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Abstract: Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as
it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This
study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nonde-
structive measurement of some important soil properties of Alfisols. A total of 336 georeferenced soil
samples fromthe 0–15 cm soil layer of Alfisols that were collected from the eastern Indian states of
Odisha and Jharkhand were used. The partial least-squares regression (PLSR), random forest, and
support vector machine regression techniques were compared for the calibration of the spectral data
with the wet chemistry soil data. The PLSR-based predictive models performed better than the other
two regression techniques for all the soil properties, except for the electrical conductivity (EC). Good
predictions with independent validation datasets were obtained for the clay and sand percentages
and for the soil organic carbon (SOC) content, while satisfactory predictions were achieved for the silt
percentage and the pH value. However, the performance of the predictive models was poor in the
case of the EC and the extractable nutrients, such as the available phosphorus and potassium contents
of the soil. Specific regions of the MIR spectra that contributed to the prediction of the soil SOC, the
pH, and the clay and sand percentages were identified. The study demonstrates the potential of the
MIR spectroscopic technique in the simultaneous estimation of the SOC content, the sand, clay, and
silt percentages, and the pH of Alfisols from eastern India.

Keywords: mid-infrared spectroscopy; soil properties; alfisols; partial least squares; support vector
machine; random forest

1. Introduction

Soil, which is a complex mixture of minerals, organic matter, microorganisms, air, and
water, is one of the most important factors/resources that control agricultural productivity
and ecosystem functioning. The preservation and sustainable management of soil resources
are essential in tackling humanity’s major challenges that are related to food security,
climate change, environmental degradation, water scarcity, and biodiversity [1]. Monitoring
the factors that control the preservation and sustenance of soil resources is essential for
improving and sustaining agricultural productivity and for maintaining the soil health.
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However, one of the main challenges in monitoring this resource is the heterogeneity,
or spatial variability, of the soil properties. This entails the analysis of a large number
of soil samples in order to obtain a comprehensive idea about the soil health and its
spatial distribution, which is imperative for formulating strategies to ensure efficient
management. Traditionally, soil health information is obtained through conventional
laboratory analysis, which is time-consuming, labor-intensive, and, sometimes, not friendly
to the environment owing to the use of some toxic chemicals during laboratory-based
wet chemistry analysis [2]. Conventional laboratory analysis generally requires separate
tests for the different soil properties, as well as a wide range of equipment, which renders
them economically nonviable in many cases. To counter these problems, alternate methods
of soil analyses that use a single preparation and a spectral scan to predict many soil
properties have been developed [3]. Diffuse reflectance infraredFourier transform (DRIFT)
spectroscopy is an evolving technology that is based on the interaction of electromagnetic
energy with matter, and it provides a great opportunity for the speedy, cost-effective, and
nondestructive characterization of the soil composition. This technique has opened up
new possibilities for its application in site-specific nutrient management, the monitoring
of the soil health in landscapes [4], and for digital soil mapping [5]. Among the different
spectroscopic techniques in vogue, DRIFT spectroscopy using the mid-infrared (MIR)
region (4000–400 cm−1, equivalent to a wavelength of 2500–25,000 nm), provides a good
alternative with which to enhance and support the conventional methods of soil analysis, as
it reduces some of their limitations, particularly where a high spatial density is needed [6].

Considerable progress has been made in the last two decades in the use of MIR spec-
troscopy, with the development of new instrumentation and modeling techniques, which
have lessened some of its earlier limitations. There has also been improvement in the
computational power and the development of more robust statistical tools that can more
precisely relate the variability of the spectrum to the variability of the soil characteristics [7].
One of the advantages of infrared spectroscopy (IR) is that it can simultaneously charac-
terize various chemical and physical soil constituents from a single spectrum. Among the
different infrared spectroscopic techniques in use, the instruments that use the MIR region
are generally considered more useful than those that use the near-infrared (NIR) region of
the electromagnetic spectrum, as the MIR region is dominated by fundamental vibrations,
whereas the NIR region is dominated by much weaker and broader signals from vibration
overtones and combination bands [8,9]. For instance, Pirie et al. [10] observed the greater
usefulness of MIR spectroscopy compared to UV–VIS–NIR spectroscopy to predict the soil
pH, the contents of organic C, the clay, the sand, and the cation exchange capacity (CEC)
for some Alfisols in southeastern Australia. Shepherd et al. [11] report that IR spectroscopy
was more repeatable than standard laboratory wet chemistry methods, as the IR-based
method almost halved the measurement standard deviation (SD).

