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Abstract: This paper proposes adding a controller to the energy storage system (ESS) to enhance
their contribution for damping low-frequency oscillation (LFO) in power systems integrated with
high penetration of different types of renewable energy sources (RES). For instance, wind turbines
and photovoltaic (PV) solar systems. This work proposes superconducting magnetic energy storage
(SMES) as an ESS. The proportional–integral–derivative (PID) and fractional-order PID (FOPID) are
suggested as supporter controllers with SMES. The PID and FOPID controller’s optimal values will
be obtained using particle swarm optimization (PSO) is used as the optimization method. Both local
area and inter-area oscillation is considered in this work as a LFO. To investigate the impact of adding
the SMES with the proposed controller, a multimachine power system with different integration
scenarios and cases is carried out with a PV system and wind turbine. The system responses are
presented and discussed to show the superiority of the proposed controller both in the time domain
and by eigenvalues analysis.

Keywords: damping low-frequency oscillations; renewable energy sources; superconducting mag-
netic energy storage; particle swarm optimization; fractional-order; proportional–integral–derivative

1. Introduction

Globally, fears are increasing due to the increase in global warming resulting from
power plants based on fossil fuels, and this appears in the form of a severe increase in
temperatures. Furthermore, the global trend to confront global warming has produced
energy from natural sources such as wind and the sun [1]. There is a continuous increase
in investments and growing the capacity of renewable energy sources (RES), especially
those that depend on wind and solar photovoltaic (PV) systems, as shown in Figure 1. The
countries are looking to increase reliance on it as a major source of energy production to
achieve sustainable development goals [2].

Although RES is considered environmentally friendly, there are several limitations
of their utilization, such as low total inertia and fault ride, uncertainties due to climate
conditions, voltage and frequency oscillations, and poor stability [3,4]. Providing the
stability of power systems has been investigated as a challenge for secure operation since
the 1920s [5]. Low-frequency oscillation (LFO) is the prime hazard limiting the stability of
the power system [5]. The main reasons that lead to the LFOs are:

(1) lack of transmission line system,
(2) disparity between loads and generation units, and
(3) fluctuations in the load [6]. This paper considers two types of LFO: local area and inter-

area oscillations. The inter-area oscillation mode was distinguished in the inefficient
transmission systems linked to large generation units [6]. The inter-area oscillations
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occur between [0.1–0.7] Hz. In contrast, the local area oscillation was notable in
one of the generators in the power systems. The local area oscillation is between
(0.7–2.0] Hz [5–8].
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Many related works are interested in studying the contribution of ESSs to enhance the
damping LFO in the power systems due to the low prices and increased energy market
investment worldwide. For instance, the authors in this work [9] proposed two optimization
methods to select the best parameters for a different type of ESS to enhance the LFO
mitigation in the two-area power system only without adding RES to the power grid. They
used particle swarm optimization (PSO) and heuristic optimization methods based on
supercapacitors and flywheels ESS. The impact of the battery system in a power system
LFO and modal interaction with high penetration of RESs have been investigated in this
work [10]. The gain variation of a battery controller has significantly affected the oscillation
mode of the synchronous generators and modes coming from RES. The rated power
contributed by the battery system has no effective impact on the various oscillation modes.
The location of the battery system has an effective impact on the damping of the modes has
been concluded [10]. The authors of this work [11] suggested designing an adaptive power
oscillation damping controller for a static synchronous compensator with ESS to improve
the damping LFO in the power system. The work has not considered RES in the study. The
battery ESS was proposed in this work [11] for damping LFO in single and multi-machine
power systems without considering the RES effects. A lead-lag droop-type controlled
battery system with a recovery strategy state-of-charge is proposed in this work [12] to
enhance the damping frequency response of the system with a high PV systems penetration
in the power system only without considering the wind turbine. The wide area of power
oscillation damping is proposed in this work [13] to increase the power system’s resilience
integrated with high-level RES. The optimization method used to obtain the optimal values
of the controller was the differential evolution method. This work has not used any ESS. In
the other work, the wide area was used with a multi-mode controller integrated with the
battery system to increase the power system stability. The optimization method used to
obtain the optimal values of the controller was the bat algorithm [14]. The general model of
ESS is used with wide area control for damping inter-area oscillation in the multimachine
power system only without RES integration [15]. The ultracapacitor energy storage is
used for damping inter-area oscillation only without considering the local area oscillation
in the multimachine power systems; in this work, no optimization method is used nor
studying the effect of adding RES [16]. The wide area FOPID controller is used for damping
inter-area LFO. The parameters of the controller are tuned by using differential evolution
proposed for the multimachine power system in this work [17]. The different types of ESSs
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are used [6]. The ultracapacitor and battery are two types of ESSs were used with a high
penetration level of PV with multimachine power systems. The modeling and analysis
of small-signal stability of power systems integrated with the high level of RES with the
general model of ESSs are carried out in this work [18]. The integer mixed PSO method is
used to get the optimal control and placement parameters of various battery energy units
to enhance oscillation damping in a transmission power system [19].

