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Abstract: The construction industry is one of the key industries with high potential for the circular
economy; the promotion of reuse and recycling of construction and demolition waste (CDW) is
essential for sustainable urban development. In this study, a series of compaction, California bearing
ratio, saturated hydraulic conductivity, and particle breakage tests of well– and poor–graded mixtures
of recycled clay brick aggregates (RCBs) and recycled concrete aggregates (RCAs) with maximum
aggregate diameters of 19, 25, and 37.5 mm were carried out to examine the practical application
of those mixtures to unbound roadbed materials in Vietnam. The experimental results suggest that
the maximum amount of RCBs added to RCAs should be less than 30% when applied to unbound
roadbed materials. In addition, it was found that the mixing proportions of RCBs and RCAs and the
maximum aggregate diameter, gradation of aggregates, and initial moisture condition control the
saturated hydraulic conductivity. Further, the particle breakage characteristics under compaction
were carefully examined, and it was found that the percentage increment/decrement, as well as
a newly introduced method of estimating the mixing proportions of RCAs and RCBs in the fine
fraction (<2.36 mm), is effective in understanding the mechanism of particle breakage of RCA and
RCB mixtures.

Keywords: recycled concrete aggregate; recycled clay brick aggregate; compaction; road base and
subbase; California bearing ratio (CBR); hydraulic conductivity; particle breakage

1. Introduction

Rapid urbanization and population growth cause adverse effects, such as unsus-
tainable use of natural resources, environmental pollution, and degradation over large
areas [1–3]. In particular, the construction industry not only consumes enormous natural
resources, but also generates a large amount of construction and demolition waste (CDW)
in the process of urban renewal and redevelopment [2,4,5]. The construction industry,
on the other hand, is considered one of the key industries that has a high potential for
the adoption of a circular economy [6–9]. Asif et al. [6], for example, indicated that the
construction industry is responsible for the consumption of 40% of the total energy and
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natural resources consumed by the global economy. Reuse and recycling of CDW, as well
as the minimization of waste generation from the construction industry, therefore, fit well
into the promotion of recycling economy practices [10–13].

In fact, CDW rich in recyclable concrete and clay brick has a strong potential for
reuse and recycling due to the high utility of recycled materials (mostly in the field of
civil engineering) and the large market, such as in the use of recycled aggregates in road
construction [14–17]. In addition, the promotion of reuse and recycling of CDW reduces
environmental impacts, such as landfill and resource depletion, air and water pollution,
and high energy consumption [2,18,19]. Recently, many countries have begun to promote
the reuse and recycling of CDW, and the percentages of reuse and recycling have reached
97% in Japan, 90% in the Netherlands and UK, 81% in Denmark, 70% in the USA, 59% in
France, and 85% in Germany [20–23]. In many developing countries, including Vietnam,
however, the reuse and recycling of CDW are still low and are generally <10% [24–26].

Among developing countries, Vietnam has been facing rapid urbanization and popu-
lation growth due to economic growth on all fronts, and it has had especially remarkable
growth in the construction industry [2,4,8]. Many construction and demolition activities,
including renovation and demolition of old buildings and structures, are being conducted
all over the country, especially in big cities such as Hanoi, Ho Chi Minh, Haiphong, and
Da Nang. These activities have generated a huge amount of CDW; e.g., approximately
2000 apartment buildings (about 90% of the total) built in 1970–1980 are now seriously
degraded and require renovation and renewal. The Vietnamese government issued Resolu-
tion 34/2007/NQ-CP [27] in 2007 on measures to renovate the degraded apartment blocks
by 2015. Currently, the total CDW generated has reached approximately 1.9 million tons
per year, or 10–12% of total solid waste in Vietnam. Only 1–2% of CDW generated, however,
has been reused and recycled, and the remaining waste is mainly dumped improperly
on-site and/or off-site in landfills [24]. Therefore, it has become an urgent issue to establish
a proper CDW management system and to promote the reuse and recycling of CDW in
order to reduce the consumption of natural resources and for prevent improper dumping
in Vietnam [2,4,8].

Among the CDW generated from construction projects and old building demolitions,
concrete and clay brick waste is commonly recycled and applied for many civil engineering
purposes, such as in road base materials, recycled aggregates for concrete, and backfilling
materials [28,29]. One of the especially promising applications for recycled concrete is use
as unbound base and subbase materials in road construction due to its easy applicability
to road base and subbase materials, resulting in a high contribution to the increase in
CDW recycling [14,15,17]. Many studies have been addressed the mechanical properties
of RCAs to improve the performance of unbound road base and subbase materials. For
example, Thai et al. [30] conducted an in-depth review and assessment of the effects of the
size and type of aggregates on the mechanical properties of RCAs. They indicated that
the mechanical indices depend significantly on the type of aggregate (e.g., RCAs mixed
with recycled clay brick aggregates), on the maximum size of the aggregates (Dmax), and
their gradation (i.e., grain size distribution and fine content). Moreover, many studies
have targeted the mechanical properties of recycled concrete aggregates (RCAs) mixed
with recycled clay brick aggregates (RCBs) to evaluate the applicability to unbound road
base and subbase materials. Poon and Chan [14] revealed that the use of RCBs to replace
RCAs reduced the maximum dry density (MDD) and CBR values and increased the opti-
mum moisture content (OMC) of the subbase materials compared with those of natural
subbase materials. The authors also indicated that a minimum soaked CBR value of 35 can
meet the requirements for producing a subbase in Hong Kong with a blend RCAs and
RCBs. Aatheesan et al. [15,16,31,32] studied the potential application of the combination
of RCB and RCA/crushed rock (basalt) for pavement subbase and drainage systems with
experimental programs, including hydraulic conductivity, mechanical properties such as
CBR, Los Angeles abrasion loss, consolidated drained static triaxial, and repeated loading
triaxial tests. The experimental results indicated that about 25–30% RCB could be safely



Sustainability 2022, 14, 4854 3 of 21

added to Class 3 RCA/crushed rock blends for pavement subbase applications of the
Roads Corporation of Victoria state in Australia. However, this value was limited to 15%
considering the degree of breakdown after compaction occurring in the RCB blend. Similar
findings were reported by Cameron et al. [17].

