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Abstract: The threat posed by poisonous weeds to grassland ecosystems may be exacerbated by
climate change mainly driven by carbon dioxide (CO2) emissions. Achnatherum inebrians is a common
and poisonous grassland weed that is seriously endangering the sustainable development of prairie
animal husbandry in Western China. Understanding the influence of future climate change under
different CO2 emission scenarios on the potential distributions of A. inebrians is critical for planning
agricultural strategies to manage the continued invasion. An ecological niche model (ENM) was
developed using Maxent to predict the potential distribution of A. inebrians under three different CO2

emission scenarios. Occurrence records of A. inebrians were selected utilizing the nearest neighbor
method. Six environmental variables, which were identified through principal component analysis,
correlation analysis and their contribution rates, were used to perform the ENM. At the same time,
considering the uncertainties of predicting future climates, four global circulation models were used
for the Maxent projections with average results calculated. Our results demonstrate differential
influences of various CO2 emission scenarios on the potential distributions of A. inebrians. Before
2050, high CO2 emission scenarios resulted in a wider potential distribution of A. inebrians, when
compared to low CO2 emission scenarios. However, after 2050, the low CO2 emission scenarios were
more conducive to an expanded potential distribution. In addition, after 2050, high CO2 emission
scenarios maintain the geographical distribution centroids of A. inebrians in lower latitudes, while
low CO2 emission scenarios result in distribution centroids rising to higher latitudes. Further, low
CO2 emission scenarios resulted in the average potential distribution elevation dropping lower than
in high CO2 emission scenarios.

Keywords: ecological niche model; potential distributions; invasive weeds; geographical distribu-
tion centroids

1. Introduction

Increasing greenhouse gas concentrations are linked to rising global mean sea surface
temperatures, alongside climate changes in precipitation patterns, storm severity, and sea
level [1–3]. The majority of anthropogenic greenhouse gas (GHG) emissions are carbon diox-
ide (CO2) released from burning fossil fuels, resulting in the steady increase in atmospheric
concentrations of CO2 since the onset of the industrial revolution [4]. However, the concen-
tration of CO2 in the atmosphere is regulated by many natural processes [5], and therefore
the prediction of future climates is challenging. To address this uncertainty, the Intergov-
ernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) introduced
representative concentration pathways (RCPs), including RCP 2.6, RCP 4.5 and RCP 8.5
that depict climate scenarios in different greenhouse gas emissions [6]. RCP 2.6 represents
a future climate with low CO2 emissions, whereby global annual GHG emissions peak
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between 2010 and 2020, after which emissions fall significantly resulting in a 450 ppm
CO2 concentration in 2100, and global average temperatures have increased by 0.2–1.8 ◦C.
RCP 4.5 is a medium CO2 emission scenario, with a peak of global annual GHG emissions
around 2040, followed by a gradual decline. In RCP 4.5, CO2 concentrations are projected
to reach 650 ppm and global average temperatures will increase 1.0–2.6 ◦C by 2100. RCP 8.5
represents high CO2 emissions, with CO2 emissions continuing to rise throughout the 21st
century. CO2 concentrations will increase to 1350 ppm and global average temperatures
will increase 2.6–4.8 ◦C by 2100 [7–9].

Climate change induced by CO2 emissions significantly influences the geographical
distributions of plant species worldwide [10]. Changing climates can result in habitat
expansion, contraction, and even shifts in plant communities [11–15]. Plant responses
to these changing atmospheric conditions are species specific. When 12 European forest
tree species were modelled under the future climate (RCP 2.6, 4.6, and 8.5), they were
divided into three groups: winners, losers, and alien species. Assuming limited migration,
most of these species would face significant reductions in suitable habitat areas as the
CO2 emission scenario intensifies [16]. Wróblewska & Mirski (2018) also identified that
the geographic range of circumboreal plants will likely decrease in the future, with the
extent of the loss directly correlated to CO2 emission scenarios severity [17]. Given the low
phenotypic plasticity of weeds, their abundances are also projected to decline concurrent
with increasing CO2 concentrations [18]. However, Patterson (1995) found that higher CO2
concentrations can promote photosynthesis and growth in C3 weeds, and improve the
water use efficiency in both C3 and C4 weeds [19]. Increasing CO2 emissions can positively
influence the distribution and demographics of weeds, and even increase their resistance
to herbicides [20–22]. Furthermore, higher levels of atmospheric CO2 could stimulate the
growth of some weed species, inducing the production of more tubers and rhizomes in
perennial weeds [23–25].