The above literature works noted that different methods in the power system enhance
the damping of LFO. Nevertheless, the energy systems associated with RES and ESS and
how they can improve damping LFO were not presented. Thus, the importance of this
work comes from different aspects:

(1) the integration between the multimachine power system and high penetration of RES
is considered,

(2) adding SMES to the power system integrated with high penetration of RES such as
wind turbine and PV solar system, and

(3) proposed a PSO to tune a PID and FOPID controllers to enhance the SMES contribution
for damping LFO.

The organization of the paper is as follows: After this introduction, Section 2 presents
the dynamic modeling of the studied power system. Section 3 describes the modeling of the
PV system as well as the wind turbine. Section 4 provides the dynamical model of SMES.
The mathematical implementation of PID and FOPID controllers are presented in Section 5.
Section 6 describes the PSO method by defining the system’s objective function. Section 7
presents the case studies of the suggested model. Section 8 shows the simulation results in
time-domain and eigenvalues analysis. Finally, the conclusion is given in Section 9.

2. Power System Modeling

The dynamic differential equations are used to describe the power system for LFO
studying. All generators have been implemented in the D-Q form, and a third-order model
is considered. The power system consists of multiple areas; similar components are a
synchronous generator, exciter, governor, and turbine [20].

2.1. Synchronous Generator

The third-order model represents all n generators [21]. The set of differential equations
are presented as in Equations (1) and (2):

∆
.
x = A∆x + Bu (1)

∆y = C∆x (2)

where A is a (n × n), B is a (n × m), u is (mx1), and x =
[
ω, δ, E′q

]
, and u respectively

represent the vectors of state variables control variables. The detailed dynamic equations
of a multimachine power system are given as follows:

.
δn = ωn −ω0.

ωn = ω0
2Hn

(Pmn + Pen ± PRESn ± PSMESn − Dnω−1
0 (ωn −ω0))

.
E
′
qn = T−1

don(u f dn + E f dn − Eqn), n = 1, . . . n

(3)

Eqn = xdn I f n = E′qn +
(
xdn − x′dn

)
Idn (4) Pen =

n
∑

j=1
E′qnE′qjβnj (5)
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Idn =
n
∑

j=1
E′qjαnj

Iqn =
n
∑

j=1
E′qjβnj

(6)


Vtn = (V2

dn + V2
qn)

1
2

Vdn = xqn Iqn
Vdn = E′qn − x′dn Idn

(7)

{
αij = Bij cos

(
δi − δj

)
+ Gij sin

(
δi − δj

)
βij = Bij sin

(
δi − δj

)
+ Gij cos

(
δi − δj

) (8)

The n represents nth generator; the rotor angle is represented by δn, and ωn is repre-
sented the rotor speed of each generator, and ω0 refers to synchronous speed. E0i, and Eqi
refers to the transient and synchronous q-axis voltage; E f dn represents the filed voltage; Pei
and Pmi refer to the electric and mechanical power; Vtn donates the terminal voltage; Vdn
and Vqn refer to the d–q axis terminal voltage; xdn and xdon represent the synchronous and
transient d-axis impedance; Hn represents the inertia of the rotor generator; Dn refers to
the constant of the damping; Tdon represents the d-axis transient time constant; Idn and Iqn
represent d–q axis current [22–24]. The PRESn represents real power comes from PV, wind
turbine units, or both. The PSMESn represents the real power comes from SMES [25–28].

2.2. Governor System

The main function of the governor system in the synchronous generator is to control
the torque magnitude delivered to the synchronous generator. The oscillation in the
mechanical torque comes from the variation of generator speed or a change in the load.
The governor system representing mathematically, as shown in Equation (9)

Pm = −
[

kg

1 + Tgs

]
ωd (9)

where kg is gain constant, Tg refers to the governor time delay, and GSC is a grid side
converter [13,23,24].