As described in the previous paragraphs, many studies have been performed espe-
cially to examine the mechanical properties of RCB (and/or RCM) and RCA mixtures for
application to road base and subbase materials. However, limited studies have investi-
gated the particle breakage of compacted samples, especially to characterize the fraction of
concrete and clay brick retained in each fraction of aggregate size and fineness (typically,
<2 mm) after compaction, even though the mixed samples were composed of two aggre-
gates (RCA and RCB) with different physico-chemical and mechanical properties, such
as element composition, water absorption, hardness, and resilience. This study, therefore,
especially targeted the practical application of RCAs and RCBs for roadbed materials in
Vietnam, and the objectives were (i) to investigate the effects of Dmax and gradation of RC
mixed with RCBs on the mechanical and hydraulic properties, (ii) to examine the particle
breakage characteristics for compacted RCAs mixed with RCBs at different initial moisture
contents based on the percent increment/decrement of each particle fraction before and
after compaction, and (iii) to suggest a useful method for estimating the percentage of
concrete and clay brick in fines.

2. Materials and Methods
2.1. Materials

Concrete and clay brick waste was collected from the Thanh Tri CDW dumping site
in Hanoi, Vietnam. The waste samples were first crushed with a jaw and hammer mill
crusher to adjust the particle (aggregate) size to less than 50 mm. Next, the crushed samples
of RCA and RCB were mixed at different proportions to become four types of samples
with different values Dmax and gradation, and the samples were labeled Dmax = 19 mm,
Dmax = 25 mm, Dmax = 37.5 mm (well–graded), and Dmax = 37.5 mm (poor–graded). The
mixing proportion of RCB to RCA (f, in percent on the basis of dry mass) was set to 0%,
10%, 30%, 50%, 70%, or 100% for the tested samples, with three Dmax of 19, 25, and 37.5 mm
(well–graded). For the samples with Dmax of 37.5 mm (poor–graded), the f values were set
to 0%, 20%, 40%, 60%, or 100%. The samples of mixed RCA and RCB were named “RCA
100%”, “RCA 50% + RCB 50%”, and “RCB 100%” in this study depending on the f values of
the tested samples (see Table 2). Photos of graded samples before mixing and compaction
are exemplified in Figure 1.

The basic physical and chemical properties of the RCA and RCB were determined by
complying with some standards, such as the American Standards for Testing of Materials
(ASTM), Japan Industrial Standards (JIS), the standards of the Japanese Geotechnical Soci-
ety (JGS), and Vietnamese standards, and they are summarized in Table 1. The measured
physical and chemical properties of the RCA were in the range of general values reported in
previous studies [33–35] and met the technical requirements for road base and subbase ma-
terials regulated by Vietnamese standards TCVN 8859:2011 [36] and TCVN 8857:2011 [37],
as well as those of the Japan Road Association (JRA, 2010) [38]. The wabs values and the LA
values of the RCB were higher than those of the RCA, indicating that the RCB was more
abrasive and adsorbed more water than the RCA. The main differences in the chemical
compositions of the RCA and RCB are shown in terms of the percentages of SiO2, CaO,
and Al2O3, and this can be understood because the RCA originated from cementitious
materials rich in Ca and the RCB was made from soils rich in Si and Al. The particle size
distributions (PSDs) of the four types of tested samples are shown in Figure 2. The PSDs
of samples (before compaction in the figure) were adjusted to the gradation ranges given
in the Vietnamese standards of crushed stone and natural aggregates for road base and
subbase materials in this study [36,37]. For reference, the standard gradation, adaptations,
and technical specifications of aggregates for unbound road base and subbase materials in
TCVN 8859 [36] and TCVN 8857 [37], as well as JRA [38], are summarized in Appendix A.
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Figure 1. Sieved and air-dried samples before mixing (wi = 0.5~3%). (a) Dmax = 19 mm(RCA 50% + RCB 50%),
(b) Dmax = 25 mm (RCA 50% + RCB 50%), (c) Dmax = 37.5 mm (well–graded; RCA 50% + RCB 50%),
and (d) Dmax = 37.5 mm (well–graded; RCA 60% + RCB 40%).

Table 1. Basic physical and chemical properties of the RCA and RCB in this study.

Samples Gs
wAD
(%)

wabs (%)
pH (1) EC (1)

(mS/cm)
LA
(%)

Chemical Component (2) (%)

<4.75 mm ≥4.75 mm MgO Al2O3 SiO2 CaO Fe2O3 Others

RCA 2.72 0.8 8.5 5.2 11.2 4.8 34 7.3 6.3 35.4 30.9 1.7 18.4
RCB 2.64 0.3 14 13 10.7 0.0 46 0.9 17.9 68.2 0.6 7.5 4.9

Gs: Specific gravity, wAD: air-dried water content, wabs: water absorption, EC: electrical conductivity, LA: Los
Angeles abrasion. (1) pH was measured by using a 1 mol KCI solution (S:L = 1:2.5), and EC was measured by
using distilled water (S:L = 1:5) for sieved samples <2 mm. (2) The chemical component was measured with a
fundamental parameter method of energy-dispersion X-ray spectrometry (FP-EDX) for sieved samples <2 mm.

