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Abstract: Transportation agencies constantly strive to tackle the challenge of limited budgets and
continuously deteriorating highway infrastructure. They look for optimal solutions to make intel-
ligent maintenance and repair investments. Condition prediction of highway assets and, in turn,
prediction of their maintenance needs are key elements of effective maintenance optimization and
prioritization. This paper proposes a novel risk-based framework that expands the potential of
available data by considering the probabilistic susceptibility of assets in the prediction process. It
combines a risk score generator with machine learning to forecast the hotspots of multiple defects
while considering the interrelations between defects. With this, we developed a scalable algorithm,
Multi-asset Defect Hotspot Predictor (MDHP), and then demonstrated its performance in a real-world
case. In the case study, MDHP predicted the hotspots of three defects on paved ditches, considering
the interrelation between paved ditches and five nearby assets. The results demonstrate an acceptable
accuracy in predicting hotspots while highlighting the interrelation between adjacent assets and their
contribution to future defects. Overall, this study offers a scalable approach with contribution in
data-driven multi-asset maintenance planning with potential benefits to a broader range of linear
infrastructures such as sewers, water networks, and railroads.

Keywords: asset management; roadway deterioration; multi-asset analysis; data-driven maintenance;
machine learning

1. Introduction

Most U.S. interstate highways, as in most developed countries, have passed or will
exceed their design life in the next 20 years and require restorations and preservations [1].
Hence, transportation agencies attempt to maintain roadways in a good state of repair by
making significant investments in preserving highway assets. With this, transportation
agencies are constantly striving to tackle the challenge of constrained budgets and con-
tinuously degrading assets by looking for optimal solutions that make their investments
effective and efficient [2–5]. For this purpose, predictive analytics coupled with advanced
sensing technologies and extensive data collection can be leveraged in efficient decision
making, maintenance prioritizing, and life-cycle planning [6,7]. However, given the length
of roadways, intensifying data collection across all asset classes is expensive and far-fetched
for most agencies. Also, the current practice of data collection in transportation agencies is
mainly centered around high capital assets (i.e., pavement and bridge). As a result, other
assets, especially roadside asset types such as drainage systems, slopes, and signs, have
gained less attention leading to the lack of enough data for developing accurate prediction
models [8]. Therefore, there is a need to augment the potential of the currently available
data to maximize the accuracy of prediction models. In addition, systematically identi-
fying the best algorithm with the best performance in the highway maintenance context
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facilitates developing more accurate prediction models, and therefore, better maintenance
management.

Several studies have contributed to the literature by developing deterioration models.
However, in our review, we identified three major gaps in predictive algorithms, which are
listed below:

1. Marginal Attention to the Interrelations Between Asset Classes: Due to the mutual
impacts of nearby assets and similar environmental conditions in their proximity,
there is a potential correlation between the condition of neighboring asset classes. A
few research studies have investigated such correlations [9–11]. However, the majority
of the developed deterioration models in the literature did not take into consideration
such interrelations and investigated the condition of each asset independent from
its neighbors [12–18]. For example, Abaza et al. [12] forecasted pavement condition
only based on historical condition data of pavements. As another example, Imma-
neni et al. [16] developed prediction models for traffic signs only based on age and
retroreflectivity data of the signs.

2. Shortcomings of Predictive Frameworks in Dealing with Limited Inspection Data:
Random inspection of roadways is the current practice of most transportation agencies
that restrict the number of segments with adequate historical condition data of road
assets. This usually results in discontinuous records of historical conditions on most
road segments during all years of inspection. To overcome this limitation, most of
the previous studies used the idea of grouping segments with similar deterioration
characteristics (family groups) and estimating the average degradation of each group
by utilizing a family deterioration model. For example, Mills et al. [19] developed
family pavement performance models to help the Delaware DOT in managing road
pavements. In another study, Saha et al. [20] used the family group idea to come
up with pavement distress deterioration models. However, several challenges come
with this approach. Firstly, the condition of specific segments in a family might be
different from the average condition of the family. This is mainly attributed to the
local variation of contributors to the degradation of assets such as traffic, weather,
and maintenance [21]. Secondly, since the number of families highly impacts the
accuracy of family deterioration models finding the optimal number of families is still
challenging [22].

3. Subjective Expert-based Selection of Contributing Factors to Assets Degradation:
Several factors impact the condition of roadway assets and could be considered as the
contributing factors to their deterioration. For example, the role of material, traffic
loading, weather condition, and historical maintenance on the degradation patterns of
multiple assets was highlighted in several studies [12,23–30]. For example, the study
performed by Anyala et al. [23] highlighted the impacts of the thickness of flexible
pavements and the binder type as two main factors on the resistance of the pavement
layer against degradation. As another example, Bannour et al. [24] addressed the role
of different ranges of pavements structural composition, environment, moisture and
traffic conditions on the deterioration of pavements. However, most studies developed
deterioration models when a selected number of contributing factors were considered
based on experts’ judgment. In addition, historical maintenance activities, as a major
factor that improves the condition of highway assets, have received marginal attention
in building previous prediction models [31].

To overcome the deficiencies of previous models, we propose a risk-based prediction
method, Multi-asset Defect Hotspot Predictor (MDHP). The proposed framework combines
a risk score generator and a Machine Learning (ML) algorithm to predict the hotspots of
multiple defects in a given roadway. For this purpose, the objectives of this study are (1)
augmenting the limited extent of available inspection data by using density estimation
of defects and developing a risk-based prediction approach, (2) creating a predictive
scheme that considers the correlations between nearby assets in addition to a wide range of
other factors with the potential contribution to the degradation, (3) creating a data-driven
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approach for finding and selecting major contributing factors in contrast to subjective
selections. To achieve these objectives robustly and reliably, we selected and compared
multiple ML algorithms ranging from linear to nonlinear categories to offer a procedure for
finding the best fit for the problem. The model’s outcome is a set of risk maps that present
the predicted hotspots of each defect for the considered asset types in a given road. In this
context, hotspots refer to parts of roadways that witness a higher defect density. Overall,
the MDHP framework contributes to the body of knowledge by:

• Maximizing the potential of available data in building prediction models by combining
machine learning and risk score generator, offering transportation agencies a practical
predictive maintenance planning

• Incorporating the interrelations of defects in multiple nearby assets into a defect
prediction method

• Developing a data-driven approach to identify and quantify the most significant
contributors to the degradation of multiple assets among a wide range of potential
candidates

• Creating a scalable learning-based algorithm to improve maintenance planning for a
combination of assets by forecasting the occurrence probability of various defects on
multiple asset types

In the following sections, we will first explore the related works. The, we will go
through the details of the proposed MDPH method, followed by a case study to present
the results of the framework’s performance when applied to a real-world problem. Finally,
the key finding of the study will be discussed and concluded.

