forward, backward, or mixed selection method.
In the current study, stepwise forward selection method computed a sequence of
multiple linear regressions in the iterations of stepwise procedure by adding one
variable predictor to the prediction equation at each stage of the procedure similar to
a forward selection procedure. The tradeoff or eliminating variable to obtain another
for the extra computational effort is the capacity to erase non-significant indicators as
variables are added in addition to the ability to include new indicators taking after
erasure. The additional variable was the one which incited the best diminishment
in the error total of squares. It was additionally the variable which had the most
partial correlation with the one of the soil properties as a dependent variable for fixed
estimations of those variables included. In addition, it was the variable which had the
highest F value.
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D. Ranking sum equation was used to manipulate weights for ranked soil criteria [22,24].
It calculates a ranked weight for a number (n) of different criteria (k) using Equa-
tion (3). Table 2 shows the weight vectors for various numbers of criteria according to
Equation (1):

Wk =
n + 1− k

∑n
i−1(n + 1− i)

(3)

where, n is number of criteria, wk is the weight, and k the criteria meaning that
w1 ≥ w2 ≥ . . . ≥ wn ≥ 0.

Table 2. Criteria weights based on ranking sum equation.

Criteria Criterion Weights

n w1 w2 w3 w4

2 0.66 0.33
3 0.50 0.33 0.17
4 0.40 0.30 0.20 0.10

where n: number of criteria; wx: criteria weights.

2.4. Kriging

All gathered soil samples were analyzed and then converted to soil maps using simple
kriging spatial interpolation method. Kriging is one of the best linear unbiased predictors
that can be smoothed or correct relying upon the error estimation model [53]. Kriging
is a generic name for a group of generalized least-squares regression models, utilized as
a part of the pioneering work [53]. Many kirging methods are univariate geo-statistical
algorithms such as simple kriging and ordinary kriging, where the kriging multivariate
algorithms such as ordinary co-kriging and co-located co-kriging. All kriging predictors
are variations of the general Equation (4) as follows:

Ẑ(x0)− µ = ∑n
i=1 λi[Z(xi)− µ(x0)] (4)

where µ is a known stationary average, assumed to be steady over the entire domain and
counted as the mean of the data [53]. The parameter λ is kriging weight; n is the point
number of the selected samples used to make the interpolation; and µ(x0) is the samples
average. The prediction of simple kriging is based on Equation (4) but with a slightly
mathematical changes and modifications leading to Equation (5) as:

Ẑ(x0) = ∑n
i=1 λiZ(xi) + [1−∑n

i=1 λi]× µ (5)

where the parameter µ(x0) in Equation (4) is modified by the stationary average µ in
Equation (5). The samples number used to make the prediction in Equation (5) is calculated
by the range of impact of the semivariogram [53].

Simple kriging was used for interpolating the soil characteristics to produce digital
soil maps for the study area. Basically, SMCE model contain two main criteria constraints
and factors. Outbound the study area, tracks and roads were considered as constraints;
while the factors were represented by spatial maps. The spatial maps were divided into
different classes using the optimum conditions for peanut crop [37,40]. Moreover, the
spatial maps were standardized and converted to units that can be compared [54]. This step
was necessary for applying the weighted linear combination algorithm in SMCE model [55].
In this study, the factor maps were ranked according to results of the stepwise regression
model parameters. Moreover, the digital soil layers and other maps were rasterized with
cell size as 30 m same as the digital elevation model and slope layers.
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2.5. Accuracy Assessment of Mapping Peanut Productivity

Confusion matrix of 3 × 3 cells was selected to assess the accuracy of the GIS map
of soil peanut productivity, producers and user’s accuracy of map unit, as well as the
entire map. This accuracy assessment was based on KHat statistics and is a measure of
agreement of accuracy. This measure of agreement is based on the difference between the
actual and correct of confusion matrices classification. In this matrix, the column represents
the omission errors, while the errors of commission are shown in the rows. Therefore, the
confusion matrix enabled determining the omitted or under-estimated classified pixels and
overestimated classified pixels of the different classes of soil. The interpretation of confusion
matrix indicted that 37 testing points were used to perform the classification accuracy of
the soil peanut productivity map, while the categorical accuracy of information classes was
tested by different number of zone tests. However, according to the confusion matrix data,
the overall accuracy (Po) had the value of 86.49%, which was calculated as follows:

Po = ∑r
i=1 Xii × 100 (6)

where Po is the overall accuracy, r is the number of rows and columns in error matrix, Xii is
the observation in row i and column i, while the overall Kappa Statistics are calculated by
the following equation:

K =
(N ×∑r

i=1 Xii)− (∑r
i=1 Xi+ × X+i)

(N × N)−∑r
i=1(Xi+ × X+i)

(7)

where r is the number of rows and columns in error matrix, N is the total number of
observations (pixels), Xii is the observation in row i and column i, Xi+ = is the marginal
total of row i, and X+i = is the marginal total of column i.