2.2. Compaction, CBR, and Saturated Hydraulic Conductivity Tests

In this study, to maintain the performance and longevity of the road pavement struc-
ture, some mechanical properties of the RCA, such as the compaction, California bear-
ing ratio (CBR), saturated hydraulic conductivity, and particle breakage, were analyzed
after the compaction tests were conducted for application as unbound road base and
subbase materials.

2.2.1. Compaction Test

The compaction test was performed by following the modified Proctor compaction
method described in TCVN 12790 [39] and ASTM D 1557 [40]. A cylindrical mold with
a size of (d × h) 150 × 125 mm was used to compact the tested samples with a 4.54 kg
rammer dropped at a height of 457 mm. The samples were compacted with five layers
and 56 blows (compaction energy of 2631 kJ/m3). To determine the relationship between
the initial moisture content (wi, kg/kg in %) and measured dry density (g/cm3) of the
tested samples, the initial moisture contents of tested samples were adjusted, ranging from
air-dried (~0.5–3%) to ~15%, by either air-drying or adding water to the samples from the
field moisture content of ~5–9%.
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2.2.2. CBR Test

The CBR test was performed using the procedure outlined in TCVN 12792 [41] and
AASHTO T193 [42]. Samples were compacted in a (d × h) 150 × 125 mm cylindrical mold
using a 4.54 kg rammer dropped at a height of 457 mm. The initial w of the tested samples
was adjusted to about 8% (approximately corresponding to the maximum dry density in
the compaction curve; see Figure 3). The tested samples were compacted in three layers
by applying 10, 30, and 65 blows per layer. The compacted samples were immersed in
water for 96 h, and their deformation was recorded by using a dial gauge. At the end of the
soaking period, the free water was collected. After that, a load was applied with a standard
50 mm diameter plunger into the sample at the rate of 1.0 mm/min. Reading of the load
was taken at penetrations of less than 12.5 mm depth. In this study, the CBR values of the
tested samples at two different degrees of compaction (K) of 95% and 98% were calculated
for penetrations of 2.5 and 5.0 mm (CBR2.5 and CBR5).
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Figure 2. Particle size distributions (PSDs) for the tested samples before and after compaction
(wi = ~8%: MDD). (a) Dmax = 19 mm, (b) Dmax = 25 mm, (c) Dmax = 37.5 mm (well–graded), and
(d) Dmax = 37. 5mm (poor–graded). Upper and lower boundaries of PSDs for road base and materials
prescribed in TCVN 8857 [37] and TCVN 8859 [36] are also given.

2.2.3. Saturated Hydraulic Conductivity Tests

The saturated hydraulic conductivities (Ks) of the compacted samples were measured
by following ASTM D 5856 [43] and TCVN 12662 [44]. The tested samples were first
kept in a bag at a constant temperature of 20 ◦C for more than 24 h to adjust wi to ~8%.
Then, the samples were compacted in a cylindrical mold with a diameter of 150 mm and
height of 125 mm with the modified Proctor compaction method. The compacted samples
were next immersed in a water tank for more than 24 h to become fully saturated, and
then the Ks values of samples were measured with either the constant head (typically,
Ks > 10−3 cm/s) or falling head method (typically, Ks < 10−4 cm/s).

2.3. Particle Breakage Analysis after the Compaction Test

In this study, the particle breakage index (Bg) of the tested samples was determined by
following Marsal’s method [45]. In this method, the Bg value can be calculated based on
the PSD curves before and after compaction and is given in Equation (1):

Bg = ∑n
i=1 ∆pdi, (1)
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where ∆pdi is the positive difference in material retained on the ith sieve before and after
the compaction test (% by weight). In addition, the retained mass in each size fraction was
used to calculate the percent increment and/or decrement [35].
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Figure 3. Compaction curves for the tested samples. (a) Dmax = 19 mm, (b) Dmax = 25 mm,
(c) Dmax = 37.5 mm (well–graded), and (d) Dmax = 37.5 mm (poor–graded). Zero air void (ZAV)
curves of RCA 100% and RCB 100% are also given.

3. Results and Discussion
3.1. Compaction Properties

The relationships between moisture content (i.e., wi) and dry density (compaction
curves) of the tested samples are illustrated in Figure 3, and the MDD values of the samples
are summarized in Table 2. For all tested samples, the measured dry densities decreased
with an increased mixing proportion of RCB to RCA (f, in %). Among the tested samples,
the 100% RCA sample with Dmax = 25 mm (Figure 3b) and Dmax = 37.5 mm (well– graded)
(Figure 3c) achieved high dry densities, and their MDD values exceeded 2.00 g/cm3. In
the compaction curves, there was no clear peak in dry density through the adjusted wi,
indicating that no OMC existed. Except for the tested samples with Dmax = 37.5 mm (poor–
graded) (Figure 3d), the MDD values of the 100% RCA sample were observed close to the
zero void curves (ZVCs). Similarly to the tested results in this study, the unclear and/or
absent peaks in dry density were also observed in previous studies using RCAs, RCBs, and
recycled crushed glass [33,35]. Several studies, on the other hand, reported a clear peak
(i.e., MDD) in the compaction curves (e.g., [46–48]). This evidence indicated that compacted
dry densities and their dependence on wi were attributed highly to the differences in the
maximum aggregate size, gradation, and aggregate materials. It was noted that the tested
samples with Dmax = 37.5 mm (poor–graded) and with high wi close to the ZVC did not
exist because free water was not retained in the sample, but was drained easily (Figure 3d).
Comparing the tested compaction results from Dmax = 37.5 mm (well–graded) (Figure 3c)



Sustainability 2022, 14, 4854 7 of 21

and Dmax = 37.5 mm (poor–graded) shows that the gradation (i.e., PSDs) greatly affected
the compaction for all samples of RCA, RCB, and their blends.