2. Related Works
2.1. Machine Learning in Transportation Asset Management

Machine learning (ML) techniques have provided scientists and researchers in dif-
ferent fields with opportunities in problem-solving and decision-making that ended up
addressing the limitations of traditional statistical modeling. Subjective assumptions and
simplifications have been some of the limitations of deterministic and probabilistic ap-
proaches utilized in highway asset management [31]. Moreover, only statistical models
such as linear regression were traditionally used in developing performance prediction
models [32,33]. However, due to the large number of contributors and the complex dy-
namic of defects in highway assets, such models seemed to be less effective in capturing
the underlying behavior of defects [34]. These shortcomings sometimes have caused in-
consistencies between the predictions and the actual recorded data, ultimately resulting in
inaccurate outcomes. Therefore, in recent years, highway asset management researchers
and practitioners have transitioned from traditional approaches to ML-based techniques.
For example, Swargam [35] leveraged Artificial Neural Network (ANN) to forecast the
performance of traffic signs retro-reflectivity. In another study, Haider et al. [36] inves-
tigated the Florida Department of Transportation’s pavement condition data to predict
cracking on flexible pavements using ANN. Furthermore, Karwa et al. [37] proposed and
explored the application of ANN in projecting retro-reflectivity of pavement markings.
Karlaftis et al. [38] provided an ML-based prediction model leveraging a genetically opti-
mized network to forecast the probability of alligator crack initiation on pavements. Finally,
Marcelino et al. [39] used an ML approach in investigating pavement performance in the
future in pavement management systems (PMS).

In summary, most research studies cited the potential of ML algorithms in increasing
the overall quality of prediction modeling in highway asset management [38,40]. In
addition, the literature highlights that using ML-based models usually results in more
scalable and extensible prediction models compared to deterministic and probabilistic
approaches [41,42]. However, the majority of previous research studies mainly focused
on the traditional ANN approach and did not invest in other ML techniques with proven
performance, such as tree-based models (e.g., decision trees, random forests, and adaptive
boosting). In addition, we identified that pavements, as a capital asset class, gained the
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majority of attention when developing machine learning-based prediction models, and
other asset types, especially roadside assets, were limitedly considered. Therefore, it seems
that traditional deterministic and probabilistic approaches are still the prevailing techniques
for predicting the condition of roadside asset types, and there is room for further investment
in ML-based modeling of such assets.

2.2. Risk-Based Predictive Modelling

Risk-based prediction models are specific predictions that provide information on
the probability of undesired events. Such models can also be utilized in estimating risks
throughout roadways. This mainly stems from the fact that risk is usually defined as
the probability of undesired events multiplied by their impacts [43,44]. By utilizing such
information, researchers and practitioners have acknowledged the potential of risk maps
as an efficient tool in identifying and visualizing the spatial distribution of the risk of
undesirable events in different fields. For instance, several studies used the recorded
data of fire events in forests to visualize high-risk zones in terms of their susceptibility
to wildfire [45–47]. As another example, Gaull et al. [48] used historical data of recorded
earthquake contents to highlight areas more prone to witness higher seismic impacts. Some
researchers also used a similar approach in analyzing road traffic accidents by identifying
hotspots of probable accidents [49–51]

Several studies also attempted to develop predictive risk-based models and risk maps
for roadway infrastructure. For example, Hunt [52] developed a framework for preparing
slope failure risk maps that present the level of risk of slope failures in a roadway system.
Sohn [53] evaluated the significance of the links in a highway network under flood damage
risks. In another study, Wright et al. [54] assessed the potential risks of river flooding due
to climate change on bridges. Moreover, Anderson et al. [55] developed a methodology to
evaluate the risk and vulnerability of bridges under climate change and extreme weather.
Finally, Lu [56] developed a quantitative pavement flooding risk assessment utilizing flood
hazard analysis and vulnerability evaluations.

We conclude that previous studies mainly focused on risk prediction and risk-map
generation in highway systems under natural hazards and environmental events such as
flooding and landslides. However, considering the fact that defects are a major problem
in highway infrastructure that negatively impact the condition of assets, there is room for
leveraging risk-based forecasting of defects in highway assets. Such information could
potentially further strengthen the quality and accuracy of risk-based decision-making
in Transportation Asset Management (TAM) programs, with the ability to improve risk
management, inspection prioritization, and maintenance optimization decisions.

In this paper, we propose a framework, MDHP, that systematically combines a risk
generator and an ML-based predictor to forecast risk-based hotspots of different defects
on different types of highway assets while incorporating the inter-relationships of nearby
assets. In the next section, we will explain our methodology in detail.

3. Methodology

The devised methodology, as shown in Figure 1, includes seven steps. In step 1, the
data of contributing factors will be first collected. Then, in step 2, raw weather, traffic,
condition, and maintenance data are cleaned. Then, in Step 3, cleaned condition data from
step 2 are utilized to calculate Risk Scores. Next, in step 4, all cleaned data in step 2 and Risk
Scores from step 3 are preprocessed making them ready for building Machine Learning
(ML) models in step 5. In the following section, we will explain each part of the MDHP in
detail.
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Figure 1. The Framework of the proposed Multi-asset Defect Hotspot Predictor (MDHP).

3.1. Collection of Contributing Factors’ Data

Within the MDHP framework, in the first step, the data for each of the contributing
factors were extracted from identified resources. Different data sources contained several
features under four main categories: weather, traffic, historical maintenance, and condition
inspection. For example, weather parameters were collected from the publicly available
weather station data from the National Oceanographic and Atmospheric Administration
(NOAA) database. Also, traffic data can be collected from the public portals of DOTs.
However, historical maintenance and inspection data are often not publicly accessible and
should be collected from local or federal agencies.

The MDHP model also takes into account the impact of neighboring asset items in
the deterioration prediction of each asset. For this purpose, ideally, the condition of all
asset types should be collected in the inspection process to facilitate the incorporation of
inter-asset relationships. For example, if our selected asset type to predict its condition is
pavement, not only is the historical condition of the pavement is needed, but we also we
need the historical condition of other neighboring assets (e.g., condition of paved ditches,
drainages).