3. Results and Discussion
3.1. Soil Properties
3.1.1. Morphological, Physical, and Chemical Attributes

The studied soils represent the old deltaic plain of flat topography with an average
elevation 15.3 m having a level to slightly level slope that ranges from 0.5 to 2.0%. The soil
is well drained with a deep water table. The results of the morphological description of the
studied soils indicated that the soil color varies from yellow to dark brown in soil samples
at dry conditions, and it turned to yellow to very dark brown or yellowish brown with
different degrees (light, moderate, dark) in moist conditions. Soil texture varies from sandy
clay to sandy clay loam texture with slight variations in clay content. The soil structure
in many samples was slightly hard to medium coarse in few samples with few types of
gravel. The soil consistency was sticky and slightly plastic. Most of the soil samples had
low and sometimes moderate effervescence with hydrochloric acid (HCl).

The data of physical and chemical properties of the soil samples collected before
plantation are presented in Table 3. The analysis showed that clay content ranged from
28 to 41% in the surface soil samples, while sand content ranged from 48 to 64% with an
average of about 53.7%. The texture class of the surface layers down to a depth of 40 cm
is generally sandy clay and sandy clay loam in the western part of the pivot with an area
about 13.9 hectare (Figure 3).
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Table 3. Physical characteristics of the study soil locations before plantation.

Sample No GPS Map Location Sand% Silt% Clay% Textural Class CaCO3 g kg−1 S.P. Elevationmeter
1 1 54 8 38 sandy clay 8.8 37 12
2 2 51 10 39 sandy clay 9. 8 36 16
3 3 51 16 33 sandy clay loam 15.1 30 18
4 4 55 10 35 sandy clay 36.1 37 15
5 6 48 11 41 sandy clay 61 35 20
6 8 56 7 37 sandy clay 12.9 32 15
7 9 52 17 31 sandy clay loam 15.1 32 12
8 10 54 11 35 sandy clay loam 15.1 31 14
9 13 54 9 37 sandy clay 8.8 32 13

10 14 63 9 28 sandy clay loam 23.7 36 14
11 16 55 7 38 sandy clay loam 19.1 32 16
12 21 64 5 31 sandy clay loam 14.6 35 13
13 23 51 13 36 sandy clay 12 35 14
14 25 53 10 37 sandy clay 52.9 30 18
15 27 51 9 40 sandy clay 38.8 33 18
16 30 55 10 35 sandy clay 11.8 37 18
17 31 52 9 39 sandy clay 20 35 16
18 32 50 11 39 sandy clay 5.9 29 14
19 33 49 14 37 sandy clay 25.9 33 14
20 36 56 8 36 sandy clay 11 33 16
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Values of saturation water percentage SP are relatively high and varied from 38%
to 48%, which reflects a relatively high clay content and the sandy clay and sandy clay
loam texture classes, these results agree with the results who indicated that El-Salhiya area
characterized by clay loam, sandy loam, sand, and sandy clay loam texture [56]. Calcium
carbonate is present in all of the studied samples with percentages varying from 0.59
to 6.1% and an average value about 2%. Digital maps of soil physical properties were
categorized into suitable classes and used to identify soil units [39,40,43]. Soil texture maps
were categorized into two classes, Sandy Clay Loam and Sandy Clay, in most of the pivot
area. In addition, the results showed that the soil contains a low amount of CaCO3, which
was categorized into two classes. i.e., above 3% and less than 3%,and represents most of
the pivot area. The Saturation Percentage (SP) values obtained from soil analyses were
categorized into three classes, i.e., below 43%, 43–45%, and above 45% as shown in Figure 4.
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Table 4 shows the chemical characteristics of the study soil locations before plantation.
It indicates that the soils are mostly slightly to very slightly saline where the ECe values
were relatively low, with no depth-wise distribution pattern. The results showed that
ECe values varied from 1.94 to 6 dS m−1 with an average of 2.97 dS m−1. Generally,
the soil has low to medium organic matter content ranging from 0.5 to 2.3%. Moreover,
Exchangeable Sodium Percentage (ESP) values ranged from 1 to 12 with an average 6.33.
On the other hand, Chloride (Cl−) is the dominant anion followed by Bicarbonate (HCO3

−),
and Carbonate (CO3

2−) was not found. Chloride anions ranged from 8.78–14.24 meq L−1,
while the carbonates ranged from 1.26–3.12 meq L−1 with an average of 1.68 meq L−1.