Achnatherum inebrians (drunken horse grass), is a perennial herb and a typical grassland
poisonous weed. After feeding on it, livestock will experience intoxication such as increased
heart rate and staggering gait, and even death [26]. As a result of its increased resistance
to environmental extremes, it is widely dispersed and highly adaptable, especially in
degraded grasslands [27,28]. Currently, A. inebrians is distributed throughout the arid,
semiarid, alpine, and subalpine grasslands in Inner Mongolia, Ningxia, Gansu, Xinjiang,
Qinghai, and Sichuan of China [29]. Recently the distribution and abundance of A. inebrians
have been continually increasing, seriously jeopardizing the sustainable development of
prairie animal husbandry in Western China [30,31]. Therefore, it is vital for risk estimation
and the development of long-term strategies to investigate the potential distribution of
A. inebrians under future climate change through different CO2 emission scenarios.

Ecological niche models (ENMs) have been frequently used to identify the potential
distribution of species following climate change [32–37]. Based on the environmental vari-
ables associated with species’ occurrence records, ENMs seek to characterize the suitable
species-specific environmental conditions, and then identify where they are spatially dis-
tributed [38,39]. One of the most popular ENM techniques, the maximum entropy approach
(Maxent), estimates species distribution by identifying the probability distribution based
on the maximum entropy principle [40,41]. Maxent requires only present records of the
species and even functions with small sample sizes by using samples of the background
environment [42–44]. However, occurrence data for most species have traditionally been
recorded without sufficient supporting documentary information, and can even include
errors and bias in geography, resulting in spatial autocorrelation and environmental bias of
model simulation [45]. In addition, given the uncertainties of future climatic conditions, it
is still challenging to predict the potential distribution of species [46,47]. Future climate
conditions are projected from global climate models (GCMs) for different representative
concentration pathways (RCPs). Previous studies have combined the parameters of multi-
ple GCMs into ensembles of the GCM projections, in order to reduce the climate uncertainty
and produce a more robust and reliable projection [48]. However, this results in a loss of the
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spatial patterns produced by each GCMs [10,49]. Differences among various GCMs could
be important for understanding and predicting the potential distributions of A. inebrians,
and thereby developing control strategies.

This study simulated the response of the potential distribution of A. inebrians across
China to different CO2 emission scenarios, in order to better control its invasion through
the following approach: (1) key environmental variables highly correlated with the distri-
bution of A. inebrians were identified; (2) a Maxent model was developed for both present
and 12 climate change scenarios (4 GCMs×3 RCPs); (3) average results were calculated
under three CO2 emission scenarios; (4) analysis of the changes in potential distribution
areas of A. inebrians after quantification under three CO2 emission scenarios; and (5) the
direction of the geographical distribution centroid shifts and average elevation of the
potential distribution areas of A. inebrians responding to three CO2 emission scenarios
were estimated.

2. Materials and Methods
2.1. Species Occurrence Data

In total, 164 non-overlapping occurrence records of A. inebrians in China were collected
from the Chinese Virtual Herbarium (http://www.cvh.org.cn/; accessed on 20 January
2019) and Global Biodiversity Information Facility (GBIF Occurrence Download https://
doi.org/10.15468/dl.r4t29p; accessed on 20 January 2019). To reduce spatial autocorrelation
and avoid over-fitting of our model at intensely sampled locations [50], points that were at
10 km apart from one another and from among the original occurrence data points were
chosen, which resulted in 137 occurrences for A. inebrians.

2.2. Environmental Variables

To construct the ecological niche model (ENM), 19 bioclimatic variables (for the current
climate, i.e., the average for the years 1960–1990) of 137 species’ occurrence records were
first extracted from the corresponding layers using ArcGIS 10. Principal component analysis
(PCA) identified important variables where the component matrix was greater than 0.8 in
the composition, explaining greater than 80% of the total variability. Finally, bioclimatic
variables with weak correlations (r < 0.8) were retained through correlation analysis. The
final bioclimatic variables were Bio02, Bio03, Bio06, Bio10, Bio15, Bio16, and Bio19 (Table 1).