3.2. Data Preparation

After data collection, the data was cleaned from incorrect, incomplete, irrelevant,
duplicated, or improperly formatted records. The MDHP was designed to make predictions
at the segment level (e.g., one-tenth of a mile covering fence-to-fence of the right of way).
The data were processed to convert the data for the features, such as weather and traffic,
with no reported data at the segment level. For example, weather stations have a different
spatial distribution, and traffic records were also in the form of shapefiles. Therefore, we
leveraged ordinary kriging, a spatial interpolation technique, to interpolate the value of
each weather feature on the road segments. Ordinary kriging was used due to its proven
performance in interpolating weather features [57–59]. In the case of traffic features, ESRI’s
ArcGIS spatial join tool was utilized to extract traffic features at the location of the segments
of interest.

3.3. Density Estimation of Defects

After obtaining all the desired data at the location of the segments, we used Kernel
Density Estimation (KDE) analysis to estimate the density of defects in the unit of area
(defects per square mile). We named this parameter Risk Score (RS) as it corresponds to the
occurrence probability of the defects estimated based on their densities in different parts
of roadways. Kernel Density Estimation (KDE) is a common tool in developing risk maps
in different fields. For example, KDE is widely used in transforming historical forest fire
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data into a smooth and continuous 2D surface that shows high-risk areas to wildfires [45].
Also, KDE is used to analyze road traffic accidents and provide associated risk maps for
the transportation management sector. Space-time plots additionally rely on KDE to find
probable accidents’ hotspots [50].

The reason behind using a density estimation analysis is that most transportation
agencies use sampling and inspect only part of the population (i.e., all road segments)
by dividing roads into inspection units (segments) and randomly selecting a fraction of
segments for the annual inspection. Therefore, a complete set of historical data on each
road segment is usually unavailable due to this sampling process, even for high capital
asset items such as pavements and bridges. The problem is even more severe in roadside
asset types, such as ditches and culverts. To address this issue, we use KDE to generate
a continuous distribution of the density of defects for all segments of roadways in each
year based on the sampled inspections, as shown in Figure 2. The location of the observed
defects in the inspection process is shown in Figure 2a, and the corresponding densities of
defects estimated by KDE are presented in Figure 2b. The lowest and highest density of
defects are displayed in the dark blue and in dark red, respectively. The KDE provides the
distribution of the defect densities per unit area (RSs), which corresponds to the probability
of occurrence of a particular defect. Density distribution is achievable by placing a kernel
over each observation and summing all individual kernels over each point. Equation (1)
shows the density estimation in a two-dimensional space using KDE [60].

f (x, y) =
1

nh2

n

∑
i=1

K
(

di
h

)
(1)

where f(x,y) is the density estimation at the location (x,y); n is the number of points or
observations; h is the kernel bandwidth; K is the kernel weight function; and di is the
distance between the location (x,y) and the ith point or observation. In Equation (1),
selecting kernel bandwidth is a subjective task. However, several recommendations are
available in the literature, such as Silverman’s rule-of-thumb [61], or selecting a bandwidth
equal to 9 times the median of the nearest neighbor distances between the considered
points [62].
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3.4. Preprocessing for Machine Learning (ML)

First, as an attempt to remove the potential bias in the results, we normalized the input
data using a min-max scaler [63]. The utilized scaler linearly maps the continuous features
of the input dataset (i.e., weather, traffic, and RSs) into a new continuous space between 0
and 1. This scaler should be applied to each one of the continuous features separately.

After that, we detected multicollinearity, a scenario in which high correlations among
multiple dataset features exist, potentially biasing the outcomes [64]. In this study, we
removed multicollinearity using a correlational investigation. Our feature space is a mixed
dataset consisting of both continuous and categorical (e.g., historical maintenance) features.
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Therefore, the feature reduction in this framework is performed in three steps. Firstly, we
measure the correlation between continuous features. To do so, we group the features with
absolute Pearson correlation coefficients greater than 0.9 and represent each group with
only one feature [64]. Next, we use the Chi-square test to examine the correlation among
categorical features. Any pair of features with a p-value larger than 0.05 is considered highly
correlated and represented by one of features. Ultimately, we investigate the dependence
between the reduced continuous and categorical spaces using the point-biserial correlation
coefficient. We group the attributes with a correlation bigger than 0.9 and consider only
one feature as the representative of the groups. The process for removing features was also
reviewed by domain experts.

Finally, for the purpose of validation, we split the data into training and testing sets.
This step in the data processing will organize the data that will be used for training and
testing to measure the performance of the model on unseen data. To this end, 60% of the
data are randomly picked from the dataset for developing the prediction model, and the
remaining 40% of the data are utilized to assess the performance of the developed model.

3.5. Predictive Modelling

After preparing the complete set of RSs of different defects for the considered nearby
assets, an input dataset is created that contains all predictors (i.e., weather, traffic, mainte-
nance, and RSs for all segments). Figure 3 presents the concept of the prediction proposed
in this study. In this figure, Fiscal Year (FY) is a 12-month period that ends on 30 June of
each year. For example, FY2016 refers to the 12-month period between 1 July 2015, and 30
June 2016. This time interval encompasses all maintenance activities performed during the
year before the annual inspection in 2016, and the recorded weather and traffic attributes in
this period. Figure 3 shows that the combination of weather, traffic, and maintenance for
one year, as well as the prior year RSs of defects on the selected asset type and all other
considered defects on neighboring assets, are used as the inputs to predict a particular
defect’s RS in the next year (Year 2).