The MDD values measured for the tested samples were plotted against f and are
shown in Figure 4a. In the figure, data reported by previous studies on the compaction
properties of RCAs mixed with RCBs [14,17,32,49] were also plotted. Overall, it can be
seen that the MDD values in this study decreased gradually with increasing f, and a fitted
function was given:

MDD = 2.0 × 10−5 f 2 − 5.8 × 10−3 f + 2.0 (r2 = 0.82), (2)

Table 2. Measured MDD, Bg, CBR, and Ks values for the tested samples. Bg and CBR at K = 98% and
95%. Bg and CBR values were measured in compacted samples at wi = ~8% (MDD).

Samples Mixing Proportion (%) MDD (g/cm3) Bg CBR at K = 98% (%) CBR at K = 95% (%)

Dmax = 19 mm

RCA 100% 1.87 8.3 132 81
RCA 90% + RCB 10% 1.86 6.4 126 79
RCA 70% + RCB 30% 1.80 12.0 146 78
RCA 50% + RCB 50% 1.74 14.0 145 76
RCA 30% + RCB 70% 1.71 10.5 126 79

RCB 100% 1.64 14.8 185 117

Dmax = 25 mm

RCA 100% 2.03 7.2 299 249
RCA 90% + RCB 10% 1.95 13.4 201 146
RCA 70% + RCB 30% 1.80 16.9 123 79
RCA 50% + RCB 50% 1.76 17.5 108 64
RCA 30% + RCB 70% 1.71 18.1 139 71

RCB 100% 1.66 27.1 198 132

Dmax = 37.5 mm

RCA 100% 2.06 9.3 291 248

(well–graded)

RCA 90% + RCB 10% 1.95 15.2 205 161
RCA 70% + RCB 30% 1.79 19.4 120 84
RCA 50% + RCB 50% 1.71 16.4 112 81
RCA 30% + RCB 70% 1.70 18.7 156 109

RCB 100% 1.59 21.8 117 76

Dmax = 37.5 mm

RCA 100% 1.84 11.2 112 73

(poor–graded)

RCA 80% + RCB 20% 1.80 12.2 117 79
RCA 60% + RCB 40% 1.71 12.8 103 63
RCA 40% + RCB 60% 1.60 16.4 55 36

RCB 100% 1.53 21.0 50 37

The MDD values measured in this study were generally smaller than those reported
in the literature, especially in the range of f > 30%. This can mainly be attributed to the
differences in the material properties of the RCA and RCB used, which are highly dependent
on regional/national characteristics, including the materials for manufacturing concrete
and clay bricks (sand, stones, cement, soils, etc.) and climate conditions, age of the source
(i.e., age of the buildings demolished), and other factors (e.g., differences in crushing to
produce aggregates). For reference, the data reported from other regions/countries (Hong
Kong in Poon and Chan [14], Australia in Cameron et al. [17] and Arulrajah et al. [32],
Egypt in Arisha et al. [49], and the USA in Diagne et al. [50]) are given in Figure 4a.

3.2. CBR Properties

The CBR values measured at K = 98% in the tested samples as a function of f are
shown in Figure 4b with data reported in the literature, and the CBR values measured at
K = 98% and 95% in the samples are summarized in Table 2. For the tested samples with
Dmax = 25 mm and Dmax = 37.5 mm (well–graded), the peak values of CBR at K = 98%
measured were at RCA 100% (f = 0%). Then, the values decreased with increasing f and
became local minima at f = 30–50%. For the tested samples with Dmax = 19 mm, on the
other hand, the measured CBR value at K = 98% became rather constant over all f values
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and ranged between 126 and 146%, except for the value at RCB = 100% (f = 100%) of 185%.
Among the samples tested in this study, the CBR values at K = 98% for Dmax = 37.5 mm
(poor–graded) with f > 60% became lower than 100%, which corresponds to the technical
requirements (subbase layer (A1) and base layer (A2 and B2) in TCVN 8859 [36] and for all
adaptations except the base layer for A2 in TCVN 8857 [37], as shown in Table A1). This
indicated that the maximum mixing of RCB to RCA was maintained at f ≤ 40% based on
the technical requirements in Vietnam. Moreover, it is recommended that the maximum
proportion of RCB to RCA should be maintained at f ≤ 30% for practical applications, such
as in roadbed materials, in consideration of safety because of the inherently heterogeneous
quality of RCBs generated from demolished sites.
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Comparing the CBR values measured at K = 98% to the values measured at 95% (the
corrected CBR values) in Table 2, it can be seen that the CBR value at K = 98% was generally
1.5 times higher than the corrected CBR value. Among the corrected CBR values, the 100%
RCB sample (f = 100%) with Dmax = 37.5 mm (well graded) (corresponding to RM-40/base
in Japan), the 40% RCA + 60% RCB sample (f = 60%), and the 100% RCB sample (f = 100%)
of Dmax = 37.5 mm (poor–graded; corresponding to RC-40 (subbase) in Japan) did not
satisfy the technical requirement for the base in JRA [38] (see Table A1). These results are
well in accordance with the tested results examined based on the technical requirements
in Vietnam, and they can be rephrased to show that the maximum mixing of RCB to RCA
should be maintained at f ≤ 30% when applying blends of RCA and RCB to unbound road
base and subbase materials. The allowable limit of RCB mixed with RCA, which is f ≤ 30%
(on the safe side) in this study, moreover, matches well with the allowable limits suggested
in previous studies [14,15,17].