Table 1. Environmental variables used for ENM to predict the potential future distribution of
A. inebrians.

Bioclimatic
Variables Meaning of Variables

Bio02 Mean Diurnal Range (Mean of monthly (max temp—min temp))
Bio03 Isothermality (Mean Diurnal Range/Temperature Annual Range) (×100)
Bio06 Min Temperature of Coldest Month
Bio10 Mean Temperature of Warmest Quarter
Bio15 Precipitation Seasonality (Coefficient of Variation)
Bio16 Precipitation of Wettest Quarter
Bio19 Precipitation of Coldest Quarter

For the uncertainty of future CO2 emission scenarios, we have adopted three emis-
sion scenarios: RCP 2.6, 4.5, and 8.5. For the simulation of future climate under different
CO2 emission scenarios, we considered four GCMs: GISS-E2-R (GS), HadGEM2-AO (HD),
MIROC5 (MC), and NorESM1-M (NO; detail in Table 2). Based on the dynamic characteris-
tics of the three CO2 emission scenarios, the influences of two future time periods, 2050
(average for 2041–2060) and 2070 (average for 2061–2080), on the potential distributions of
A. inebrians were analyzed. All environmental data were downloaded from the WorldClim
Dataset (http://www.worldclim.com/) with 2.5 arc-min spatial resolution.

http://www.cvh.org.cn/
https://doi.org/10.15468/dl.r4t29p
https://doi.org/10.15468/dl.r4t29p
http://www.worldclim.com/
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Table 2. Four GCMs of future climate used to predict the potential future distribution of A. inebrians.

GCM Code Institution

GISS-E2-R GS NASA Goddard Institute for Space Studies

HadGEM2-AO HD National Institute of Meteorological Research/Korea
Meteorological Administration

MIROC5 MC

Atmosphere and Ocean Research Institute (The
University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

NorESM1-M NO Norwegian Climate Centre

2.3. Ecological Niche Model

ENM of A. inebrians were generated using Maxent 3.3.3k [40]. Auto features (linear,
quadratic, product, and hinge) were set due to our small sample sizes. The regulariza-
tion parameter was set to 1, and 6000 background points were extracted randomly from
the whole territory of China. Model validation was performed using cross-validation
procedures with 20 independent replicates. Relative contributions of the environmental
variables to the Maxent model were considered in choosing the environmental variables
again. After removing the variables with the lowest contributions, the final results were ob-
tained through cross-validation procedures with 20 replicates again. Model performances
were evaluated by calculating the area under the curve (AUC) of the receiver operating
characteristic plot. AUC values range between 0.5 and 1.0, where a value of 0.5 means
model discrimination power is not better than the random and above 0.5 indicates a perfor-
mance better than the random. The best-performing model for the current scenario was
used to project the potential distributions of A. inebrians under climate change scenarios.
Additionally, the average results are the mean of the potential distributions of A. inebrians
under 4 GCMs.

The method of the highest sum of sensitivity (true positive rate) and specificity (true
negative rate) was used to calculate the threshold (TH) between predicted absenteeism
and presence. The potential distributions were manually classified into no adaptive region
(<TH), adaptive region (TH-0.7), and high adaptive region (>0.7) by ArcGIS 10. Further-
more, the threshold was used to convert the potential distribution probability into binary,
representing the presence and absence of A. inebrians. Changes in the distribution ar-
eas of 2050 were compared to current distribution, and those of 2070 were compared to
2050, respectively.