For example, to predict the RS of erosion on paved ditches at the end of FY2017
(output) the model will be fed with (a) FY2017 data of weather, traffic, and maintenance,
(b) the end of FY2016 data of RSs of paved ditch’s erosion, obstruction, and cracking, and
(c) RSs of neighboring asset types at the end of FY2016. Accordingly, a series of inputs for
all of the considered fiscal years are generated and then used in the predictive modeling
module of the MDHP. In this module, we use a series of ML algorithms to predict risk
scores, given the reduced feature inputs. MDHP uses multiple linear and nonlinear ML
models to find the best fit and also to run a comparative analysis. In doing so, we selected
three linear models: Multivariate Linear Regression (MLR), Regularized Regression using
Ridge (RR), and Regularized Regression using Lasso (RL). In the nonlinear category, we
selected five models: Support Vector Regression (SVR), Artificial Neural Network (ANN),
and decision tree-based algorithms, including Decision Tree (DT), Adaptive Boosting
(ADB), and Random Forest Regression (RFR). It should be noted that we used python for
developing the models. A brief introduction to each one of the models is provided below.
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3.5.1. Linear Regression

Multivariate Linear Regression: Multivariate Linear Regression (MLR) is a supervised
ML algorithm that models the relationship between one response variable and two or
more explanatory variables. This technique fits a linear equation to the observed data
points and provides information about correlations between dependent and independent
variables. The first goal of most ML techniques is to develop a hypothesis (model) to
predict a dependent variable (prediction) based on k independent variables (predictors).
Therefore, a set of observations is used to develop the hypothesis of the MLR model that
can be presented as Equation (2):

hθ(x) = θ0 + θ1x1 + θ2x2 + . . . + θkxk (2)

where hθ(x) is the prediction model, xi’s are the predictors, θ0 is the intercept, and θi’s are
regression coefficients. In the MLR model, the cost function defined in Equation (3) should
be minimized so that the coefficients can be found:

(θ) =
1

2n

n

∑
i=1

(
yi − θ0 −

k

∑
j=1

xijθj

)2

(3)
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where J is the cost function, xij’s are the vector of predictors associated with observation
of yi.

Regularized Linear Regression: Given the interpretability and simplicity of the MLR
method, it was widely used to build prediction models in different fields [16,65,66]. How-
ever, sometimes multicollinearity leads to bias and inaccuracy within results. Therefore,
filtering independent variables, a.k.a. dimension reduction, and feature selection were
proposed to overcome this problem [66]. Furthermore, similar to other ML techniques,
overfitting is still a possibility in MLR. Overfitting is a situation where the prediction model
extremely corresponds to the input data that makes the model inapplicable to fit to unseen
datasets, which leads to providing unreliable results when new data is used. Therefore, re-
searchers suggested some methods for mitigating multicollinearity and overfitting issues in
MLR, such as regularized regression techniques. Regularization is a method that minimizes
overfitting in regression models by penalizing and shrinking regression coefficients. To this
end, Regularized Ridge (RR) and Regularized Lasso (RL) are two famous regularization
techniques that were vastly used in the literature [67] that result in removing irrelevant
features in the RL and decreasing weights of these features in the RR. An L2 penalty term
is added to the cost function of MLR in the RR regression. The corresponding cost function
in this algorithm is shown in Equation (4):

J(θ) =
1

2n

 n

∑
i=1

(
yi − θ0 −

k

∑
j=1

xijθj

)2

+ λ
k

∑
j=1

θ2
j

 (4)

where J is the cost function, xij’s are the vector of predictors associated with observation
of yi, and λ is the tuning factor of the regularization term. On the other hand, in the LR
technique, an L1 penalty term is added to the MLR cost function, as shown in Equation (5):

J(θ) =
1

2n

 n

∑
i=1

(
yi − θ0 −

k

∑
j=1

xijθj

)2

+ λ
k

∑
j=1
‖θj‖

 (5)

where J is the cost function, xij’s are the vector of predictors associated with observation of
yi, and λ is the tuning factor of the regularization term.

In our framework, we compared the aforementioned linear models, i.e., MLR, RR,
and LR to investigate their performance in our problem. In addition, for developing
the Regularized Ridge (RR) model we used 1.0 as the regularization strength parameter.
However, for Regularized Lasso (RL) model, 0.0008 was chosen as the multiplier of the L1
penalty term, and 1000 as the iteration numbers.

3.5.2. Nonlinear Regression

Linear models are not always capable of capturing the relationship between dependent
and independent variables. In such cases, nonlinear regression techniques are used in
developing prediction models. In our proposed framework, we leveraged some of the most
famous nonlinear algorithms that were widely used in various fields of study.

Support Vector Regression (SVR) is one of the nonlinear ML algorithms whose success
in different fields has been highlighted in the literature [68]. In a nonlinear SVR, a kernel
transformation function is used to map predictors (xi) to a new high-dimensional space.
Then, the optimal function f(x) is introduced to represent the relationship between the
prediction (y) and predictors in the transformed space. The most popular kernel functions
that are used to map predictors are linear, polynomial, and gaussian kernels, shown in
Equations (6)–(8), respectively.

Linear kernel : K
(
xi, xj

)
= xT

i xj (6)

Polynomial kernel : K
(
xi, xj

)
=
(

1 + xT
i xj

)d
(7)
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Gaussian kernel (RBF) : K
(
xi, xj

)
= exp

(
−
‖xi − xj

2‖
2σ2

)
(8)

In the Equations (6)–(8), K is the kernel function, xi and xj are predictors vector spaces,
σ is the variance, and d is the polynomial’s dimension [69]. In this study, we used all three
kernel functions for the SVR algorithm and reported the most accurate one in terms of risk
scores (RSs) prediction results.

Artificial Neural Networks (ANNs) are another category of ML algorithms used to
capture complicated relationships and patterns among datasets. The neural network
architecture is a major part of creating an ANN model where Multi-Layer Perceptron (MLP)
has been vastly used in the literature of regression models [70,71]. In the MLP-ANN model,
linear combinations of the outputs from each layer node are used to produce the inputs
for each perceptron in the next layer and, finally, the prediction for the dependent variable
(y) in the output layer. Figure 4 shows the MLP architecture used in this study. In this
figure, each input corresponds to one of the considered contributors (i.e., weather, traffic,
maintenance, and RSs.)
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Decision Tree Regression: Decision Tree Regression (DTR) is another algorithm that is
considered in this study. Due to its intelligibility and simplicity, DTR is among the most
popular ML techniques [72]. In this method, a decision tree is established with a series of
simple rules utilized to split the input dataset into two parts at each node of the tree. By
repetitive process of splitting the data, the desired outcome can be predicted at the final
layer of the tree [72]. We used DTR to develop a prediction model with the maximum
depth of each branch of the tree set as eight.