In addition, the CBR value measured at K = 98% in this study was compared to the
data on RCAs mixed with RCBs reported in the previous literature (Figure 4b). It is likely
that the CBR values depend on Dmax, and samples with lower Dmax generally gave higher
CBR values. Most of the values with Dmax = 20 mm reported by Arulrajah et al. [32]
exceeded 100% (f < 50%) and became similar to the data of Dmax = 19 mm in this study.
The CBR values with Dmax = 37.5 mm from Arisha et al. [49] exceeded 100% and became
similar to the data of Dmax = 37.5 mm (well–graded) in this study within 30 ≤ f ≤ 60%. The
CBR values with Dmax = 40 mm from Poon and Chan [14], however, did not exceed 100%
(f < 50%) and became lower than the data of Dmax = 37.5 mm (poor–graded) in this study.

3.3. Hydraulic Properties

Hydraulic properties are necessary for understanding the water balance and drainage
in road base layers. Among the hydraulic properties, the saturated hydraulic conductivity
(Ks) is the most important parameter in estimating the movement of water in the layers. The
Ks values of the tested samples when compacted at three different moisture conditions were
measured as functions of f and total porosity (φ) and are shown in Figure 5. It was noted
that the tested samples were compacted at three different initial moisture conditions—dry
(wi = ~0.5–3%), wi = ~8% (close to MDD), and wet (wi = ~11–16%)—and the φ values were
calculated by using φ = 1 − [Gs/(packed dry density)]. The Ks values of Dmax = 37.5 mm
(poor–graded) obtained were the highest among the tested samples and ranged in the
order of 10−2 cm/s, irrespective of the differences in f and φ. This can be understood to
indicate that the Ks values of Dmax = 37.5 mm (poor–graded) were mainly controlled by
the pathway of connected macropores formed in the tested samples, and the formation
of connected macropores was not affected by the aggregate materials (i.e., the RCA and
RCB) and wi in the compaction process. The Ks values of the other tested samples, on the
other hand, varied depending on Dmax, f, and wi. For the tested samples compacted in a
dry condition (Figure 5a,b), the Ks values gradually increased with increasing f, along with
the increase in φ, and reached the order of 10−4 cm/s. The Ks when compacted at wi = ~8%
(close to MDD) (Figure 5c,d) gave an almost constant values of ~10−3 cm/s irrespective
of f and φ. The Ks compacted in the wet condition (Figure 5e,f) varied greatly depending
on f, and those values increased from the order of 10−6 to ~10−3 cm/s. In particular, a
significant jump in Ks after f = 30% can be observed in accordance with the increase in φ.
The evidence observed from the results for Ks in this study, therefore, suggests that many
factors, including the Dmax and gradation (PSD) of the aggregates, mixing proportions of
the RCA and RCB, and initial moisture condition in the compaction process, greatly affect
the formation of water pathways and pore network structures, implying that further studies
are needed to characterize pore network structures (e.g., [51,52]) in order to understand the
hydraulic properties of unbound base and subbase materials.
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3.4. Particle Breakage Characteristics for Compacted Samples
3.4.1. Marsal’s Breakage Index

The values of Marsal’s breakage index (Bg) of the tested compacted samples, which
were calculated with Equation (1), are summarized in Table 2 and shown as a function of
f in Figure 6. For all tested samples, the Bg values generally increased with increasing f,
indicating that samples with a high percentage of RCB became more breakable in the
compaction process. The Bg values measured at f = 0% (RC 100%) and f = 100% (RCB 100%)
were close to previously reported values [33,35]. The Bg values of Dmax = 19 mm gave
smaller and less breakable values than those of the other tested samples, especially in
the range of f > 50%. This can be explained by the finding that the high amount of
RCB with low Dmax prevented the breakage of aggregates in the compaction process
(i.e., a cushioning effect [33,35]). It is interesting that the Bg values of Dmax = 37.5 mm
(well–graded) and Dmax = 37.5 mm (poor–graded) dissociated in the range of 10 < f ≤ 50%;
however, those values became closer and increased with increasing f in the range of f > 50%.
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This could have been induced by the difference in the rearrangement of aggregates in the
compaction process between the samples with different aggregate gradations, i.e., the
greater rearrangement of aggregates for the poor–graded aggregates reduced (softened)
the overall particle breakage compared to the well–graded aggregates in the compaction
process in conditions of low RCB.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 24 
 

range of f > 50%. This can be explained by the finding that the high amount of RCB with 
low Dmax prevented the breakage of aggregates in the compaction process (i.e., a cushion-
ing effect [33,35]). It is interesting that the Bg values of Dmax = 37.5 mm (well–graded) and 
Dmax = 37.5 mm (poor–graded) dissociated in the range of 10 < f ≤ 50%; however, those 
values became closer and increased with increasing f in the range of f > 50%. This could 
have been induced by the difference in the rearrangement of aggregates in the compaction 
process between the samples with different aggregate gradations, i.e., the greater rear-
rangement of aggregates for the poor–graded aggregates reduced (softened) the overall 
particle breakage compared to the well–graded aggregates in the compaction process in 
conditions of low RCB. 

 
Figure 6. Calculated Bg values as a function of the mixing proportion (f in %) of RCB to RCA. 

3.4.2. Particle Breakage at Each Size Fraction in the Compaction Process 
Because the Bg values represent the overall breakage characteristics based on the 

PSDs before and after compaction, they cannot give information on the particle breakage 
at each size fraction. Thus, to examine the details of the particle breakage characteristics, 
the percent increment and/or decrement in each particle fraction of the tested samples in 
three different initial moisture conditions—dry (wi =~0.5–3%), wi = ~8% (close to MDD), 
and wet (wi =11~16%)—was calculated and is shown in Figure 7. 