Clay minerals and organic carbon are the principal constituents of soils, and they
have well-defined fundamental absorption regions in the MIR range. The MIR multi-
variate calibrations are, consequently, more robust than the NIR for the characterization
of the soil properties [7]. Molecular vibrations that are related to alkyl groups, protein
amides, carboxylic acids, the associated water, carboxylate anions, and the aromatic groups
that are present in the soil organic matter provide opportunities for estimations ofthe-
soil organic carbon (SOC) and the total nitrogen (N), with considerable accuracy by MIR
spectroscopy [12,13]. Soriano-Disla et al. [14] hypothesized that the contents of clay and
sand are more accurately estimated by MIR spectroscopy than the contents of silt because
there are fundamental vibrations that are associated with clay (kaolinite (3690–3620 cm−1),
smectite (3630–3620 cm−1), illite (3400–3300 cm−1), and sand (quartz (1100–1000 cm−1)); on
the contrary, silt contains many minerals with more functional groups, and thus has more
complex vibrations or peaks, which make them difficult to predict. The spectral bands
that correspond to different soil constituents in the MIR region have been reviewed and
they are presented in Table S1. In the enhancement of the soil fertility and productivity,
plant nutrients, such as the available N, phosphorus (P), and potassium (K), play important
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roles. Knowledge of the plant-available nutrient concentration in a piece of arable land will
help to optimize the fertilizer application. Excessive fertilization affects the soil fertility
and the economic investment and leads to surface and groundwater contamination [15]. It
is thus crucial to improve the efficiency and accuracy of soil-available nutrient detection
for optimal fertilization. However, the available nutrients in soil generally do not show
any direct spectral features and usually exist in low concentrations [16]. Consequently,
their quantification through the use of spectral approach through regression modeling and
the validation of the models is difficult to achieve. In addition, the presence of randomly
distributed irrelevant information in the spectra also greatly affects the accuracy of the
calibration models for quantifying the available soil P and K contents [17].

Sophisticated statistical techniques are required for the quantitative spectral analysis
of soils that use reflectance spectroscopy to uncover the response of the soil attributes
from their spectra. Researchers have used various chemometric methods to relate soil
spectra to soil attributes [6]. Chemometric methods are applied to extract information
mathematically from the preprocessed spectral soil data. The information that is extracted
is then empirically related to the conventional laboratory measurements to build the MIR
calibration models [18]. MIR spectra, however, need calibration and independent validation
with the laboratory-analyzed data for the development of robust prediction models for
different soil properties that will be valid for a soil type [19].

In India, Alfisols and related soils cover an area of 79.7 Mha, which is about 24 percent
of the country’s geographical area. Alfisols are predominant in the Andhra Pradesh,
Karnataka, Odisha, Chhattisgarh, Tamil Nadu, Jharkhand, Madhya Pradesh, Assam, and
Uttar Pradesh states of India. These soils are dominant in the semiarid to subhumid
regions of peninsular India [20]. The soils have low base saturations, low cation exchange
capacities (CECs), and low organic matter contents. Kaolinite is the dominant clay mineral,
and the soils are acidic in reaction. In terms of the land use and management, Alfisols
are India’s second most dominant soil order after Inceptisols [21]. While comparing
the MIR spectral signatures of the different soil orders that are present in the United
States, Zhang et al. [22] observed strong MIR absorption peaks at 3695 or 3620 cm−1 that
were due to the presence of relatively large amounts of kaolinitic minerals in the Alfisols
and Ultisols. McCarty et al. [8] report excellent MIR-based predictions of soil carbonates
(RMSEP = 10 g kg−1; bias 2.5 g kg−1) for Alfisols and Mollisols from the central United
States. Although some studies on the prediction of the properties of Alfisols by MIR-
diffused reflectance spectroscopy are reported [10,23], no study that explores the potential
of MIR spectroscopy in conjunction with chemometrics has been conducted to predict the
physical and chemical properties of Alfisols from the Indian subcontinent. The present
study was undertaken to assess the potential of MIR reflectance spectroscopy in assessing
the organic carbon content, the EC, the pH, the available P and K, and the sand, silt, and clay
percentages in soil samples from the Alfisols regions of eastern India. The specific objectives
of this study were to: (i) Evaluate the predictive performance of different algorithms for
the rapid characterization of selected key soil properties by using MIR spectroscopy;
(ii) Validate the models by using independent sample sets of similar soils to evaluate the
predictive ability of the MIR spectroscopy in the estimation of key soil properties; and
(iii) Identify spectral regions with high explanatory value for the prediction of these soil
propertiesas a function of the information provided in the calibration.

2. Materials and Methods
2.1. Soil Sampling

A total of 336 random georeferenced soil samples were collected from the Alfisols of
the Odisha and Jharkhand states of eastern India during April and May 2019, soon after
the harvest of the winter season crops. The distribution of the sampling sites is presented
in Figure 1. About 80 percent of the soil samples were collected from arable land, while
the remaining 20 percent were collected from forest land. Samples were collected from the
top 15 cm soil layer. Four soil subsamples, from a radius of about 20 m at each sampling
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point (keeping one at the center), were collected and then mixed to obtain one composite
sample for each site. Samples were carefully collected after removing surface litters and
plant materials.
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Figure 1. Study areas and locations of the sampling points in the states of Jharkhand and Odisha in
eastern India.