Adaptive Boosting: The idea of combining a set of weak regressors for building a high-
performing model was introduced as ensemble learning. In this technique, more than
one regressor is trained, each of which contributes to the final result [73]. In addition,
the boosting technique is used to decrease the error of the combination of the constituent
models. To this end, we used Adaptive Boosting (ADB) in this study which is a famous
boosting ensemble method. This algorithm decreases training errors during the process of
learning from the mistakes of sequentially trained constituent models [74]. We used the
decision tree model with a maximum depth of five as the base constituent model and used
ADB to build a high-performing prediction model using 100 decision trees.
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Random Forest Regression: Finally, we used another ML method named Random Forest
Regression (RFR) to predict future risk scores. The excellent performance of this technique
made it a widely used method in developing prediction models [75]. The RFR works based
on constructing several decision trees using the bootstrap resampling method. The outcome
of the produced decision trees provides the final result by either a voting or averaging
approach. High stability of the procedure used in RFR has resulted in better performance
and prediction accuracy while avoiding overfitting compared to other ML methods such
as Artificial Neural Network (ANN) [40,75,76]. We used 10 estimators (decision trees) for
building RFR model and considered unlimited depth for each tree.

3.6. Validation

After developing prediction models with the selected algorithms, cross-validation
methods are used to assess and validate the performance of the models on unseen data.
We utilized the k-fold cross-validation technique because it ensures that each data in the
input set has the chance of appearing in both stages of building and validating prediction
models [77]. In this procedure, the dataset is divided into two parts: training and testing
sets. Then, after building the model based on the training set, its performance is calculated
using the testing set. The procedure is performed k times and the average score of them is
used as the cross-validation score. We used five as the number of folds (k) in this study.

3.7. Model Selection and Implementation

After developing prediction models based on the eight considered ML algorithms,
a comparative study is performed to select the algorithm that provides the best fit to the
dataset. First, the metrics that present the accuracy of predictions in training and testing
sets utilizing all the considered algorithms are compared. Since all the predictions in this
study are based on regression models, we chose three common metrics used for evaluating
the performance of these models: Coefficient of determination (R2), adjusted coefficient of
determination (R2

adj), and the Root Mean Square Error (RMSE). The bias and variance of
their predictions are also taken into consideration. Bias refers to the difference between
prediction and actual observation values and identifies how far off the model predictions
are from the correct values. In addition to bias, the variance of the prediction values is
important when a model is developed. A low-bias low-variance model is interpreted as a
model that provides close predictions to the actual values and a consistent level of accuracy
in all prediction values [78]. With respect to this, all developed prediction models are
compared, and the best model is selected.

After developing and validating prediction models and selecting the best fit, the next
step is to use the prediction capabilities that the framework offers in the decision-making
process. To this end, the outcomes of the model will be used in preparing risk maps and
finding the hotspot of defects over the considered roadways in the next year. Therefore,
the performance of the models in their implementation is investigated in this study. This
investigation is performed in accordance with the way that decision-makers would deploy
the MDHP for predicting next year’s RSs based on the prior years’ historical data.

4. Case Study

To showcase the performance of the proposed model, we implemented the MHDP
framework on a case study of 389 km (242 miles) of I-81, I-77, and I-381 Interstate highways
in the state of Virginia, as shown in Figure 5. We followed the process devised in Figure 1
to create the prediction models. First, the weather, traffic, condition, and maintenance data
were cleaned. Then, defects densities were calculated using the cleaned condition data.
Next, all the features were preprocessed to be utilized in building prediction models de-
ploying different ML algorithms. Finally, the results were compared, and the performance
of the proposed MDHP framework was evaluated.
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Interstate highways in the state of Virginia.

The roadways were firstly split into 2420 segments of 161 m (0.1 miles) length. To
incorporate the effect of neighboring asset interrelations, we selected six adjacent assets–
paved ditches, unpaved ditches, flexible pavements, slopes, small pipes and box culverts,
and under drain pipes and edge drains. Then, we developed prediction models to forecast
the probabilities of observing three defects of erosion, obstruction, and cracking on paved
ditches. We chose several roadside asset types because the majority of previous studies
only focused on pavements, and roadside asset items have gained marginal attention [8].
However, it should be noted that the proposed framework is similarly applicable to any
other highway asset types. Another reason for selecting this set of asset classes was the
potential correlations between their condition that is mainly attributed to the fact that they
belong to a continuous drainage system, and they all are located at a close distance. We
obtained the data between 2015 and 2020, with the Fiscal Year (FY) being the unit of time.
Accordingly, we then split the considered timeframe into five periods: FY2016, FY2017,
FY2018, FY2019, and FY2020.

We collected the weather data from the NOAA database and used multiple features
to include possible fluctuations of weather into the framework. Table 1 provides a full list
of the considered weather features in this study. Then, we leveraged ordinary kriging to
interpolate each weather feature’s value on the considered road segments. We used ordinary
kriging because of its proven performance in interpolating weather features [57–59].

Traffic data were extracted from the Virginia Department of Transportation (VDOT)’s
public portal. We used various traffic features in our framework, examined the data for
missing information, and ensured the considered dataset is error-free as much as possible.
Table 2 provides the complete list of the considered traffic features in this study.

The case study’s historical maintenance information was extracted from a Mainte-
nance Quality Assurance Program (MQAP) that recorded the history of maintenance tasks
performed in FY2016, FY2017, FY2018, FY2019, and FY2020. Each record in the MQAP
includes the time, type, and location of each maintenance task. The tasks relevant to the
selected asset (i.e., paved ditch) were chosen based on the agency’s maintenance guidelines,
as shown in Table 3. This table was created for the purpose of this study and in direct
collaboration with a former VDOT maintenance crew with extensive highway maintenance
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experience who validated all the obtained maintenance records from the VDOT task orders.
After collecting the data, the records that contained missing information were removed.
We treated the historical maintenance as a categorical feature with binary values: if a
maintenance task was performed in a fiscal year, its corresponding feature would be 1,
otherwise 0.

Table 1. Weather parameters considered in the study.

Index Parameter Definition

1 TMAX Annual maximum daily temperature (◦C)
2 TMIN Annual minimum daily temperature (◦C)
3 TMAXMIN Annual average of daily max-min temperature difference (◦C)
4 DWT32 Number of days with minimum temperature < 0 ◦C (32 ◦F) in a year
5 DWT80 Number of days with maximum temperature > 26.7 ◦C (80 ◦F) in a year
6 DWTMXN30 Number of days with Tmax-Tmin > 16.7 ◦C (30 ◦F) in a year
7 DSNW Number of days with snow depth > 2.54 cm (1 inch) in a year
8 EMSD Maximum annual daily snow depth (cm)
9 EMXP Maximum annual daily precipitation depth (cm)
10 PRCP Total annual precipitation (cm)
11 SNOW Total annual snow depth (cm)

Table 2. Vehicular features of road traffic considered in the study.