Table 4. Soil chemical characteristics of the study soil locations.

Sample GPS Map Location ECe pH Ca Mg K Na Cl HCO3 ESP
No. No. dS m−1 - meq L−1

1 1 3.01 7.5 2.987 2.195 51.01 4.715 13.04 1.64 3
2 2 5.13 7.4 2.986 2.292 53.47 12.97 12.54 1.74 10
3 3 5.17 7.6 3.779 2.263 93.84 2.734 9.28 2.22 1
4 4 4.82 7.8 4.434 2.068 63.38 6.491 10.54 1.46 4
5 6 5.59 7.5 2.596 1.951 49.76 11.06 10.78 1.36 9
6 8 1.94 7.5 0.475 0.115 29.96 5.509 12.74 1.42 12
7 9 2.43 7.4 0.842 0.493 36.67 4.211 11.24 1.74 6
8 10 2.39 7.9 0.848 0.496 34.91 5.268 12.24 1.792 8
9 13 4.73 7.3 1.986 1.549 47.28 10.94 13.54 2.54 10

10 14 2.56 7.9 0.758 0.917 34.91 5.487 8.78 1.32 7
11 16 2.27 7.3 1.336 0.885 38.61 3.379 10.28 1.46 3
12 21 2.29 7.1 0.876 0.538 34.95 4.237 11.74 1.64 6
13 23 3.31 7.2 1.443 1.075 42.33 6.318 13.74 2.22 7
14 25 4.63 7.4 0.846 0.495 34.91 4.211 11.28 2.26 6
15 27 3.87 7.5 0.947 0.758 29.96 3.259 11.54 1.26 4
16 30 2.31 7.2 0.971 0.606 36.15 3.279 13.24 1.32 4
17 31 4.16 7.3 1.821 1.105 48.52 11.09 12.04 1.64 11
18 32 2.42 7.7 0.994 0.617 36.15 3.139 14.24 3.12 4
19 33 2.54 7.9 0.415 0.085 29.96 4.458 9.78 1.36 11
20 36 2.61 8.2 0.846 0.495 34.91 4.171 11.04 1.36 6
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The cations and anions analyses indicated that the Potassium (K) represented the
dominant cation, followed by Sodium (Na), then Calcium (Ca), and Magnesium (Mg) was
the lowest one, as shown in Table 4. The dominance of Na+ ions may affect the Phosphorus
(P) solubility if compared with Ca ions.

Moreover, the data in Table 4 and Figure 5 reveal that the studied soil samples have
relatively medium pH values varying from 7.1 to 8.2 with an average value of 7.5. In the
meantime, Potassium (K) ranged from 29.96–93.84 meq L−1. Sodium cation Na+ varied
from 2.73–12.97 meq L−1. Calcium (Ca) and Magnesium (Mg) ranged from 0.42–4.43 meq
L−1 and 0.09–2.29 meq L−1, respectively. On the other hand, Chloride Cl is the dominant
anion, followed by Bicarbonate HCO3, and Carbonate CO3 was not found. The Chloride
anion ranged from 8.78–14.24 meq L−1, while Bicarbonates varied from 1.26–3.12 meq
L−1 with an average 1.68 meq L−1. A digital map of the electrical conductivity of soil
paste extract (ECe) was categorized into three classes based on the effect of a range of
electrical conductivity (ECe) levels on plant growth. The ECe classes were non-saline,
weakly saline, and moderately saline, ranging from <2 dS m−1, 2–4 dS m−1, and >4 dS m−1,
respectively [48]. The non-saline soil was located in the western part of the pivot, while
most of the other area was weakly saline. The moderately saline area with values more
than 4 dS m−1 located in the center of the pivot may be due to the soil slope in that area. In
Figure 6, the pH levels were classified into three categories, namely, less than 7.2, 7.2–7.6,
and 7.6–8.2, which may affect the availability of some nutrients. In addition, the pH level
ranged from 7.6 to 8.2 in the eastern part of the pivot area. The ESP was generally below 15
indicated that, generally, the soils are not sodic soils, although they contain three different
classes: below 7%, 7–10%, and above 10% [48]. The ESP class contains values below 7
located in the out boundaries of the pivot, while the ESP class ranged between a 7 and 10%
spread in most of the pivot area.
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3.1.2. Contents of Available Nutrients in the Site