2.2. Laboratory Analysis

The soils were air-dried at room temperature for four days to ensure stable moisture
content, and large soil clods were broken and crushed gently by using a wooden rolling pin.
The samples were then passed through a 2 mm sieve. The coning and quartering method
was used to ensure that a homogenous subsample was selected for the wet chemistry
analysis. The soil properties evaluated in this study included: the soil organic carbon (SOC);
the electrical conductivity (EC); the pH; the percentages of clay, silt, and sand; and the
available P and K. The EC and pH of the soil samples were determined in a 1:2.5 soil: water
suspension by using the Elico Digital EC meter (Elico Pvt. Ltd., Hyderabad, India) and the
Orion pH meter (Model 420A, Orion Research Inc., Franklin, MA, USA). The soil organic
carbon content was determined by using the Walkley and Black wet digestion method [24].
This involves the wet combustion of the organic matter present in the soil with a mixture of
potassium dichromate and sulfuric acid at about 125 ◦C. The soil-available P and K were
analyzed following the standard procedures, as outlined in [25]. The sand, silt, and clay
fractions were determined by following the hydrometer method after the pretreatment of
the soil with hydrogen peroxide to remove organic matter [26].

2.3. MIR Spectral Measurements and Preprocessing of Soil Spectra

For the spectra measurements, soils were finely ground to an approximately <0.5 mm
particle size byusing a Retsch Mortar Grinder RM 200 (Retsch, Düsseldorf, Germany). The
finely ground soil samples were then loaded into sample cups, and the surfaces of the
samples in the cups were leveled by using a spatula. A Bruker Alpha Fourier-Transform
MIR spectrometer with a diffuse-reflectancemodule (Bruker Optics, Karlsruhe, Germany)
was used to record the DRIFT spectra of the soils in the wavelength range of 4000–500 cm−1,
with a resolution of 4 cm−1 and a zero filling of 2. This resulted in 1713 data points in each
spectrum (Figure S1). During scanning of the MIR spectra, the mean of 32 internal spectral
measurements was used as a representative spectrum for each soil sample. The average
spectrum obtained for each sample was later transferred to a workstation, where it was first
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stored in the OPUS file format provided with the instrument and was later converted to a
CSV flat data table for processing and analysis. A standard gold cap was used to correct the
background at the beginning of the sample scan. The background scan was then performed
at an interval of about 30 min during the scanning process to correct the atmospheric and
instrumental noise, and to increase the signal-to-noise ratio of the spectrum produced.

Savitzky–Golay first-derivative transformation, with a second-degree polynomial
with a window size of 5 data points, was used to preprocess the absorption spectra to
reduce the noise and to improve the signal-to-noise ratio. A preliminary analysis with
different preprocessing treatments of the spectra indicated that the model results did not
improve consistently through other preprocessing methods, such as second-derivative
transformation, multiplicative scatter correction (MSC), standard normal variate (SNV)
transformation, SNV detrending, and logarithm transformations. Shepherd and Walsh [19]
and Towett et al. [27] also report similar findings for most of the soil variables tested across
an extensive range of tropical soils. In the case of the EC and available P and K, the models
developed using the square-root-transformed values performed better than the raw data.
About 80 percent of the MIR spectra (n = 267) from the whole sample set were selected
to develop the prediction models, while the remaining 20 percent (n = 69) of the spectra
were used as the independent dataset forth validation of the models. The calibration
and validation sample selection was performed following a procedure that was adapted
from [28] (K–S). In the K–S algorithm, a set of samples with a uniform distribution over
the predictor space is selected on the basis of a spectral distance measure. This selection
encompasses all of the sources of variation found in the spectral library [29]. Here, each
sample is assessed against the scores of all the samples. Though the choice of this technique
does not ensure a truly independent validation set, it is nevertheless helpful in selecting
one that is a useful representative [27]. For the mathematical treatments of the spectral
data, we used a function written in the standard software R version 4.0 (R Core team
2020), which included the packages: hyperSpec, tidyverse, prospectr, MASS, caret, Applied
Predictive Modeling, lars, pls, ggplot2, clhs, hrbrthemes, chillR, and mlbench. Before
fitting for model development, the CO2 absorption bands, which appeared prominently
around the 2400-to-2300 wavenumber (cm−1) regions of the MIR spectra, were excluded to
eliminate the interference of CO2 in the processing of the spectra.