Index Parameter Definition

1 ADT Average daily traffic (number of vehicles per day)
2 AAWDT Average annual weekday traffic (number of vehicles per day)
3 ADT_4 Average daily traffic of 4-tire vehicles (number of vehicles per day)
4 ADT_BU Average daily traffic of buses (number of vehicles per day)
5 ADT_TR Average daily traffic of trucks with 1 trailer (number of vehicles per day)
6 ADT_1 Average daily traffic of trucks with 2 axles (number of vehicles per day)
7 ADT_2 Average daily traffic of trucks with 2 trailers (number of vehicles per day)
8 ADT_3 Average daily traffic of trucks with 3 axles (number of vehicles per day)

Table 3. Maintenance activities performed on paved ditches [79].

Index Code Maintenance Name Description

1 M_70141 Hand Cleaning
Hand cleaning of drainage assets, traffic control devices, shoulders,
tunnels, ferries, etc. Cleaning with manual tools (shovels, pickaxes,

etc.). Cleaning without the use of machinery.

2 M_70142 Machine Cleaning/Mechanical
Sweeping

Machine cleaning or sweeping of drainage assets such as pipes,
ditches, etc.; tunnels; roadside assets such as sidewalks, truck

ramps, pedestrian trails, walls, etc.; traffic assets such as rumble
strips; pavement assets including roads, and paved shoulders, etc.
Also, to be used for cleaning when using pressurized water such as

power washing.

3 M_71152 Seeding, Fertilizing, Mulching
(Serv)

Seeding, fertilizing, mulching, sodding, soiling, spreading lime.
The cyclical and regular replacement and maintenance of

vegetation to combat erosion.

4 M_72223
Concrete

Patching/Repair-Drainage
(Serv)

Patching holes, blow-ups, and other irregularities on concrete
surfaces for drainage assets. This activity includes cutting and

removing damaged concrete and patching concrete areas.

5 M_72224 Concrete Joint Repair-Drainage
(Serv)

Removing and replacing joint filler, pouring joints, trimming joints,
joint patching, and other maintenance of drainage concrete joints.
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Finally, the inspection data were extracted from the same MQAP report that was
utilized to obtain maintenance records. In this resource, the conditions of the selected assets
were provided through the recorded data at the time of inspections. Table 4 provides a
summary of the selected assets and their corresponding defects. The recorded condition
was a binary value as either passed or failed. The failed condition under a specific defect
means that the defect was observed in the considered asset item. The passed condition
means that the considered asset item was defect-free under the specific defect type. Since
identifying defects’ hotspots is an objective of this study, the total number of observed
defects must be adequate to find the areas with the concentration of those defects. Therefore,
when the number of defects for a certain asset type is zero, identifying hotspots makes no
sense. However, the number of the considered defects on the selected asset types were
nonzero, and finding hotspots were possible.

Table 4. Recorded defects for the considered asset types.

Asset Type Acronym
Defects

D1 D2 D3 D4 D5

Flexible Pavement FPM Pothole Patch - - -

Paved Ditch PDC Erosion Obstruction Cracking - -

Unpaved Ditch UPD Erosion Obstruction - - -

Slope SLP Erosion Erosion
Pattern

Lower
Slope

Higher
Slope -

Small Pipes and
Box Culverts SPB Pipe

Obstruction Pipe Joint Pipe Erosion Pipe
Vegetation End Wall

Under Drains and
Edge Drains UED Drain Outlet

Damage
Drain

Obstruction End Protection - -

After estimating RSs, we investigated the transition of RS values in each fiscal year
and found non-logical transitions. To clean the data from non-logical records, we first
specified the maintenance activities that fix a certain defect. Hence, we used maintenance
tasks in Table 3 and selected maintenance tasks for the considered defects. Among different
maintenance types in this Table 3, M_72223 and M_72224 aimed to repair erosion and
cracking on paved ditches, and fixing obstruction is accomplished by performing M_70141
and M_70142. Therefore, these four maintenance types were considered on paved ditches.
We then identified any non-logical decreasing trend of RSs on each segment and removed
the corresponding records from our input dataset.

5. Results and Discussion

This section provides the results of applying the MDHP to the selected case study.
Figure 6 provides the histogram of erosion RSs on paved ditches and the corresponding
KDE results at the end of FY2015, FY2016, FY2017, and FY2018. Similarly, we calculated
the RSs of the considered defects on the selected asset types (See Table 4) at the end of
FY2015, FY2016, FY2017, and FY2018 to be used in the prediction. We used Silverman and
nearest-neighbor-based methods to estimate the bandwidth of KDE, and the estimations
were 7.93 to 2.01 km (4.93 and 1.25 miles), respectively. We used the average of the values
in our analysis and chose 5 km (3.1 miles) for the kernel bandwidth.
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The considered contributing factors to the degradation of roadway assets in this study
have different ranges and measurement units. Figure 7 provides a series of boxplots
that visualize the different variations among continuous features. Later on, we used
the min-max scaler to map all features to a range between 0 to 1 to prevent potential
future biases of outcomes. To detect and remove multicollinearity in the input dataset, we
investigated correlations between the input feature space. Figure 8 provides the pairwise
absolute Pearson Correlation between continuous features. For example, the absolute
Pearson correlation between ADT and AAWDT is 0.99 and between TMAXMIN and ADT
is 0.01. Absolute Pearson correlation is a number between 0 and 1 that closer values to 1
represent more correlated parameters. As another example, in this study ADT and AAWDT
were highly correlated. However, TMAXMIN and ADT has been very low correlated.
Consequently, the data in Figure 8 show that only traffic attributes (ADT, AAWDT, ADT_4,
ADT_BU, ADT_TR, ADT_1, ADT_2, and ADT_3) are highly correlated (i.e., their pairwise
absolute Pearson correlation is greater than 0.9). Therefore, we reduced the continuous
feature space by keeping ADT as the sole representative of traffic features.
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Table 5 provides the Chi-square test results, or in other words, the dependencies among
categorical features. The results show that M_71152 and M_72224 are highly correlated (i.e.,
the corresponding p-value is greater than 0.05). Therefore, we only kept M_72224, M_70141,
M_70142, and M_72223 and removed M-71152 for future analysis.