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

B g

Mixing proportion of RCB to RCA, f (%)

Dmax=19mm                   Dmax=25mm
Dmax=37.5mm (well-graded)                   Dmax=37.5mm (poor-graded)

 Thai et al. (2021; Dmax=37.5mm) [30]           Iqbal et al. (2020; Dmax=30mm) [33]

Figure 6. Calculated Bg values as a function of the mixing proportion (f in %) of RCB to RCA.

3.4.2. Particle Breakage at Each Size Fraction in the Compaction Process

Because the Bg values represent the overall breakage characteristics based on the PSDs
before and after compaction, they cannot give information on the particle breakage at
each size fraction. Thus, to examine the details of the particle breakage characteristics, the
percent increment and/or decrement in each particle fraction of the tested samples in three
different initial moisture conditions—dry (wi = ~0.5–3%), wi = ~8% (close to MDD), and
wet (wi = 11~16%)—was calculated and is shown in Figure 7.

For the tested samples with Dmax = 19 mm, the measured Bg became smaller than
those of the other samples (Figure 6), but it could be found that the percent decrement in
9.5–19 mm particles was relatively large and ranged from −3% to −8% for RCA 100% and
from −12% to −16% for RCB 100% (Figure 7a–c). The percent decrement in 9.5–19 mm
particles resulted in a percent increment (mostly <5%) in the particles smaller than 9.5 mm.
For the tested samples with Dmax = 25 mm, the largest values of a percent decrement of
−7 to −15% were observed in the 25–37.5 mm fraction for all tested samples (Figure 7d–f).
For the percent increment, on the other hand, it could be found that the dependence on wi
and the compacted samples at dry and wi = ~8% (close to MDD) water conditions gave
high percent increments, with >15% observed for the 0.425–2.36 mm fraction for RCB 100%
(Figure 7a,e).

For the tested samples with Dmax = 37.5 mm, a big difference was observed in the
graphs of percent increment/decrement between the well–graded (Figure 7g–i) and poor–
graded (Figure 7j–l) samples. For the well–graded samples, high percent decrements were
found for the 19–25 and 25–37.5 mm fractions, and high percent increments were found
with >5%, except for RCA 100%. In the poor–graded samples, on the other hand, the percent
decrements in the coarse fractions of >19 mm ranged mostly in <5%, and a relatively high
percent increment was observed in the 9.5–19 mm fraction. As shown in Figure 6, the
Bg values for the tested samples with Dmax = 37.5 mm that were well–graded and poor–
graded became similar, especially in the range of f > 50%. This evidence suggests that the
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percent increment/decrement is effective in understanding the breakage characteristics of
aggregates in the compaction process.
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Figure 7. Percent increment/decrement of each retained fraction (dry-mass basis) before and af-
ter compaction of the tested samples with three different water conditions. (a–c) Dmax = 19 mm,
(d–f) Dmax = 25 mm, (g–i) Dmax = 37.5 mm (well–graded), and (j–l) Dmax = 37.5 mm (poor–graded).

3.4.3. Percentages of RCA and RCB Retained at Each Fraction after Compaction

Finally, the percentages of RCA and RCB retained at each fraction for compacted
samples with Dmax = 25 mm with wi = ~8% (close to MDD) were measured by using a
combination of hand sieving and indirect estimation. The retained fractions with≥2.36 mm
were separable into concrete aggregates (RCAs) and clay brick aggregates (RCBs) by eye
(i.e., hand sieving), as shown in Figure 8. The mixtures with fractions that were <2.36 mm,
on the other hand, were difficult to separate by hand sieving. In this study, therefore, a
new method of estimating the percentages of RCA and RCB is proposed considering the
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properties of concrete and clay bricks: (i) Cementitious materials, including concrete, have
a high mass loss due to being rich in hydrating water (thermal decomposition) and rich in
Ca, and (ii) clay brick is low in mass and thermal decomposition due to its manufacturing
process (burning) and is rich in Si and Al due to its origin from soil. The mass loss due
to thermal decomposition (TG in %) was measured with a thermogravimetry/differential
thermal analyzer (TG/DTA; TG/DTA6200, Hitachi High-Tech Corp., Tokyo, Japan). The
elemental composition was measured through scanning electron microscopy with energy-
dispersive X-ray spectroscopy (SEM-EDS; TM4000Plus, Hitachi High-Tech Corp., Tokyo,
Japan, and AZtecOneGO, Oxford Instruments, Abington, UK). The measured atomic
percentages of Ca, Si, and Al from the EDS analysis were used to determine the ratio of
Ca/(Si + Al). Examples of the SEM and EDS images used to determine Ca/(Si + Al) are
shown in Figure 9. It is noted that the tested samples were pre-heated at 400 ◦C for one
hour to remove organic residues before the TG/DTA and SEM-EDS analyses.
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In order to estimate the unknown percentages of RCA and RCB retained in the fine
fractions of tested samples at <0.075, 0.075–0.425, and 0.425–2.36 mm, independent samples
of RCA and RCB grains that were <2 mm were first mixed in three proportions: RC100%,
RC 50% + RCB 50%, and RCB 100% (N = 10 for each sample). The measured TG (in %),
Ca/(Si + Al), and their relationship are shown in Figure 10. As mentioned above, high
TG and Ca/(Si + Al) for RCA 100% and low TG and Ca/(Si + Al) for RCB 100% were
found, and a good linear relationship was obtained (Figure 10c). Then, a multi-regression
analysis was carried out to correlate the mixing proportion (f in %) of the measured TG
and Ca/(Si + Al), and the multiple regression equation can be given as follows:

f = −8.7 × TG + 29.2 {Ca/(Si + Al)} + 115 (r2 = 0.99), (3)
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RCA 50% + RCB 50% with a fraction of <2 mm (sample number, N is 10). Values of the average
(AVG) and standard error (S.E.) are given. (c) Relationship between Ca/(Si + Al) and TG.
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Thus, Equation (3) was used to estimate f (i.e., the percentages of RCA and RCB) of
the unknown samples retained in the fine fractions.