2.4. Chemometric Analyses

The soil properties (raw or square-root-transformed values) and corresponding pre-
processed soil spectral data were used to develop calibration models for the EC, pH, SOC
content, available P, available K, and sand, silt, and clay percentages. Individual samples far
from the zero line of the residual variance were deemed outliers and were excluded from
the dataset. The maximum numbers of outliers (6) excluded were for the silt percentage.
Three chemometric regression techniques (viz., partial least squares regression (PLSR), ran-
dom forest (RF), and support vector machines (SVM)) were compared to identify the model
best suited for the prediction of the soil properties. The leave-one-out cross-validation was
used to calibrate the spectral data with the wet chemistry/laboratory soil data to obtain
predictive models for each soil property. This is one of the most frequently used techniques
for chemometric modeling and it can be considered the de facto standard method in soil
spectroscopy [17]. In the PLSR technique, a large number of original descriptors are linear
transformed to a new variable space on the basis of a small number of latent variables. The
latent variables are chosen in such a way as to provide the minimum prediction error sum
of the squares and the maximum correlation with the dependent variables [30]. The RF
regression was chosen as one of the calibration methods because of its excellent ability to
pick the nonlinearity relationship between the predictors and the response variables. It has
also been reported to be simple in theory, fast when handling a large number of predictors,
and it has an in-built fine-tuning mechanism to control overfitting. It also contains an
automatic compensation mechanism for the biased sample numbers of groups during the
training process [31]. The RF is reported to be a useful tool for regression studies, and it
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can model both linear and nonlinear multivariate calibration [5]. On the other hand, SVM
is a supervised nonparametric machine learning regression method that is effective in high-
dimensional spaces and that uses a subset of training points in the decision function [32].
SVM models are sometimes more effective owing to their ability to deal with noisy patterns
and the multimodal class distributions of the soil properties [33]. The tune length was
set for 15 for all three approaches. The chemometric models that were developed were
tested by predicting the values of a given soil variable on a validation dataset comprised
of a 20 percent holdout validation soil sample. The model’s performance was assessed by
calculating the coefficient of determination between the predicted and observed values
in the validation set (R2) (Equation (1)),the root mean square error of validation (RMSE)
(Equation (2)), and the ratio of the performance to the deviation (RPD) (Equation (3)), which
is the ratio of the standard deviation of the validation dataset (SDval) and the standard
error of prediction, which is calculated for validations that are performed with independent
datasets. The coefficient of determination (R2) evaluates the proportion of the total varia-
tion accounted for by the model, while the remaining variations are attributed to random
error [34]. The model with higher values of R2 and lower values of RMSE was selected
as the best-fitted model for our study. A lower RMSE and higher R2 during the model
validation indicate a more accurate and robust model.

R2 =
∑n

i =1

(
ŷ − −

y
)2

∑n
i =1

(
yi − −

y
)2 (1)

RMSE =

√
1
n ∑n

i = 1

(
ŷ − −

y
)2

(2)

RPD =
SDval

RMSE
√

n
(n−1)

(3)

where yi,
−
y, and represent ŷ represent the measured values, the mean of the measured

values, and the predicted values, respectively, and n is the number of measurements with
i = 1, 2, . . . , n.

Some of the earlier studies have suggested that models with R2 ≥ 0.75 and an RPD ≥ 2
provide acceptable or good accuracy levels for the prediction of the soil properties. On
the other hand, models with a R2 from 0.65 to 0.75, and an RPD from 1.4 to 2.0, provide
satisfactory, or medium, accuracy levels of predictions [19,27,35]. The RPD values below
these are considered poor for prediction. We have followed the same classification in the
present study. The identification of the important wavenumbers for each soil property was
performed by analyzing the distribution of the loading coefficients against the wavenum-
bers of the partial least-squares regression (PLSR). Higher positive or negative values of
the loading coefficients at specific wavenumbers indicate the importance of these numbers
in predicting the soil properties [32]. The statistical analyses and calculations were carried
out using R software, version 4.0 [36].

3. Results and Discussion
3.1. Soil and Spectral Characteristics

The scattergram depicting the range, frequency, mean, and median of the soil prop-
erties is presented in Figure 2. The mean value and the data range for the soil properties
were within the typical ranges for the soils in these regions [20] and covered a wide range
of variability in order to promote effective model development [37]. The range for the
validation dataset fell within the range of the calibration data for all the soil properties.
Considerable variations in the absorbance across the spectral range were found among the
samples. To demonstrate the variability in the spectra, five selected raw DRIFT spectra,
which cover the spectral variability of the samples and the range of the spectral values in
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each wavenumber, are depicted in Figure 3. The spectra show different high and low peaks
across the spectral zones. The high peak around 1200–900 cm−1 signifies the stretching of
the Si–O–Si and Al–O–Si bonds in clay minerals, while the peaks between 850 and 580 cm−1

denote the characteristics of the different clay minerals present [38–40]. Similarly, the strong
absorbance recorded in the 3600 to 3700 cm−1 regions of the spectra was primarily due to
hydroxyl stretching vibrations that are associated with clay minerals [41]. Peaks between
3600 and 3300 cm−1, and around 1600 cm−1, respectively, were strongly influenced by the
stretching and bending of the O–H bonds [42]. Madejova [43] also report that the spectral
region above 3300 cm−1 could be described as the OH− stretching region, while, below
1200 cm−1 could be described as the OH- bending and Si–O stretching and bending re-
gions. Merry and Janik [44] observed that the spectra were obtained from the mid-infrared
wavelength band sense-specific molecular vibrations, which are strongly associated with
the functional groups that are frequently found in soil minerals and organic matter.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 16 
 

validation dataset fell within the range of the calibration data for all the soil properties. 