Table 5. Pairwise Chi-square correlation test results for categorical features.

M_71152 M_70141 M_70142 M_72223 M_72224

M_71152 N/A 9.08 × 10−219 6.60 × 10−147 1.04 × 10−5 5.22 × 10−2

M_70141 9.08 × 10−219 N/A 0.00 9.14 × 10−260 8.26 × 10−25

M_70142 6.60 × 10−147 0.00 N/A 7.22 × 10−159 1.99 × 10−42

M_72223 1.04 × 10−5 9.14 × 10−260 7.22 × 10−159 N/A 0.00
M_72224 5.22 × 10−2 8.26 × 10−25 1.99 × 10−42 0.00 N/A
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Finally, Figure 9 presents the absolute point-biserial correlation coefficients between
remaining categorical and continuous features. According to the results, none of the
features are highly correlated and all features can be considered independent.
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After reducing feature space and removing multicollinearity, we used the selected
ML algorithms to predict RSs of erosion, obstruction, and cracking on paved ditches. The
results of the models for erosion RSs are presented in Figure 10 as an example. In this
figure, we are reporting the obtained coefficient of determination (R2), adjusted coefficient
of determination (R2

adj), and the Root Mean Square Error (RMSE). In addition, we are
visualizing the observed vs. predicted Risk Score (RS) values in all considered algorithms on
unseen data (i.e., testing set). For example, R2 for the developed model using Multivariate
Linear Regression was 0.652. However, this value for Decision Tree model was 0.918. The
higher value of R2 unveils the better performance of Decision Tree compared to Multivariate
Linear Regression model.
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We used the same procedure to build prediction models for obstruction and cracking
on paved ditches as well. Figures 11 and 12 present the results of the developed mod-
els using different ML algorithms for obstruction and cracking respectively. Then, we
summarized the training and testing scores (R2) of all of the considered models for the
three considered defects in Table 6. The results indicate that the considered linear models
(i.e., multilinear regression, Ridge, and Lasso) in all cases provided low R2 both in train-
ing and testing sets. Therefore, the models were incapable of capturing the patterns and
relationships in the dataset. Consequently, this could be interpreted as the existence of
nonlinear relationships among features and the need for nonlinear models. The obtained
R2 of nonlinear models in both training and testing steps corroborates the interpretation.
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Table 6. Scores of the considered models in training and testing sets.

Utilized ML Algorithm
Erosion Obstruction Cracking

Training Testing Training Testing Training Testing

Multivariate Linear
Regression 0.642 0.652 0.515 0.516 0.317 0.330

Regularized Linear
Regression | Ridge 0.641 0.651 0.515 0.516 0.316 0.330

Regularized Linear
Regression | Lasso 0.600 0.602 0.479 0.481 0.127 0.150

Support Vector Regression 0.845 0.852 0.871 0.872 −2.575 −2.638
Artificial Neural Network 0.968 0.969 0.982 0.982 0.919 0.911

Decision Tree 0.918 0.918 0.886 0.881 0.951 0.942
Adaptive Boosting 0.926 0.927 0.876 0.877 0.493 0.477

Random Forest Regression 0.999 0.997 0.999 0.997 0.999 0.996
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Figure 12. Observed versus predicted cracking RSs using considered algorithms in the testing set (R2:
Coefficient of determination, R2

adj: Adjusted coefficient of determination, RMSE: Root Mean Square
Error).

Table 7 shows the results of k-fold cross-validation of the considered models when
five is selected as the number of folds. In this table, for each selected ML algorithm, the
minimum and maximum scores in the five folds of training and testing sets are provided.
The cross-validation results show the narrow range of scores in all five folds of validation,
which shows the lack of overfitting in all the developed models.

Table 7. Results of cross-validation scores for all considered ML algorithms.

Algorithm
Erosion Obstruction Cracking

Min
Score

Max
Score

Min
Score

Max
Score

Min
Score

Max
Score

Multivariate Linear
Regression 0.614 0.672 0.480 0.546 0.285 0.350

Regularized Linear
Regression | Ridge 0.615 0.67 0.481 0.546 0.286 0.349

Regularized Linear
Regression | Lasso 0.583 0.623 0.453 0.502 0.103 0.162

Support Vector
Regression 0.834 0.865 0.873 0.877 −2.997 −2.224

Artificial Neural
Network 0.973 0.984 0.984 0.990 0.914 0.937

Decision Tree 0.893 0.927 0.829 0.891 0.933 0.963
Adaptive Boosting 0.919 0.939 0.872 0.910 0.390 0.624

Random Forest
Regression 0.996 0.999 0.998 0.999 0.997 0.999

Additionally, a summary of the accuracy metrics for the corresponding prediction
models is provided in Figure 13. This figure unveils that in all cases, the RFR provided the
highest R2 values. Additionally, as shown in Figure 13, the values of RMSE for RFR models
in three cases of erosion, obstruction, and cracking were 0.01, 0.01, and 0.03 respectively
that were less than that of all other models. Therefore, the highest values of R2 and lowest
values of RMSE highlight more accurate outcomes of RFR method among all the considered
algorithms. Additionally, Figure 10 reveals that the predicted values using RFR are very
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close to the observed values in the considered dataset. Therefore, given the fact that all
measurements pointed out the RFR as the best model for the considered case study, we
selected RFR as the best fit and proceeded with this model for further analyses.
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One of the best attributes of RFR is its capability in quantifying the contribution (i.e.,
importance) of each feature in the regression by providing a metric called importance
score. To measure the importance of each contributing factor, most methods rely on the
decrease in the accuracy when a permutation to a specific feature is performed. In this
approach, when a feature is permuted, its original relationship within the decision trees
with the final output is disturbed. Therefore, using the permuted feature along with the
other non-permuted features might result in a decrease in the accuracy of predictions. This
descent in accuracy is believed to be a realistic way of finding the importance of each
feature. The more accuracy decrease can be interpreted as more contribution of that feature
into regression [80]. We used this metric here to measure the importance of the considered
features in our regression analysis. By utilizing RFR, our main goal is to let the model
decide the most significant contributors among the wide range of potential candidates
that we included in the framework, instead of subjectively selecting them beforehand. In
this way, the important contributors might vary from asset to asset, which shows that our
proposed framework respects the difference among the different highway assets’ nature.