The amounts of available Phosphorus, potassium, and micronutrients (Fe, Mn, and
Zn) of the studied soil samples before plantation are shown in Table 5 and Figures 7 and 8.
The available potassium content varied from 228.5 to 384.8 mg kg−1

soil. The highest values
were found in the northern part of the pivot, whereas the lowest values were in the south
part. In addition, a relative decrease was found around the external boundaries of the pivot.
Available Phosphorus content is low and found in the range of 6.5 to 8.8 mg kg−1

soil, slightly
lower in center of the pivot. Soil pH values higher than 6.5 could limit the availability of
Phosphorus in the soil. The micro-nutrients’ composition of the soil samples followed a
pattern characterized by the dominance of Mn followed by Fe and Zn. In the meantime, Iron
content ranged from 1.5 to 8.8 mg kg−1

soil with a mean of 3.5 mg kg−1
soil. The higher Fe

value characterizes the eastern part of the pivot, while the lowest value is in the northwest
of the pivot. The results showed very high variation in the amount of available Manganese,
which ranged from 0.3 to 8.3 mg kg−1

soil with an average of 4.3 mg kg−1
soil, reflecting

generally adequate values for plant growth. Generally, the results of the soil sample analysis
showed that the amount of available Zinc ranges between 0.10 and 1.8 mg kg−1

soil with an
average of 0.6 mg kg−1

soil, indicating low Zn availability. The soil pH values higher than
6.5 could limit the availability of Zinc, and the pivot areas with high ECe values may affect
it, where the high salt saline soils diminish the Zinc availability.
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Table 5. Available P, K, and micronutrients (Fe, Mn, and Zn) of the soil samples.

Sample GPS Map Location K P Fe Mn Zn
No No mg kg−1

soil
1 1 325.6 11.7 2.4 2.8 0.4
2 2 337.3 10.5 2 0.8 0.5
3 3 384.8 9 5.5 6.9 1
4 4 534.1 6.5 5.1 6.4 0.7
5 6 319.8 11.1 3.5 8.3 1
6 8 228.5 10.2 2.2 2.1 0.2
7 9 251 6.8 3.1 5.4 0.6
8 10 251 9.8 2.6 3.5 0.1
9 13 308.2 13.5 1.5 0.6 0.8

10 14 245.3 7.8 3.2 7.5 0.7
11 16 268 10.3 2.5 5.3 0.8
12 21 251 8.7 2.3 0.3 0.1
13 23 285.1 12.5 2.3 7.2 0.5
14 25 251 13 3 7 0.8
15 27 228.5 9.6 2.2 2.5 0.4
16 30 256.6 10.9 3.2 1.7 0.7
17 31 314 9.8 3.9 7.7 0.4
18 32 256.6 13.8 3 2.7 0.9
19 33 228.5 9.8 7.6 4.7 1.8
20 36 251 8.4 8.8 2.6 0.2
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3.1.3. Salhiya Digital Soil Maps of Available Nutrients and Soil Units

The data of the soil characteristics and the available P, K, Fe, Mn, and Zn of soil
samples collected from different location of the studied pivot were classified [48]. Avail-
able P data were classified in three classes (Figure 9) as high (<12 mg kg−1

soil), medium
(between 10–12 mg kg−1

soil), and low (10 mg kg−1
soil) content [43]. However, available P

use efficiency may have influenced by many factors related to P fertilizer, the crop grown,
and mainly to the soil pH, the content of CaCO3, and clay.
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The data of available K were arranged in three classes (Figure 9) as high content
(more than 250 mg kg−1

soil), medium content (from 200–250 mg kg−1
soil), and low con-

tent (less than 200 mg kg−1
soil) [43]. The available Iron was arranged in three classes
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(Figure 10), namely, high content (more than 4 mg kg−1
soil), medium content (between 2

to 4 mg kg−1
soil), and low content (less than 2 mg kg−1

soil) [57]. In general, Iron (Fe) and
micronutrient use efficiency may have been influenced by some factors such as soil pH
and the content of CaCO3, OM, and clay. Available manganese was categorized into two
classes as high content, “more than 1.5 mg kg−1

soil”, and medium content, “ranged from
1–1.5 mg kg−1

soil” [57]. Furthermore, available zinc (Zn) was categorized into two classes
(Figure 10), medium and low; the medium class contains available zinc (Zn) more than
1.8 mg kg−1

soil,and the low class contains available zinc less than 1.8 mg kg−1
soil.
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Figure 10. Soil classes of available Iron (Fe), Manganese (Mn), and available Zinc (Zn).

A digital soil units map was obtained usinganoverlay technique by combining the
classified maps of the studied soil properties (texture, ECe, pH, CaCO3, SP, and ESP).
The output layer of the digital soil map unit showed four soil map units having some
different characteristics. Table 6 and Figure 11 shown the soil map units characterized by
the following [42]:

• Soil unit 1 is characterized by non-saline soil with ECe ranging from 0 to 2 dS m−1,
low % CaCO3 less than 3%, and sandy clay loam texture.