Considerable variations in the absorbance across the spectral range were found among 

the samples. To demonstrate the variability in the spectra, five selected raw DRIFT spec-

tra, which cover the spectral variability of the samples and the range of the spectral values 

in each wavenumber, are depicted in Figure 3. The spectra show different high and low 

peaks across the spectral zones. The high peak around 1200–900 cm−1 signifies the stretch-

ing of the Si–O–Si and Al–O–Si bonds in clay minerals, while the peaks between 850 and 

580 cm−1 denote the characteristics of the different clay minerals present [38–40]. Similarly, 

the strong absorbance recorded in the 3600 to 3700 cm−1 regions of the spectra was primar-

ily due to hydroxyl stretching vibrations that are associated with clay minerals [41]. Peaks 

between 3600 and 3300 cm−1, and around 1600 cm−1, respectively, were strongly influenced 

by the stretching and bending of the O–H bonds [42]. Madejova [43] also report that the 

spectral region above 3300 cm−1 could be described as the OH− stretching region, while, 

below 1200 cm−1could be described as the OH- bending and Si–O stretching and bending 

regions. Merry and Janik [44] observed that the spectra were obtained from the mid-infra-

red wavelength band sense-specific molecular vibrations, which are strongly associated 

with the functional groups that are frequently found in soil minerals and organic matter. 

 

Figure 2. Scattergram depicting ranges, frequencies, means, and medians of: (a) soil organic carbon; 

(b) pH; (c) electrical conductivity; (d) available phosphorus; (e) available potassium; and (f) sand, 

(g) silt, and (h) clay contents of the soil samples analyzed by standard laboratory technique. 

Figure 2. Scattergram depicting ranges, frequencies, means, and medians of: (a) soil organic carbon;
(b) pH; (c) electrical conductivity; (d) available phosphorus; (e) available potassium; and (f) sand,
(g) silt, and (h) clay contents of the soil samples analyzed by standard laboratory technique.



Sustainability 2022, 14, 4883 8 of 17

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

Figure 3. Five representative raw mid-infrared absorption spectra of the samples. Grey spectral en-

velope encompasses the maximum and minimum MIR absorbance values of all the soil samples at 

each wave number. 

This indicated that the MIR spectra contained some definable peaks, which could be 

used in spectral interpretation to differentiate between two or more samples. Relatively 

subtle and broad peaks appeared near 1720, 1600 and 1370 cm−1; this could be due to the 

absorptions by different types of clay minerals, the SOM, or the adsorbed moisture pre-

sent in the soil [45]. The smaller peaks around 2900 cm−1 in some of the samples were due 

to the aliphatic C–H stretching. Similarly, various peaks in the 3500–3000 cm−1 region were 

ascribed to O–H, N–H, and C–H stretching [46]. On the other hand, the stretching and 

bending of various C–O, COO, and CHx bonds influenced the spectra’s 1650–950 cm−1 area 

[47]. However, many of the absorption peaks that arose due to the various bonds present 

in the SOM also overlap with the soil’s mineral peaks [48]. 

3.2. Validation of SVM, PLSR, and RF Regressions with Independent Dataset 

The test-set validation scatterplots of the MIR-predicted (with SVM, PLSR, and RF) 

versus the actual laboratory-measured values with a 1:1 line are shown in Figures 4 and 

5. The scatterplots for the SOC, sand, silt, and clay were closer to 1:1 than the correspond-

ing plots for the pH, EC, and the available P and K (Figures 4 and 5), which reveals that 

the ability of the MIR-spectra-based models to predict the studied soil properties varied 

considerably. The predictive models that were developed with PLSR techniques per-

formed better than the two other regression techniques for all the soil properties, except 

for the EC, where the SVM regression model, which was developed with square-root-

transformed EC values, performed best (Table 1). 

Figure 3. Five representative raw mid-infrared absorption spectra of the samples. Grey spectral
envelope encompasses the maximum and minimum MIR absorbance values of all the soil samples at
each wave number.