We investigated the importance of each considered contributing factor to interpret their
contribution to the regression using the aforementioned attribute of RFR. Figure 14 provides
the obtained results in erosion, obstruction, and cracking predictions. This figure shows that
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paved ditch erosion RS in the prior year, the erosion of neighboring unpaved ditches, and
maximum annual daily temperature (TMAX) contributed most to the predicted erosion RS.
In addition, the importance of the annual average of daily max-min temperature difference
(TMAXMIN) and the number of freezing days (DWT32) are considerable. The results
confirm the interrelations between nearby assets and their importance on one another’s
conditions. More importantly, the outcomes also highlight the higher contribution of short-
term precipitation factors (e.g., EMXP: the maximum daily precipitation, and EMSD: the
maximum annual daily snow) in the erosion of paved ditches in comparison to the long-
term average annual precipitation (i.e., PRCP and SNOW). Finally, the results underline the
small contribution of two of the maintenance works (M_72223: Concrete Patching/Repair
and M_70142: Machine cleaning) in erosion RS of paved ditches out of the considered
maintenance tasks.
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Similarly, we investigated the importance of contributing factors in the prediction
model of obstruction RSs on paved ditches. According to Figure 14, like erosion, the
maximum annual daily temperature (TMAX) has a bold contribution to the values of
obstruction RSs calculated by the model. Also, the contribution of the number of freezing
days (DWT32), the annual average of daily max-min temperature difference (TMAXMIN),
and total annual snow depth were significant. Furthermore, in this case, long-term precip-
itation features (i.e., PRCP and SNOW) had more contribution in predicting obstruction
RSs compared to the short-term precipitation features (EMSD and EMXP). In addition, the
contribution of the drain outlet defect in the prior year (RS_prior_UED_D1) in the vicinity
of paved ditches was noticeable. The reason for this contribution could be attributed to
the downstream blockage resulted from defected under drains and edge drains outlet and
settlement of debris and obstruction in the upstream ditches. The figure also highlights
the contribution of the condition of other neighboring assets, such as erosion on unpaved
ditches and lower-slope issue on slopes on calculating paved ditch obstruction RSs.

Figure 14c reveals that TMAX and TMAXMIN that represent the temperature features
and correspond to temperature harshness in a region contributed significantly to predicted
cracking RSs. Besides, the next rank belongs to EMXP which is a short-term precipitation
feature. This figure also unveils the importance of prior year cracking, erosion, and
obstruction RSs in the next year cracking RSs on paved ditches. Ultimately, the results
show that the condition of nearby assets contributed to the predicted RSs as well.

To assess the performance of the selected model in its implementation, the RSs at the
end of FY2015, FY2016, FY2017, FY2018, and FY2019 as well as all contributing factors in
FY2016, FY2017, FY2018, and FY2019 are utilized to build the prediction model. It is worth
mentioning that the data is first is split into training and testing sets and all validation
procedures are performed. Then, the model is used to predict RSs in FY2020 when RSs at the
end of FY2019 and contributing factors in FY2020 are the inputs of the model. Later on, the
performance of the hotspot prediction is assessed considering the actual observations of RSs
at the end of FY2020. With respect to the scenario introduced for assessing the performance
of the proposed framework in its implementation, we used RFR to develop a RS prediction
model for erosion on paved ditches. Figure 15 displays the spatial distribution of erosion
RSs that provides a comparison between observed and predicted RSs at the end of FY2020
in different mile markers (i.e., segments) of the case study. It can visually be concluded
that there is an acceptable correlation between the longitudinal profile of the locations of
predicted and observed RSs in both cases. Since there is not any specific threshold available
that specifies high and low values of RSs, we used the Jenks method to cluster RSs into
similar groups in terms of their severity [81]. In another word, this method results in a
cut-off threshold that clearly divides RSs into two categories (hotspots and coldspots),
which could help us better document and investigate the match between predicted and
observed RSs. In this context, hotspots refer to the location of roadways with a higher
density of defects while coldspots show the parts of roads with a fewer number of defects.
We summarized the results of this task in Figure 16. This figure illustrates hotspots and
coldspots with respect to the calculated Jenks threshold of 0.3 applied on the dataset. The
match percentage between observed and predicted RSs on all segments according to this
categorization is 81.9 percent. This number demonstrates that our prediction framework
offered an acceptable accuracy in predicting the location of hotspots and coldspots in a
year ahead. We performed a similar procedure for obstruction and cracking and gained
96.2 and 96.1 match percentages, respectively, both of which further providing promising
results in localizing the hotspots in a future year.
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Figure 16. Match percentage of (a) observed versus (b) predicted RSs of erosion on paved ditches at
the end of FY2020.

6. Conclusions

In this paper, we proposed a Multi-asset Defect Hotspot Predictor (MDHP), a multi-
asset prediction framework that forecasts the susceptibility of roadway assets. We then
used a case study of 389 km of I-81, I-77, and I-381 Interstate highways in the US to evaluate
the proposed framework’s performance. The MDHP provided significant accuracy in
forecasting the hotspots of erosion, obstruction, and cracking defects on paved ditches in
our case study. Furthermore, the outcomes highlighted an interrelation between adjacent
assets and their contribution to future defects. For instance, the effect of the downstream
drain outlet damages on the obstruction of upstream paved ditches was identified. As
another example, prior year erosion in unpaved ditches and lower-slopes, contributed to
the erosion in the paved ditches. The findings of this study also considers the disparate
nature of highway assets using a data-driven approach in identifying major contributors in
defecting different assets.

This study provides decision-makers with a prediction tool to identify parts of road-
ways that are prone to different defects. Hence, agencies can better plan and prioritize
maintenance activities based on the outcomes of the proposed models. Furthermore, the
proposed methodology offers an integrated estimator of defects’ probability for multiple
assets compared to the previous methods predicting individual asset’s condition in isola-
tion. Consequently, it has the potential of benefiting risk mitigation plans for the highway
infrastructure. Ultimately, the proposed framework can also help agencies to optimize
and prioritize their future inspections with a targeted strategy to focus on locations with a
higher probability of defects.

Even though the proposed framework does not have any constraints on the scope
of inputs, we only used five years of information and considered six asset types due
to data availability. Therefore, it is suggested that future studies consider applying the
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methodology to other road assets and cover a more extended temporal content. Besides,
the application of the MDHP method on other linear or network infrastructures such as
sewers, water networks, and railroads would make an interesting research direction.
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