• Soil unit 2 is characterized by non-saline ECe, sandy clay, and low CaCO3.

• Soil map unit 3 is characterized by very slightly saline ECe ranging from 2–4 dS m−1,
low CaCO3, and sandy clay loam texture.

• Soil map unit 4 is characterized by slightly saline soil with ECe more than 4 dS m−1,
low CaCO3 content, and sandy clay loam texture.

Table 6. Area of different units based on soil properties.

Different Units Based on Soil Properties Hectare %
Unit 1 Non-saline ECe, low CaCO3, scl texture 0.7 1.11
Unit 2 Non-saline ECe, low CaCO3, scl texture 51 75.56
Unit 3 Very slightly saline ECe, low CaCO3, scl texture 7.5 11.48
Unit 4 Slightly saline ECe, low CaCO3, scl texture 7.8 11.85
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Figure 11. Different soil units based on soil factors.

In the meantime, the overlay technique was used to combine the soil classified maps
of available P, K, Fe, and Mn. The output of overlay layers contained six soil fertility
management zones, differing from each other with the area of different soil management
zones. The results of Figure 12 also show soil units based on fertility level in the following
descending order:

• Zone 1: this area represents soils having a high content of available Phosphorus,
Potassium, Iron, and Manganese.

• Zone 2: this area had fair amounts of soil fertility elements with high soil content of
available K, Fe, Mn and medium soil content of available P.

• Zone 3: this area had a flat elevated area with medium soil content of available P and
K in addition to high soil content of available Fe.

• Zone 4: characterized by a flat area with medium soil content of available Phosphorus,
medium soil content of available K, and medium soil content of available Fe.

• Zone 5: relatively elevated soils and contains low content of most soil fertility elements
such as available Phosphorus, low Fe, and moderate amount of available K.

• Zone 6: characterized by nutrient stress due to the low contents of most fertility
elements such as available P, K, and Fe with high elevated soils.
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Figure 12. Different soil units based on some soil characteristics.

Finally, both layers of soil properties and soil fertility management zones were com-
bined to give one combined management zone. The results of the overlay layers show six
management zones, as shown in Figure 13, with varied total areas, namely, rich nutrient
area occupied about 24%of the pivot(16 ha from the total area of the pivot), very good area
about 9% (6 ha), good area around 5% (3 ha), normal area occupied 28% (19 ha), moderate
area occupied 33% (22 ha), and poor area around 3% (1 ha).

Yield is a powerful criterion to determine management zones within a field due to
the wide yield variation levels in farms. The results showed that the rich nutrient area
containing the highest yield was in zone one around 3.5 to 3.7 ton ha−1. For the yield in
the second zone, the very good area varied between 3.2 and 3.4 ton ha−1. Additionally, the
good area zone was located in the yield level between 2.9 and 2.1 ton ha−1. For the yield in
zone four, the normal area contained 22 hectares located in yield level ranged between 2.7
and 2.8 ton ha−1.
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management zones.

3.1.4. Correlation between Peanut Yield and Soil Characteristics

A simple correlation matrix of some soil characteristics are presented in Table 7, namely,
Texture, ECe, soil pH, organic matter, saturation percentage, CaCO3, Kavailable, Pavailable, Fe,
Mn, and Zn. The regression analyses for peanut yield and soil characteristics are presented
in Table 8. Basically, the result indicated that SP performed better than OM, CaCO3, ECe,
and pH for predicting peanut yield with correlation coefficient 0.77, 0.73, 0.60, 0.54, and
0.40, respectively.

Table 7. Simple correlation matrix of some soil characteristics.

Soil
Characteristics Texture ECe pH OM SP CaCO3 K available P available Fe Mn Zn

Texture 1
ECe 0.11 1
pH 0.08 −0.30 1
OM −0.02 0.38 0.03 1
SP 0.44 0.24 −0.35 0.38 1

CaCO3 −0.18 0.48 0.09 −0.11 −0.23 1
K available 0.12 0.91 −0.31 0.32 0.23 0.42 1
Pavailable −0.01 0.45 −0.50 0.45 0.39 −0.34 0.31 1

Fe −0.17 −0.08 0.30 0.41 0.02 −0.05 −0.10 −0.14 1
Mn −0.22 −0.02 0.02 −0.09 −0.22 0.18 0.01 −0.20 0.14 1
Zn −0.17 −0.08 0.30 0.41 0.02 −0.05 −0.10 −0.14 1.00 0.14 1
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Table 8. Correlation between yield (ton ha−1) and soil characteristics.