2.4. Data Analysis

It was assumed that the study area was a homogeneous plane and the point at which
the species is distributed on the plane where the moment reaches equilibrium is the geo-
graphical distribution centroid of the species. The trajectory of the geographical distribution
centroid of a species over a period of time can reflect the general trend of the distribution
of the species. The study area was two-dimensionally meshed according to the resolution
of 2.5′, i.e., 5 m × 5 m. Then, the geographical distribution centroid was calculated in
accordance with the following formula:

N =

m
∑

j=1
Ni × Pi,j

n
∑

i=1

m
∑

j=1
Pi,j

(1)

E =

n
∑

i=1
Pi,j × Ej

n
∑

i=1

m
∑

j=1
Pi,j

(2)
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where Pi,j is the potential distribution probability of A. inebrians in the area (i, j), Ni and Ej
are the latitude and longitude of the area (i, j), and N and E are the latitude and longitude
of the geographical distribution centroid.

The average elevation of the potential distributions was calculated as follows:

Eavg =

n
∑

i=1
Ei,j × Pi,j

n
∑

i=1

m
∑

j=1
Pi,j

(3)

where Ei,j is the elevation of the area (i, j), and Eavg is the average elevation of the
potential distributions.

3. Results
3.1. Model Performance and Importance of Predictor Variables

The contributions of seven environmental variables: Bio02, Bio03, Bio06, Bio10, Bio15
Bio16, and Bio19 were 1%, 9.5%, 15.1%, 17.4%, 14.5%, 16.9%, and 25.6%, respectively. By
removing Bio02, the Maxent model of A. inebrians had a higher predictive power, such
that the AUC = 0.91 ± 0.05 (mean ± SD) was increased by 0.01. When re-analyzed the
contributions of the six environmental variables of Bio03, Bio06, Bio10, Bio15 Bio16, and
Bio19 were 5.5%, 15.1%, 16.2%, 13.5%, 16.8%, and 25.9%.

The potential distribution probability of suitable habitats for A. inebrians can be main-
tained at a high level, the range of which varies slightly between 0.53 and 0.59, when the
isothermality is between 30 and 45 (Figure 1a). In addition, the potential distribution prob-
ability exhibits a hump curve with increased temperature and precipitation (Figure 1b–f).
When the minimum temperature of the coldest month equaled 12.05 ◦C the potential distri-
bution probability reached its peak value (Figure 1b). The response curves also show that
the suitable precipitation seasonality range is between 90.9 and 98.1, and that the potential
distribution probability of A. inebrians exceeds 0.6 (Figure 1d). Similarly, the potential
distribution probability rapidly reaches 0.6 when the precipitation of the wettest quarter
increases to 218 mm, then rapidly decreases once the precipitation of the wettest quarter
exceeds 300 mm (Figure 1e). The potential distribution probability is higher with a lower
volume of precipitation during the coldest quarter (Figure 1f).
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Figure 1. Response curves display the relationships between the potential distribution probability of
A. inebrians and six environmental variables, including (a) Isothermality (Bio03), (b) Min Temperature
of Coldest Month (Bio06), (c) Mean Temperature of Warmest Quarter (Bio10), (d) Precipitation
Seasonality (Bio15), (e) Precipitation of Wettest Quarter (Bio16), and (f) Precipitation of Coldest
Quarter (Bio19). Values shown are the average over 20 replicate runs; blue margins show ±SD
calculated over 20 replicates.
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3.2. The Influence of CO2 Emission Scenarios on the Potential Future Distributions of A. inebrians

The potential distributions of A. inebrians under current climatic conditions are classi-
fied according to the threshold value of 0.37 (Figure 2). The highly adaptive regions are
mainly concentrated in the southwest of Gansu and east of Qinghai, while the adaptive
regions are mainly distributed in the southeast of Gansu, Ningxia and north of Shaanxi.
Both regions are considered typical temperate grasslands. In addition, the alpine meadow
areas are scattered with a number of adaptive regions, such as Western Sichuan, Eastern
Tibet and sporadic adaptation zones in Xinjiang.
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CO2 emission scenarios will continue to promote the gradual expansion of adaptive
regions of A. inebrians into the future. In 2050, the adaptive region is projected to have
expanded southwest (i.e., into the alpine meadow area) and northeast (i.e., into the tem-
perate grassland area) with southern Gansu as its center (Figure 3). In the GS and NO
models, the expansion characteristics of the adaptive regions are similar, in that as CO2
emission scenarios increase, the area of the adaptive region grows, although the range of
the adaptive region is larger in the GS model (Figure 3 and Figure 5a). However, the HD
model predicts the exact opposite, indicating that low CO2 emission scenarios are more
suitable for the growth of A. inebrians (Figure 3 and Figure 5a). The MC model reveals
that the adaptive region under high CO2 emission scenarios is larger than with low CO2
emission scenarios, but the adaptive region under medium CO2 emission scenarios is the
smallest of all the three (Figure 3 and Figure 5a). In summary, the average results indicate
that higher CO2 emission scenarios will cause a wider distribution of the adaptive region
of A. inebrians by 2050.