The test results of the percentages of RCA and RCB retained at each fraction of
the compacted samples (dry-mass basis) measured by using the proposed combination
method are summarized in Table 3. In the table, not only the mass percentage of RCA and
RCB, but also the mass-change percentage before and after compaction, is indicated using
symbols, i.e., “↑” shows that the mass increment percentage is ≥10%, “↓” shows that the
mass decrement percentage is ≥10%, and “→” shows that the mass change percentage is
within 10%.

Table 3. Percentages of RCA and RCB retained at each fraction after compaction (dry-mass basis).
“↑” shows that the change in the percentage of RCA/RCB after compaction increased by ≥10%. “↓”
shows that the change in the percentage of RCA/RCB after compaction decreased by ≥10%. “→”
shows that change in the percentage of RCA/RCB after compaction ranged within 10%.

Sample: Dmax = 25 mm (Compacted at wi = ~8%: MDD)

Method Hand Sieving Estimated by a Multi Regression Analysis (1)

Fraction (mm) 25–37.5 19–25 9.5–19 4.75–9.5 2.36–4.75 0.425–2.36 0.075–0.425 <0.075

RCA 90% + RCB 10%
RCA 100 ↑ 49 ↓ 68 ↓ 37 ↓ 45 ↓ 56 ↓ 70 ↓ 72 ↓
RCB 0 ↓ 51 ↑ 32 ↑ 63 ↑ 55 ↑ 44 ↑ 30 ↑ 28 ↑

RCA 70% + RCB 30%
RCA 100 ↑ 82 ↑ 74→ 74→ 71→ 24 ↓ 28 ↓ 10 ↓
RCB 0 ↓ 18 ↓ 26→ 26→ 29→ 76 ↑ 72 ↑ 90 ↑

RCA 50% + RCB 50%
RCA 51→ 48→ 54→ 50→ 46→ 23 ↓ 26 ↓ 23 ↓
RCB 49→ 52→ 46→ 50→ 54→ 77 ↑ 74 ↑ 77 ↑

RCA 30% + RCB 70%
RCA 49 ↑ 35→ 37→ 37→ 40 ↑ 18 ↓ 12 ↓ 28→
RCB 51 ↓ 65→ 63→ 63→ 60 ↓ 82 ↑ 88 ↑ 72→

(1) f = −8.7 × TG + 29.2 × {Ca/(Si + Al)} + 115 (Equation (3); f : mixing proportion of RCB to RCA in %; TG in %).

For the tested samples with high-RCA mixtures (RCA 90% + RCB 10%, RCA70% + RCB 30%),
it was found that coarse RCB of 25–37.5 mm became zero (because all were crushed in
the compaction process), and the percentage of RCB in fine fractions under 2.36 mm in-
creased. This clearly indicated that the easily breakable coarse aggregates of clay brick
were fully crushed to fines under the compaction process. For the tested sample of
RCA 50% + RCB 50%, on the other hand, no significant percentage change was found
for either the RCA or RCB with the fractions from 37.5 to 2.36 mm, and a high percent
increment in RCB under 2.36 mm was observed (i.e., the original mixing proportion was
maintained in the compaction process for fractions >2.36 mm). This indicates that the RCB
fractions of >2.36 mm were uniformly crushed, resulting in an increment in fine fractions
under 2.36 mm. For the tested sample with high RCB (RCA 30% + RCB 70%), the percent
decrement in RCB mainly occurred in the two fractions of 25–37.5 and 2.36–4.75 mm, with
a high percent increment in the two fractions of 0.425–2.36 and 0.075–0.425 mm. The test
data in this study are still limited, and further studies are needed; however, the proposed
method of quantifying the percent increment/decrement in RCA and RCB in the com-
paction process would contribute to understanding the mechanism of particle breakage in
mixtures of different breakable aggregates.

4. Conclusions

A series of compaction, CBR, and saturated hydraulic conductivity tests of well–
graded mixtures of RCB and RCA with Dmax = 19, 25, and 37.5 mm and a poor–graded
mixture of RCA and RCB with Dmax = 37.5 mm were carried out in the laboratory, in
which the mixing proportion of RCB to RCA (f in %) ranged from 0 to 100%. The particle
breakage characteristics for the compacted RCA mixed with RCB at different initial moisture
contents were analyzed based on the percent increment and/or decrement before and after
compaction in this study. The major findings and conclusions in this study are as follows.

The MDD values gradually decreased with increasing f ; however, there was no clear
peak in dry density through the adjusted wi, indicating that no OMC existed, except for the
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tested samples with Dmax = 37.5 mm. In addition, the measured MDD values were generally
smaller than those in the literature, especially in the range of f > 30%. In addition, the PSDs
significantly affected the compaction of all samples of the RCA, RCB, and their blends.

The CBR results of the tested samples at K = 98 and 95% suggest that the maximum
mixing proportion of RCB to RCA should be maintained at f ≤ 30% when applying mixtures
of RCA and RCB to unbound road base and subbase materials, especially in Vietnam. The
hydraulic test results showed that the saturated hydraulic conductivity was dependent on
the Dmax and gradation of aggregates, mixing proportions of the RCA and RCB, and initial
moisture content in the compaction process.