Factors Intercept Slope Generated Model R
SP 63.2 1.91 Y = 1.91 × SP − 63.2 0.77

OM 80.62 −10.6 Y = −10.6 × OM + 80.62 0.73
ECe 13.13 0.7 Y = 0.7 ×ECe + 2.13 0.60

CaCO3 −245.67 3.43 Y = 3.43 × CaCO3− 245.67 0.54
pH 14.5 2 Y = 2 × pH − 14.5 0.40

Generally, soil plays a great role in yield production, where it is the main path for
water and nutrient supply needed to complete photosynthesis process. The multiple linear
regression analysis using stepwise selection procedure was used to asses to determine the
main soil variables (ECe, pH, CaCO3, OM, and SP) accounting for the yield variability
majority. The results of the statistical analysis using the stepwise multiple linear regression
for the different soil variables to predict the final yield production using ECe, pH, CaCO3,
OM, and saturation percentage are demonstrated in Figure 14 and Table 9.
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Table 9. Results of the stepwise MLR analysis for soil characteristics and correlation between model
parameters and measured yield.

Yield Fitted Model Factors R2 RMSE
Y = 2 × CaCO3 + 8.9 × OM− 107.7 2 0.61 11.27
Y = 1.09 × ECe + 2.63 × SP− 266.72 2 0.63 9.42

Y = 0.13 × ECe + 2.73 × pH +
1.18 × OM− 164.11 3 0.83 6.71

Y = 0.33 × ECe + 2.3 × pH + 9.2 × OM +
3 × SP− 428.75 5 0.92 5.35

The statistical analysis showed high correlation between ECe and the calculated yield.
The result showed high R2 around 0.92 for the predicted values of the crop coefficient.
The result from the prediction equations were used to predict and map the peanut yield.
The result shows a correlation between the calculated yield and predicted yield for ECe,
pH, CaCO3, and OM were significant, as presented in Table 9.

The result showed that the yield estimations have a good agreement with field mea-
surements with significant correlation coefficient, where soil maps were successfully em-
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ployed on yield prediction. Furthermore, the results showed high R2 for the predicted
values of crop coefficient 0.92 and 0.85, respectively. It indicates that the estimation of
crop yield using remote sensing data is essentially significant. However, R2 values of the
correlation between the calculated and predicted yield in the model combining ECe, pH,
OM, and SP were higher than separated or one-factor models.

3.2. Soil Productivity Assessment
3.2.1. Mapping Soil Productivity

Soil maps were processed to produce soil attribute values that were used as a pre-data
for a soil productivity model built in ILWES using SMCE. The SMCE soil model classified
the studied area into four production soil classes: high production soil with an average
production around 3.50 ton ha−1, a good production soil with an average production of
3.20 ton ha−1, moderate production soil with an average production of 2.90 ton ha−1, and,
finally, low production soil with an average production around 2.50 ton ha−1. Figure 15
shows the production levels and the representing areas for each class. The classes areas
were 35%, 21%, 38%, and 6% of the study area, respectively. The results indicated that high
production areas were found generally in soil of ECe from 0.3 to 3.9 dS m−1, soil pH level
(7.1 to 7.8), available potassium (20 to 30 mg kg−1), Iron (1 to 2.3 mg kg−1), Manganese (1.7
to 2.4 mg kg−1), and CaCO3 that ranged from 1.1 to 4.3 g kg−1 (Table 10). Low production
areas were characterized by low fertility and ECe between 1.3 and 5.2 dS m−1, soil pH
levels between 7.7 and 8.2, and available potassium (1.5 to 1.6 mg kg−1), iron (0.9 to 0.5 mg
kg−1), Manganese (1.1 to 0.2 mg kg−1), and CaCO3 (5.6 g kg−1). Comparing these results
with the peanut crop requirements in terms of soil topography and climate conditions
indicated that the area is generally good soil for cultivating peanut crop; however, the low
production areas need to be enhanced by adding a sufficient amount of organic matter.
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Table 10. Soil characteristics of high and low crop production.

Soil Properties Unit High Production Low Production

ECe dS m−1 0.3 to 3.9 1.3 to 5.2
Soil pH - 7.1 to 7.8 7.7 to 8.2

Available potassium mg kg−1 20 to 30 1.5 to 1.6
Fe mg kg−1 1 to 2.3 0.9 to 0.5
Mn mg kg−1 1.7 to 2.4 1.1 to 0.2

CaCO3 g kg−1 1.1 to 4.3 ≥5.6

3.2.2. Accuracy Assessment of Mapping Peanut Productivity

The mapping accuracy of the mapping units of high, moderate, and low production
were assessed by 14, 12, and 11 zone tests, respectively (Table 11). Clearing that, the second
row showed that only three zone tests (3 × 3 × 3 pixels) were overestimated and classified
in higher information class (class of moderate production) while they really belonged to
the class of low production (Table 12). Moreover, a zone test of the class of high production
was omitted (underestimated) to be a member in lower class information (class of moderate
production), where the correctly classified pixels of all information classes are represented
along the diagonal of the confusion matrix (Table 12).