This indicated that the MIR spectra contained some definable peaks, which could be
used in spectral interpretation to differentiate between two or more samples. Relatively
subtle and broad peaks appeared near 1720, 1600 and 1370 cm−1; this could be due to the
absorptions by different types of clay minerals, the SOM, or the adsorbed moisture present
in the soil [45]. The smaller peaks around 2900 cm−1 in some of the samples were due to
the aliphatic C–H stretching. Similarly, various peaks in the 3500–3000 cm−1 region were
ascribed to O–H, N–H, and C–H stretching [46]. On the other hand, the stretching and
bending of various C–O, COO, and CHx bonds influenced the spectra’s 1650–950 cm−1

area [47]. However, many of the absorption peaks that arose due to the various bonds
present in the SOM also overlap with the soil’s mineral peaks [48].

3.2. Validation of SVM, PLSR, and RF Regressions with Independent Dataset

The test-set validation scatterplots of the MIR-predicted (with SVM, PLSR, and RF)
versus the actual laboratory-measured values with a 1:1 line are shown in Figures 4 and 5.
The scatterplots for the SOC, sand, silt, and clay were closer to 1:1 than the corresponding
plots for the pH, EC, and the available P and K (Figures 4 and 5), which reveals that
the ability of the MIR-spectra-based models to predict the studied soil properties varied
considerably. The predictive models that were developed with PLSR techniques performed
better than the two other regression techniques for all the soil properties, except for the EC,
where the SVM regression model, which was developed with square-root-transformed EC
values, performed best (Table 1).
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Figure 5. Scatterplots (1:1) of laboratory-measured versus mid-infrared diffused-reflectance-spectra-predicted values of soil properties for the random validation
sample (n = 69) using partial least squares, random forest, and support vector machine multivariate regression models for: (a) pH; (b) electrical conductivity;
(c) available phosphorus content; and (d) available potassium content.
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Table 1. Statistics for the calibration (n = 267) and validation (n = 69) samples using partial least
squares (PLS), support vector machine (SVM), and random forest (RF) regression models developed
from diffused-reflectance mid-infrared spectra using the R software.

Soil Property Model
Calibration Set (80% of Dataset) Validation Set (20% of Dataset)

R2 RMSE RPD R2
v RMSEv RPDv

SOC (%) PLS 0.88 0.09 2.85 0.78 0.12 2.08
SVM 0.99 0.02 10.75 0.70 1.39 1.80
RF 0.95 0.07 3.71 0.61 0.16 1.60

pH PLS 0.80 0.36 2.23 0.70 0.40 1.82
SVM 0.98 0.30 2.71 0.69 0.44 1.64
RF 0.97 0.30 2.71 0.37 0.62 1.68

EC * (dS m−1) PLS 0.70 0.09 1.81 0.43 0.11 1.25
SVM 0.94 0.05 3.42 0.47 0.10 1.34
RF 0.98 0.07 2.20 0.07 0.13 1.02

Sand (%) PLS 0.85 4.0 2.55 0.79 5.16 2.16
SVM 0.99 0.97 10.47 0.76 5.60 1.99
RF 0.96 2.73 3.73 0.61 7.18 1.55

Silt (%) PLS 0.82 2.57 2.36 0.73 3.22 1.92
SVM 0.99 0.58 10.34 0.72 3.33 1.86
RF 0.96 1.63 3.72 0.64 3.88 1.60

Clay (%) PLS 0.87 2.32 2.82 0.79 3.40 2.12
SVM 0.99 0.63 10.35 0.71 4.49 1.60
RF 0.95 1.82 3.58 0.63 4.77 1.31

Available P *
(kg ha−1)

PLS 0.70 1.00 1.83 0.38 1.54 1.26
SVM 0.85 0.83 2.20 0.37 1.60 1.21
RF 0.97 0.68 2.70 0.28 1.73 1.13

Available K *
(kg ha−1)

PLS 0.69 2.38 1.81 0.22 3.72 1.12
SVM 0.98 0.61 7.07 0.15 3.83 1.08
RF 0.98 1.62 2.66 0.05 4.05 1.03

* Model was developed on square-root-transformed data as the initial data were positively skewed. RMSE: root
mean squared error; RPD: residual prediction deviation; R2: coefficient of determination; SOC: soil organic carbon;
EC: electrical conductivity.