The block diagram of the governor system is illustrated in Figure 2.
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2.3. Excitation System

The excitation system is responsible for injecting a direct current (DC) into the rotor
field winding to produce a magnetic field to excite the synchronous generator [23,24]. The
transfer function given by Equation (10) of the excitation system is shown in Figure 3.

E f d =
KAn

(
Vt −Vre f

)
1− TAns

(10)

where TAn is the exciter time delay, and KAn is gain constant.



Sustainability 2022, 14, 5095 5 of 19

Sustainability 2022, 14, 5095 6 of 27 
 

 

 
Figure 3. Excitation system. 

𝐸௙ௗ = 𝐾஺௡(𝑉௧ − 𝑉௥௘௙)1 − 𝑇஺௡𝑠  (10)

where 𝑇஺௡ is the exciter time delay, and 𝐾஺௡ is gain constant. 

3. RES Modeling 
In this work, two types of RES will be used to integrate with the power system. The 

double fed induction generator (DFIG) and PV solar system are considered RES. The dy-
namic model will be presented to study the LFO of the power system with RES [13]. As 
the RESs generate power fickle nature, RES’s powers variable [3]. Therefore, to reflect the 
sensible nature of RES, white noise is considered with the wind and PV system model 
[26]. 

3.1. PV 
The PV system combines multiple PV arrays to produce power under solar irradi-

ance. Every PV array is linked to the DC/DC converter, as shown in Figure 4. The output 
of every converter is linked to a common DC bus [29]. 

  

Figure 3. Excitation system.

3. RES Modeling

In this work, two types of RES will be used to integrate with the power system. The
double fed induction generator (DFIG) and PV solar system are considered RES. The
dynamic model will be presented to study the LFO of the power system with RES [13]. As
the RESs generate power fickle nature, RES’s powers variable [3]. Therefore, to reflect the
sensible nature of RES, white noise is considered with the wind and PV system model [26].

3.1. PV

The PV system combines multiple PV arrays to produce power under solar irradiance.
Every PV array is linked to the DC/DC converter, as shown in Figure 4. The output of
every converter is linked to a common DC bus [29].
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Figure 4. Model of PV system.

Maximum power point trackers control the converters. The total power of the PV
system can be expressed in Equation (11):

PPV = ηSφ[1− 0.005(Ta + 25)] (11)

η refers to PV efficiency (%), S donates area (m2), which are fixed for panels, φ and Ta
represents solar insolation (kW/m2) and ambient temperature (◦C). The power mainly
depends on φ and Ta [29].

3.2. Wind Turbine

The wind turbine is modeled as a single equivalent generator at a single substation for
steady-state and dynamic analyses. The wind generators within the farm are collected by
one group having an MV rating equal to the sum of ratings of all the units. Figure 5 shows
the structure of DFIG integration to the power system. The stator and rotor flux dynamics
of the DFIG are rapid compared to the grid dynamics [30].
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The power injected by DFIG into the power system is given:

PWT =
xm

xm + xs
viirq (12)

where xm is magnetization reactance, xs is stator reactance, vi is the voltage bus, and irq
q-axis rotor currents of DFIG [30].

4. ESSs

The real power provided by ESS-based damping control nodes considers a promising
strategy to mitigate LFO oscillations. ESS contributes to effective solutions for enhancing
the quality and efficiency of power and trustworthiness issues in power systems, including
power grids with multiple penetrations of renewable energy. The ESSs are also playing
a pivot role for different systems. For instance, shipboard, aircraft, powertrains, electric
vehicles, and power systems meet the peak load economically and enhance the reliability
of the system [31]. In terms of power capabilities and run time, ESS can be divided into two
primary categories: high extended /energy discharge and high rapid /power discharge [29].
Figure 6 presents a different type of ESS that is used in the power system application.
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SMES

SMES system can store huge amounts of power in a magnetic field produced by direct
current in the coil within a very short and fast response time and cooled by cryogenic [32].
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That would make SMES able to inject or absorb massive amounts of energy in a very
short time. Many other advantages have attracted the interest of researchers to use SMES
systems to enhance power system dynamic stability. For instance, high efficiency, long
lifetime, recharging of SMES can be done in just a couple of minutes and can repeat the
charge and discharge modes thousands of times without reducing the magnet. Recharging
time can be accelerated to meet specific criteria based on the system’s capacity [33]. The
main components in SMES are two parts: (1) the superconducting coil and (2) the power
conversion system—consisting of inverter/rectifier circuits [26]. All previous details of
SMES are shown in Figures 7 and 8. SMES can be installed at a terminal bus of the power
system. The mathematical representation of SMES unit can be expressed using Equations:

∆Ed =
1

stdc + 1
[C0∆ωn − CId∆Id] (13)

∆Id =
1
Ls

∆Ed (14)

where ∆Id is the current flowing through the coil, ∆Ed is the terminal voltage applied to the
coil. The K0, and KID are constants gain and the feedback gain, respectively. ∆ωn represent
the rotor speed deviation of the generator n [24].
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The active power that producing by SMES can be represented as the following equation:

∆PSMES = ∆Ed(∆Id0 + ∆Id) (15)
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5. PID and FOPID

The FO system is a dynamical system modeled by a fractional differential equation
containing derivatives of non-integer order, as shown in Figure 9 [34]. The main feature
that made this controller so popular is that we can control the fraction power to add the
derivative or integral as needed. The main feature of FO is that we can control the integra-
tion/derivative and integration-derivative order to get the system’s best performance. The
general form of FO

aDα
t =


dα

dtα α > 0,
1 α = 0,∫ t

a (dτ)−α α < 0,
(16)Sustainability 2022, 14, 5095 12 of 27 
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Here µ = a if α > 0, λ = −a if α < 0 if represent the order of the differentiation
or integration, respectively [33]. Table 1 provides a comparison between PID and FOPID.
FO definition:

aDα
t f (t) =

dα

dtα
f (t) =

1
Γ(m− α)dtm

∫ t

α

f (τ)

(t− τ)α−m+1 dτ (17)

aD−α
t f (t) = Iα f (t) =

1
Γ(α)

∫ τ

α

f (τ)

(t− τ)1−α
dτ (18)

where the Γ(x) is calculated as the following equation:

Γ(x) =
∫ ∞

0
e−tt(x−1)dt, x > 0 (19)

Table 1. PID and FOPID.

PID FOPID

Structure Simple Complex
No. of tuning parameters 3: Kp, Ki, Kd 5: Kp, Ki, Kd, µ, −λ
Accuracy Low High
Power of operation 0 or 1 Any positive integer
Effective with Simple system Complex system
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The control single is calculated by the following Equation (20).

u(t) = (Kp(t) + KDDµ
t + KID−λt )∆ω (20)

6. PSO

PSO is used to give optimum values for PID and FOPID parameters. PSO is consid-
ered an evolutionary computational algorithm that searches for a problem by iteratively
improving a candidate solution concerning a given quality measure [3]. The concept of PSO
is constricting several swarm particles and adjusting the fitness, as illustrated in Figure 10.
The objective function F can be written as the following equation:

F =
∫ T

0
t(∆ωn)dt (21)

where ∆ωn represents the rotor speed deviation for the n generator. The constraints of PSO
parameters tuning are written as follows:
Minimize of F
Subject to 

KPmin ≤ KP ≤ KPmax
KDmin ≤ KD ≤ KDmax
KImin ≤ KI ≤ KImax

µmin ≤ µ ≤ µmax
λmin ≤ λ ≤ λmax

The range of PID parameters are between [0.1–50]. The values of FO µ and λ are
between [0.0001–1] [17].
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7. Case Study

To investigate the contribution of ESS for damping LFO in the power system with a
high level of RES is considered in this part. The multimachine power system was selected
as a test model. The multimachine power system combines two areas with 12 buses and
4 synchronous generators linked by a double 220 km transmission line. There are two
synchronous generators in each area with 900 MVA rated popularly known as “Kundur”
power system [21]. Each area has two tightly similar units of synchronous generators.
The rate for the individual unit is 20 kV and 60 Hz. An adjustment was made to the
base power system by reducing the power rating of generator number 2 in area 1. Based
on this work [8], the RESs have been placed at bus number 2, as illustrated in Figure 11.
The compensation was produced by adding RES, as illustrated in different scenarios. To
examine the contribution of SMES with the proposed controller, three different scenarios
will be considered.
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There are three different cases in each scenario, as shown in Figure 12. In the first
scenario, the power system is connected with a PV system in three different cases: (1) The
power system is integrated with wind and SMES. (2) The power system is integrated with
the wind system SMES and PID controller. (3) The power system is integrated with wind
system SMES and FOPID controller.