Table 11. Confusion matrix of soil productivity output classification.

Production Levels
Production Levels High Moderate Low Zones Test

High production 13 1 0 14
Moderate production 1 11 3 15

Low production 0 0 8 8
Total 14 12 11 37

Table 12. Producer and user’s accuracies of soil productivity output data classification.

Production
Levels

Omission
Error

Commission
Error

Omission and
Commission Errors

Producer’s
Accuracy

User’s
Accuracy

High 7.14 0 7.14 92.31% 85.71%
Moderate 0 6.67 6.67 90.90% 83.33%

Low 0 27.27 27.27 80.00% 72.72%

However, according to the confusion matrix data, overall accuracy (Po) had the value
of 86.49%, which was calculated as follows:

Po= (32/37) × 100 = 86.49%, while the overall Kappa Statistics had the value of 79.8%:

∑r
i=1 Xii = (13 + 11 + 8) = 32 (8)

∑r
i=1(Xi+ × X+i) = (14× 14) + (12× 15) + (11× 7) = 453 (9)

Kappa = (((37× 32)− 453) / ((37× 37)− 453)) = 79.8% (10)

where r is the number of rows and columns in error matrix, N is the total number of
observations (pixels), Xii is the observation in row i and column i, Xi+ is the marginal total
of row i, and X+i = is the marginal total of column i.

The number of the omitted and committed pixels was related to all pixels to calculate
the percentage of these errors. The summation of this percentage represented the erro-
neously classified pixels. Considering the categorical accuracy expressing the potential
map units, we can calculate the producer accuracy and user accuracy of soil productivity
for the classified output data, as shown in Table 13.
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Table 13. Classification accuracy assessment of different classes of peanut soil productivity.

AccuracyClasses Peanut
Soil Productivity

Total Examined
Cells Classified Cells Correctly Classified

Cells Producers Users
High production 14 13 12 92.31% 85.71%

Moderate production 12 11 10 90.90% 83.33%
Low production 11 10 8 80.00% 72.72%

Totals 37 34 30 88.24% 81.08%
Overall classification accuracy = 86.49%

Overall kappa statistics = 79.8%

The table showed that the producer’s accuracies ranged from 80.00 to 92.31%; the
lowest producer’s accuracy was recorded in the case of low production class, while the
highest producer’s accuracies was assigned to high production class. Moreover, the user’s
accuracies ranged between 72.72% (class of low production) and 85.71% (class of high pro-
duction). Moreover, the accuracy assessment of the soil productivity map showed adequate
classification results with 86.49% overall accuracy and 79.8 overall kappa (Table 13). The
results of the Kappa factor show a significant effect between the different classes on the
model of output maps.

3.3. Nitrogen Management Zones

The field investigation in Peanut pivot in the Salhiya area showed that the farm
depends on fertigation system by adding fertilizer rates based on the results of the previous
research. The investigation also declared that the farm manager used to add 107 Nitrogen
units per hectare divided equally into 3 dates, first day after plantation, 15 days after
plantation, and 30 days after plantation, which agreed with previous research suggesting
the use of 107 units of actual Nitrogen per hectare in reclaimed areas to achieve economically
effective yields. The authors indicated that direct Nitrogen applications are not generally
needed for peanut. However, Nitrogen applications increase the final yield in sandy soils
and new reclaimed areas without high peanut nodulating and the deficiency of Nitrogen
is obvious; these areas often respond to applications of the Nitrogen [58]. The fertigation
system spread the fertilizer applications equally in the pivot area. However, the results of
NDVI maps—produced from Landsat imagery acquired after 60 days of plantation—show
different units with high values, moderate values, and low values. Comparing the results
of NDVI maps with Nitrogen uptakes with the plants declare that the low NDVI values are
located in areas where the deficiency in Nitrogen is obvious.

Data of the soil such as soil texture, soil type, elevation of the landscape, and slope
allow for sampling the study area into similar classes and in smaller units along the crop
productivity map. The explanation of Nitrogen heterogeneity within the pivot appeared
after overlapping the topography map with the NDVI map, where, in the high slope areas,
a Nitrogen deficiency exists (Figure 16).