The best models were selected on the basis of the corresponding high R2 and RPD
values and low RMSE values. The SVM validation models performed better than the RF
models for all the soil properties studied. With decreasing sample sizes, the prediction
accuracies obtained by the RF decreased more noticeably than the SVM regression for all
the soil properties tested. Previous studies (e.g., [32,49]) that compare different multivariate
regression models to predict the soil properties from MIR spectra have shown variable
responses for different datasets and properties. While comparing the performance of
different multivariate regression models in soils from the Ribeirão Inhaúma basin, Brazil,
the authors of [49] obtained greater prediction accuracies with PLSR for the TOC and
Mehlich−1 extractable phosphorus, whereas the SVM performed better than PLSR for
clay. Deiss et al. [32] report that SVM models performed better than the PLSR for all
tested properties in Tanzania and the US Midwest soils. In the present study, the RPD
values for the model validation were also used to evaluate the performance of the models
(Table 1). Models with an RPD > 2.0 in the validation process were considered reliable [35].
On the other hand, RPD values between 1.4 and 2 represent the model’s satisfactory
performance, which can be useful for the rapid screening of samples. RPD values below
1.4 were considered unacceptable [35]. The prediction models identified for the SOC
(RPD = 2.06), the clay (RPD = 2.12), and the sand (RPD = 2.16) were considered reliable,
while the performance of the models for the pH (RPD = 1.82) and the silt (RPD = 1.92)
were satisfactory. Minasny et al. [50] report that, for agricultural applications, RPD values
greater than 2 indicated that the models offered precise predictions.

The validation datasets show that the percentages of clay (R2: 0.79; RMSE: 3.40) and
sand (R2: 0.79; RMSE: 5.16) in this study were predicted with a high degree of accuracy,
followed by the SOC content (R2: 0.78; RMSE: 0.12), for the models that were developed
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by using the PLSR technique (Table 1). Chemical bonds of carbon-containing compounds
present in the SOM contribute directly to the SOC content of the soil. The high coefficients
of determination of the predictive models for the SOC are attributed to the specific strong
absorption bands that are associated with these chemical bonds [51]. Urselmans et al. [52]
report a similar accuracy (R2 = 0.77; RPD = 2.0) for the SOC content prediction from
a globally distributed soil MIR spectral library dataset. Kamau-Rewe et al. [23] also
report that the SOC prediction by PLSR using DRIFT–MIR was satisfactory for the Alfisols
(R2 = 0.93; RMSE of cross-validation = 0.20). Recently, Olatunde [13] developed a PLSR-
based chemometric prediction model for the SOC with a high accuracy (R2 > 0.80), which
can offer a reliable alternative to the traditional laboratory analyses. The predictions for
the particle size were good for both the clay and sand percentages. The estimation of the
clay and sand percentages is due to the fundamental vibrations of the associated minerals
in the MIR regions [14]. Thomas et al. [53] found a good correlation between the sieve-
pipette laboratory measurements and MIR-based predictions for clay (R2 = 0.88) and sand
(R2 = 0.90) for soils from a Kenyan farm validation set. Mohanty et al. [54] also report
that most of the absorption peaks that are directly or indirectly related to SiO2 fall in the
MIR region. Thus, sand or SiO2 was predicted with greater accuracy by the MIR spectra.
Urselmans et al. [52] report that the prediction of the clay content from MIR spectra was
more direct, as the absorption of the spectra was primarily concentrated in the mineral
regions of the spectrum. On the other hand, the important wavebands for the calibration of
the sand content were distributed across the entire MIR spectrum, which suggests that the
prediction for sand was relatively indirect [52]. The fingerprint region of the MIR spectrum
categorically responds to quartz, and thus, the exclusion of specular reflection from the
spectrum could further improve the performance of sand predictions.

The silt content (R2: 0.73; RMSE: 3.22) and the pH (R2: 0.70; RMSE: 0.40) were mod-
erately predicted from the MIR spectra. Earlier studies also state that MIR spectroscopic
techniques could be used to estimate the soil pH with air-dried samples [6,55]. Shep-
herd and Walsh [19] report a good prediction for the soil pH (R2 = 0.83; RMSEC = 0.34)
in their study on the characterization of the soil properties from a spectral library with
758 soils from eastern and southern Africa. Useful wavenumbers that contribute to the
prediction ofthesoil pH have been associated with the functional groups, O–H, in clay
minerals, water, phenols, and carboxyl and hydroxyl groups, and with COO−, CO3

−2 in
carboxylates, carbonates, and carboxylic acids, which were related to the H+ concentra-
tion [2]. Urselmans et al. [52] also report that important wavebands for pH predictions
were mainly concentrated in the MIR spectrum parts that contain mineral features (i.e., the
fingerprint and X–H stretching regions). However, Ji et al. [56], in their study conducted
on two agricultural field soils from Canada, did not find a good prediction for the soil pH
from their in situ-recorded MIR spectra.