In the second scenario, the power system connects to the PV system in three different
cases. (1) The power system is integrated with PV and SMES. (2) The power system is
integrated with PV, SMES, and PID controller. (3) The power system is integrated with PV,
SMES, and FOPID controller.

n the third scenario the power system connects with the PV system and wind turbine
system in three different cases. (1) The power system is integrated with PV system-wind and
SMES. (2) The power system is integrated with PV system-wind SMES and PID controller.
(3) The power system is integrated with PV system-wind SMES and FOPID controller. The
RES will share 400 MW with generator 2 at bus number 2. The wind turbine will share
300 MW, and the PV system will share 100 MW. The SMES rating power is 10 MW. The
proposed controller is installed with SMES, as shown in Figure 13.
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Two assumptions will be considered with RES: (1) a white noise is added to the wind
and PV system model to reflect the realistic power output of fluctuating profile. (2) The
wind turbine and PV system are working at the maximum power point condition—the
simulation results in time-domain and eigenvalues analysis.

8. Simulation Results

The previous scenarios and cases will be investigated in this part. Using PSO will
obtain the optimal values for PID and FOPID parameters. The convergence PSO curves of
the objective function during iteration is shown in Figure 14.
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The PSO parameters and optimized values are given in Tables 2 and 3.

Table 2. PSO parameters.

PSO Parameters Value

Size of the swarm 50
Maximum steps 50
PSO momentum 0.9

PSO parameter C1 1.2
PSO parameter C2 0.12

Table 3. PSO optimized values.

Optimized Value

Parameter Optimized Value

Kp 0.63
KI 0.05303
KD 1.9688
λ 0.73
µ 0.92

The primary function of the PSO in this work is to help the controller to obtain the
best values for PID and FOPID [35–37]. Therefore, when we are looking at the value of
the KD we observe that it is the larger value compared with Kp and KI . That refers to the
derivative function to reduce the overshoot in the signal. The following simulation results
show the time-domain system response in different cases.

8.1. Time-Domain Simulation Results
8.1.1. Power System with Wind Turbine Scenario

The first scenario presented is (1) the power system integrated with the wind system
and SMES. (2) The power system is integrated with wind system SMES and PID controller.
(3) The power system is integrated with wind system SMES and FOPID controller. The
wind turbine will share 300 MW at bus 2 shared with generator number 2. Figure 15 shows
the rotor speed deviation. We can observe that the wind generator notably contributed to
the increase in oscillation and affected the system stability. There was no significant change
when the SMES were added at bus 2. In comparison, we note that when PID and FOPID
were added, the system response reached stability and eliminated the oscillations.
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Figure 15. Rotor speed deviation in wind Turbine scenario.

The power flow in different cases is presented in Figure 16. The fluctuations caused by
the wind turbine affected the stability of the power flow. It clearly shows how the FOPID
controller has contributed to improving the role of SMES in mitigating LFO.
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Figure 16. Active power flow in wind turbine scenario.

8.1.2. Power System with PV Scenario

The power system connects to the PV system in three different cases in the second
scenario. (1) The power system is integrated with PV and SMES. (2) The power system is
integrated with PV, SMES, and PID controller. (3) The power system is integrated with PV,
SMES, and FOPID controller. PV system will share 100 MW. While the contribution of PV
is less than the wind turbine, we can observe that the oscillation of rotor speed deviation
is less than the oscillations in the wind turbine case. However, the contribution of SMES
with PV is still limited. When PID has been added to SMES, it is worked to enhance the
reduction of the oscillations but could not eliminate it. The FOPID, when added to SMES
has excellent performance compared with PID, as shown in Figure 17.
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The power flow in different cases is presented in Figure 18. The fluctuations caused by
the PV affected the stability of the power flow. It clearly shows how the FOPID controller
has contributed to improving the role of SMES in mitigating of power flow.
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8.1.3. Power System with PV and Wind Turbine Scenario

In the third scenario, the power system connects to the PV system and wind turbinein
in three different cases. (1) The power system is integrated with PV system-wind and SMES.
(2) The power system is integrated with PV system-wind SMES and PID controller. (3) the
power system integrated with PV system-wind SMES and FOPID controller. PV system
will share 100 MW, and wid turbine will share 300 MW.
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We can observe that the oscillation of rotor speed deviation in this scenario is greater
than in the previous cases. The FOPID supports the SMES to improve the LFO, as shown
in Figure 19.
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The power flow in different cases is presented in Figure 20. The fluctuations caused by
the PV and wind systems affected the stability of the power flow. It clearly shows how the
FOPID controller has contributed to improving the role of SMES in mitigating power flow.
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Table 4 shows an explicit comparison between the proposed controllers with other
handled cases in the context.
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Table 4. Comparison of overshoot (OS) and settling time (ST) in different cases.