The characteristics of particle breakage were carefully examined by measuring the
percent increment and/or decrement before and after compaction. It was suggested
that determining the percent increment/decrement is effective for understanding the
mechanism of the breakage characteristics of aggregates in the compaction process. In
addition, an equation that enabled the estimation of the mixing proportions of the RCA
and RCB retained in the fine fraction (<2.36 mm) was proposed based on a multi-regression
analysis using measured the TG and Ca/(Si + Al). The proposed equation would contribute
to understanding and characterizing the mechanism of particle breakage in mixtures of
different breakable aggregates.
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Appendix A

Table A1. Materials and technical specifications of aggregates for road base and subbase layers in Vietnam and comparisons to those in Japan.

TCVN 8859: 2011 [36] TCVN 8857: 2011 [37] JIS A
5001:1995 [53] JRA: 2010 [38]

Country Vietnam Japan

1. Materials

Labels Type I Type II Type A Type B Type C Type D C-40 RC-40 RM-40

Materials
Crushed stone

(natural
aggregates)

(1) Crushed stone or gravel (100%)
Crushed stone mixed with
non-crushed natural aggregates
(<50% content)

Natural aggregates
(minimized crushing processing)

Crushed
stone

(natural
aggregates)

Recycled
aggregates
(recycled

materials from
waste concrete

and other
materials)

Recycled aggregates
(recycled materials from

waste concrete and
other materials)

2. Gradation of aggregates

Nominal
aperture size of

sieve (mm)

Dmax = 37.5 mm (1)

(% passing)
Dmax = 25 mm
(2) (% passing)

Dmax = 19 mm (3)

(% passing)
Dmax ≤ 50 mm

(% passing)
Dmax ≤ 25 mm

(% passing)
Dmax = 40 mm

(% passing)

53 100 100 100
50 100 100 100 - - -

37.5 95–100 100 - - 95–100 95–100 95–100
26.5 - - - - - - -
25 - 79–90 100 - 75–95 100 100 - - 60–90
19 58–78 67–83 90–100 - - - - 50–80 50–80 -
9.5 39–59 49–64 58–73 30–65 40–75 50–85 60–100 - - -

4.75 24–39 34–54 39–59 25–55 30–60 35–65 50–85 15–40 15–40 30–65
2.36 15–30 25–40 30–45 - - - - 5–25 5–25 20–50
2.0 - - - 15–40 20–45 25–50 40–70 - - -

0.425 7–19 12–24 13–27 8–20 15–30 15–30 25–45 - - 10–30
0.075 2–12 2–12 2–12 2–8 5–20 5–15 5–20 - - 2–10

TCVN 8859: 2011 [36] TCVN 8857: 2011 [37] JIS A
5001:1995 [53] JRA: 2010 [38]

Country Vietnam Japan

Labels - C-40 RC-40 RM-40

3. Adaptations and technical specifications

Adaptations (5) Base layer (A1, A2) Subbase layer (A1,
Base layer (A2, B2)

(1) Subbase
layer (A1:
Type A,

B, C)

(2) Base
layer (A2:
Type A,

B, C)

(3) Subbase
layer (A2:
Type A, B,

C, D)

(4) Base and
subbase

layers (B1,
B2: Type A,

B, C, D)

(5) Surface
layer (B1,

B2: Type A,
B, C, D)

Testing
method

Subbase layer
(lower base)

Subbase layer
(lower base)

Base layer
(upper base)

Testing
method
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Table A1. Cont.

LL (%) ≤25 ≤35 ≤35 ≤25 ≤35 ≤35 ≤35 [54] - - - -
PI ≤6 ≤6 ≤6 ≤6 ≤6 ≤12 9–12 [54] Non-plastic ≤6 ≤4 [55]

PP index (6) ≤45 ≤60 - - - - - - - - - -
CBR at K = 98%

(%) ≥100 - ≥30 ≥80 ≥30 ≥30 ≥30 [41] - - - -

Corrected CBR
(%) (7) - - - - - - - - - ≥20 (30) (4) ≥80 (90) (4) [56]

LA (%) ≤35 ≤40 ≤35 ≤35 ≤50 ≤50 ≤50 [57] ≤40 ≤50 ≤50 [58]
Rate of sieve

passing (8) - - ≤0.67 ≤0.67 ≤0.67 - ≤0.67 [59] - - - -

Elongation and
flakiness index

(%)
≤18 ≤20 - - - - - [60] - - - -

K (%) ≥98 ≥98 - - - - - [39] - - - -
Impurities (%) - - - - - - - - ≤3 ≤3 ≤3 [61]
Environmental

safety - - - - - - - - -
Satisfy environmental

standards (9) MOE (10)

LL: Liquid limit, PI: plastic index, CBR: California bearing ratio, LA: Los Angeles abrasion, K: compaction index (=degree of compaction). (1) Recommended for subbase: Type I and II;
(2) recommended for base: Type I and II; (3) recommended for warping compensation and strengthening in old pavement structures when upgrading and renovating. (4) Values in
parentheses: in case of use of recycled asphalt–concrete aggregates. (5) A1: Surface layer is made from hot-mix asphalt of class I [62]. A2: Surface layer is made from hot-mix asphalt of
class II [62]. B1: Surface layer is made from crushed stone (macadam) with sand placing. B2: Surface layer is made from improved soil, local soil, and industrial refuse stabilized with a
binder. (6) PP index = PI × (passing % of 0.075 mm); (7) CBR at K = 95%. (8) Rate of sieve passing = [(% of passing of 0.075 mm)/(% passing of 0.425 mm)]. (9) Satisfies environmental
standards of Soil Contamination Countermeasure Law [63]. (10) Ministry of Environment (MOE) notification No. 46 [64].
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