The prediction was poor for the EC (R2: 0.47; RPD: 1.25), the available P (R2: 0.38;
RPD: 1.26), and the available K (R2: 0.22; RPD: 1.12) contents of the soil. For the avail-
able P and K contents, the best predictions were obtained when square-root-transformed
values were used in the PLSR. On the other hand, the SVM regression with square-root-
transformed values yielded the best prediction for the EC (Table 1). The low predictability
obtained for the EC was probably due to the narrow range of EC values among the soil
samples tested. Calibrations, in general, work best when there is a range of low-to-high
levels for the EC [56]. In contrast, the low predictability of the extractable P and K from the
MIR spectra could partially be due to the fact that the extracted amounts of P and K do not
correlate significantly with the soil properties that are MIR-active [27]. The predictability
of the extractable P and K from the MIR spectra of air-dried samples was also reported
to be poor in previous studies [6,55,57], owing to their poor MIR spectral signatures [56].
Wijewardane et al. [17], from their study using US soil spectral library samples, concluded
that properties such as K and P cannot be assigned to a particular MIR absorption band,
which makes these properties challenging to predict, unlike other properties. Similarly,
Minasny et al. [50] did not find acceptable values in predicting the available P from the
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MIR spectrum. Recently, Ma et al. [2], while analyzing the performance of three MIR
spectroscopic techniques (viz., diffuse reflectance spectroscopy (DRF), attenuated total
reflectance spectroscopy (ATR), and photoacoustic spectroscopy (PAS)) found that all three
spectral techniques poorly predicted the available phosphorus contents because of a weak
correlation between the absorption and the molecular vibration of the phosphorus in the
mid-infrared region. The predictability of the available K in soils is poor because the MIR
spectral region does not have adequate information to accurately predict the K content
in soils, and particularly the extractable K [14]. Besides this, the extractable K concentra-
tion in the soil solution is relatively low compared to the Ca and Mg concentrations and,
consequently, the effect of the K+ on the soil spectra might have been largely concealed or
shrouded by those for the Ca2+ and Mg2+ [14,50]. On the other hand, Bonett et al. [7] reason
that the poor predictability of the available K was primarily due to the high mobility of
the positively charged K ions in the soil solution, which easily varied their contents, which
caused less certain prediction results. Dimkpa et al. [58] also report that spectroscopy-based
testing methods are not suitable for the estimation of the soil nutrient fractions that are
potentially bioavailable to the crops. Here, the chemicals that were used for the extraction of
the elements from the soil give some indication of the bioavailable elemental concentration.

3.3. Identifying Wavenumbers with High Explanatory Value

Plots that represent the wavenumber versus the PLSR loading coefficient for the
models that were developed for the SOC, the pH, and the clay and sand contents are
depicted in Figure 6. Wavenumbers with higher loading coefficients indicate a greater
weightage to the final predicted values [59], which offer spectroscopy-based explanations
of these models. The important wavebands that were identified for the prediction of the
SOC were: 1225–1223; 1462–1480; 1505–1509; 1523–1530; 1747–1758; 2085–2090; 2155–2170;
2836–2851; and 2905–2915 cm−1 (Figure 6a).
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The C–H stretching at 2910 and 2850 cm−1, along with the C = O stretching at
1750 cm−1 [2], appeared to be higher in the SOC model. However, Urselmans et al. [52]
observed that the important MIR wavebands for the SOC estimation are present across the
full spectral range, from: 746 to 663; 1047 to 1041; 1139 to 1105; 1274 to 1265; 1573 to 1560;
1820 to 1881; 2547 to 2524; 2624 to 2611; 2985 to 2923; 3370 to 3353; 3683 to 3666; and 3783 to
3733 cm−1. Ma et al. [2] found that the effective wave numbers for the SOM values were
generally associated with the carbon functional groups and also with the absorption of iron
oxides. The important wavebands that were identified for the clay and sand calibration
were concentrated in the mineral region of the spectrum [52]. The peaks that were obtained
from the present study show that PLSR models could extract valuable information related
to different soil constituents since the peaks that were obtained were highly correlated with
the theoretically identified spectral zones.

4. Conclusions

Our study indicates that the PLSR models performed better than the RF- and SVM-
based chemometric models in estimating most of the soil properties. The SOC, pH, and the
sand and clay contents of the soils were well predicted by using both the PLSR and SVM
models; however, they failed to predict the extractable nutrients (viz., the available P and K
contents of the soil) with reasonable accuracy. We also identified specific wavebands that
contributed to the prediction of the soil SOC, the pH, and the clay and sand contents. MIR
spectroscopy showed great potential for the simultaneous estimation of the SOC, the pH,
and the particle size distribution of the Alfisols from eastern India. However, the models
that were developed in this study need to be validated beyond these locations for a more
robust and stable prediction. The spectral bands that were identified in this research will
help with understanding the underlying phenomenon that contributes to the improved
estimation of specific soil properties. This will assist in the development of cost-effective
hand-held sensors for nutrient recommendation/application. However, in-depth studies
are warranted to assist in understanding the inherent associations of MIR reflectance with
different soil properties, for which MIR can be used as a reliable and precise method for the
measurement vis-à-vis the soil health assessment and management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14094883/s1, Figure S1: A representative picture of MIR in-
strument with Drift spectra; Table S1: The characteristics band assignment of various soil constituents
in mid infrared region.
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