Scenario # Cases
∆w P

OS ST (s) OS ST (s)

Scenario 1

Power System + PV 0.118 - 0.255 -
Power System + PV + SMES 0.116 55 0.243 -

Power System + PV + SMES + PID 0.058 35 0.053 20
Power System + PV + SMES + FOPID 0.0608 15 0.033 13

Scenario 2

Power System + Wind 0.119 - 0.355 -
Power System + Wind + SMES 0.115 50 0.341 -

Power System + Wind + SMES + PID 0.0707 20 0.051 25
Power System + Wind + SMES + FOPID 0.066 10 0.032 11

Scenario 3

Power System + Wind + PV 0.1192 - 0.345 -
Power System +PV+ Wind + SMES 0.1177 60 0.333 -

Power System + PV+ Wind + SMES + PID 0.0911 25 0.025 28
Power System + PV + Wind + SMES + FOPID 0.0902 10 0.022 10

The above table compares the values of the settling time and overshoot of the dynamic
performance of the rotor speed divination and active power flow in each case. In all cases,
the proposed controller enhances the rotor speed divination and active power flow response
and conveys them to zero in the steady-state.

To prove the superiority of the FOPID, Table 5 compares different errors criteria such
as the integral time-squared error (ITSE), Integral time absolute error (ITAE), the integral
absolute error (IAE), and integral squared error (ISE) [38].

Table 5. Errors comparison in different cases.

Error Criteria

Cases 1 ISE ITSE IAE ITAE
Power System + PV + SMES + PID 0.0000742 0.0000712 0.2203 1.982
Power System + PV + SMES + FOPID 0.0000954 0.0000559 0.2037 1.843
Cases 2 ISE ITSE IAE ITAE
Power System + Wind + SMES + PID 0.00000533 0.0004233 0.2223 2.223
Power System + Wind + SMES + FOPID 0.00000512 0.0000411 0.2038 2.038
Cases 3 ISE ITSE IAE ITAE
Power System + PV + Wind + SMES + PID 0.0000155 0.0009551 0.2732 2.732
Power System + PV + Wind + SMES + FOPID 0.0000144 0.0001176 0.2552 2.552

8.2. Analysis of Eigenvalues

The Equations (22)–(24) are used to obtain the oscillation frequency and the damping
ratio [7].

λi = σi ± jωi (22)

fi =
ωi
2π

(23)

ξ(%) =
−σi√
−σ2

i + ω2
i

(24)

From the analysis of the eigenvalues, we can observe that there is one inter-area oscillation
and two local-area oscillations for each case. Also, we can observe that the LFO in cases
that RES shared their power capacity to the power system increased due to adding RES
(PV, wind, PV, and wind), and the damping of LFO decreased.

Adding SMES is still limited on the LFO and the damping ratio with RES. However,
the effect of SMES with PID and FOPID appears to decrease in LFO and enhance the
damping ratio in the power system with RES context, as shown in Figures 21 and 22.
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Moreover, the effect of FOPID with SMES is considered acceptable despite not eliminating
the oscillations definitively.
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9. Conclusions

This study presented the effect of adding renewable energy sources such as wind and
PV systems with high penetration in the multimachine power system. It also studied the
effect of adding SMES as an ESS proposed in different cases such as merging PV system
only, merging wind energy only, and merging PV solar system and wind turbine. The
results showed that adding RES negatively affects the system’s stability by reducing the
damping coefficient and increasing the low-frequency oscillation in the power system. The
PID and FOPID controllers, which were proposed to be added with SMES, played a pivot
role in improving the damping low-frequency oscillation, improving the power system
stability, and allowing for high penetration of RES. The PSO proposed method for selecting
the optimum parameters for the PID and FOPID also showed a high performance that
contributed to effective damping of the oscillation that arises through the integration of
renewable energy sources. The simulation results in time-domain and eigenvalues analysis
confirm that the FOPID controller based on the SMES enhanced the damping LFO in the
multimachine power system with RES context better than the PID controller. Thus, the ESS
can play an important role in improving the stability of the power systems integrated with
high penetration of RES. Further research is required to utilize advanced and robust control
methods to avoid potential interactions, avoid the unstable operating condition of power
systems, and fast up to obtain optimal operating conditions for power systems within the
RES context.
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