The results indicate that the areas with high slope are usually classified as weak
vegetation growth areas with an average NDVI of 0.3 to 0.35 and low predicted Nitrogen
(Figure 16). Furthermore, the areas with moderate slope are often classified as moderate
vegetation growth areas with an average NDVI of 0.35 to 0.55 and normal predicted
Nitrogen. The results also declared that the areas with low slope are often classified as
healthy vegetation growth areas with an average NDVI of 0.55 to 0.80 and high predicted
Nitrogen.
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In traditional agriculture practices, nutrient application is usually added to the whole
pivot area in the same amounts, but with the help of the final GIS management zones map,
a varied amount of nutrients can be added to different pivot zones. Six different application
rates were recommended, correlated with management zones. The recommendation
rates for phosphorous and potassium nutrients are descripted for soil zones in Tables 14
and 15. Additionally, the result of Phosphorus application showed that using variable rate
technology (VRT) and according to the current fertilizers price; in traditional agriculture,
the fertilizer application of 55 (P) kg ha−1 was equal to 367 kg super phosphate, which
costs EGP 1310 per hectare and around EGP 100,800.0 for the total pivot area (Table 14).
The total costs with site-specific application were EGP 70,346.0.

Table 14. Amounts and costs of phosphorus application using VRT.

Zone n◦ Zone Area Soil Available P Required P (kg ha−1) Price EGP ha−1 Price EGP/Zone
(ha) mg kg−1 Kg ha−1 Unit Fertilizer (Super Phosphate)

Zone 1 3 13 1169 90 181 809 2362.6
Zone 2 15 12 1123 93 183 826 11,795.1
Zone 3 9 11 1081 133 267 1197 8049.5
Zone 4 17 10 990 143 288 1295 16,833.4
Zone 5 22 7 900 155 305 1392 29,634.1
Zone 6 1 4 809 162 309 1490 1671.3
Total 67 70,346.0

Table 15. Amounts and costs of potassium application using VRT.

Zone no. Zone Area Available K in Soil Required K (kg ha−1) Price EGP ha−1 Price EGP/Zone
(ha) mg kg−1 kg ha−1 Unit Fertilizer (Potassium Sulfate)

Zone 1 3 280 58 68 452 677 2822
Zone 2 15 250 54 79 524 786 12,402
Zone 3 9 240 49 89 597 895 10,761
Zone 4 17 220 45 100 669 1004 21,695
Zone 5 22 200 31 133 887 1331 30,986
Zone 6 1 180 18 166 998 1657 1501
Total 67 80,168

Table 15 show the result of potassium application using VRT and according to the
current fertilizer price; in traditional agriculture, the fertilizer application of 42 (K) kg ha−1

equal to 130 kg potassium sulphate costs EGP 1400 Egyptian pound per hectare and around
EGP 94,500.0 for the total pivot area, while total potassium fertilizer costs with site-specific
applications were EGP 80,168.0.
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In addition, both tables described the varied rates in nutrients recommendations for
the whole pivot area. Comparing the traditional agriculture practices and the precision
farming practices, we can reduce the use of super phosphate by 0.23, 0.20, 0.17, 0.14, and
0.05 tons in soil zones 1, 2, 3, 4, and 5, respectively, while zone 6 was fully supplied with
super phosphate. Additionally, potassium application was reduced by 0.34, 0.34, 0.31,
0.30, 0.29, and 0.29 tons in soil zones 1, 2, 3, 4, and 5, respectively, concluding that the
variable fertilizer application rate helped to save total amounts of 0.74 and 0.13 tons of
super phosphate and potassium sulphate, respectively, in addition to protecting the soil
and the environment for the whole experimental pivot area.

4. Conclusions

The conclusion drawn from this study indicates that GIS techniques with abundant
information on soil properties in the study site contributed to determining the spatial
pattern of crop growth changes. Variations in soil characteristics had a significant impact
on peanut yield, and this was predicted in the soil suitability model. The spatial multi-
criteria soil model was able to achieve good accuracy by using a good spatial distribution
of soil samples. The multiple linear regression growth model was able to predict the
productivity of the peanut crop when using adequate data of soil characteristics at different
field zones, which indicates positive capabilities for use in predicting and analyzing crop
yield variations in the specific locations of the field. Compared with the crop growth
models, the soil suitability model provided better detection of small areas referring to
soil properties, such as calcareous areas and saline soils. Moreover, the resulting yield
estimations showed a good agreement with field measurements with significant correlation
coefficient. The objective was to contribute to policymaking in a specific field in order to
furnish an evaluation about the transformations at a territorial scale and for studying the
strategies to realize environmental sustainability and to reduce the territorial impacts.
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