After 2050, most of the adaptive regions of A. inebrians are stable. With low CO2
emission scenarios, the adaptive regions are expanding, while they retract with high CO2
emission scenarios in all models with the exception of HD. The average results also show
that the area of the adaptive regions will have a greater expansion under low CO2 emission
scenarios than under high CO2 emission scenarios after 2050 (Figure 4). With the exception
of HD, the average data forecast after 2050 shows that the low CO2 emission scenarios are
more conducive to the survival of A. inebrians (Figure 5b).
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Figure 3. The potential distribution changes of A. inebrians in 2050 in comparison to current trends.
The first four rows are the results of four GCMs, i.e., GS, HD, MC, and NO. Additionally, the last
row is the average of the results of four GCMs. The columns show results under three CO2 emission
scenarios, i.e., RCP 2.6, 4.5, and 8.5.
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Figure 4. The potential distribution changes of A. inebrians in 2070 in comparison to 2050. The first
four rows are the results of four GCMs, i.e., GS, HD, MC, and NO. Additionally, the last row is the
average of the results of four GCMs. The columns show results under three CO2 emission scenarios,
i.e., RCP 2.6, 4.5, and 8.5.
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Figure 5. The impact of three CO2 emission scenarios (RCP 2.6, 4.5, and 8.5) on the potential
distribution changes of A. inebrians. (a) The changes of the potential distribution in 2050 compared to
current trends; (b) the changes of the potential distribution in 2070 compared to 2050. GS, HD, MC,
and NO are four GCMs, and average represents the average of the results of four GCMs.

3.3. The Influence of CO2 Emission Scenarios on the Geographical Distribution Centroid and
Average Elevation of the Adaptive Regions of A. inebrians

From current conditions through to 2050, climate changes under the influence of CO2
emission scenarios will likely cause the geographical distribution centroid of A. inebrians
to move southeast, with a decrease in its latitude (Figure 6a–e). The GS and NO models
predict that low CO2 emission scenarios result in a latitudinal decrease in the geographical
distribution centroid, whereas HD and MC models predict an increase (Figure 6a–d). The
average results show that medium CO2 emission scenarios also result in a latitudinal
decrease in the geographical distribution centroid (Figure 6e). However, after 2050, the
situation has reversed. With the exception of the MC models, the three others all project
that low CO2 emission scenarios can increase the latitude of the geographical distribution
centroid, while high CO2 emission scenarios result in a decrease (Figure 6a–e).



Sustainability 2022, 14, 4806 10 of 15

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 15 
 

sults show that the average elevation of the adaptive regions’ decline slows with the in-

crease in CO2 emission scenarios (Figure 6j). 

 

Figure 6. The effect of three CO2 emission scenarios (RCP 2.6, 4.5, and 8.5) on the geographical 

distribution centroid and average elevation of the adaptive regions of A. inebrians. The first four 

rows are the results of four GCMs, i.e., GS, HD, MC, and NO. Additionally, the last row is the av-

erage of the results of four GCMs. (a–e) Changes in the geographical distribution centroid of the 

adaptive regions of A. inebrians from present to future (2050 and 2070). The black dot is the geo-

graphical distribution centroid, and the arrow represents the direction of time change. (f–j) Box-

plots of elevation of the adaptive regions of A. inebrians under different climate scenarios. 

  

Figure 6. The effect of three CO2 emission scenarios (RCP 2.6, 4.5, and 8.5) on the geographical
distribution centroid and average elevation of the adaptive regions of A. inebrians. The first four rows
are the results of four GCMs, i.e., GS, HD, MC, and NO. Additionally, the last row is the average of the
results of four GCMs. (a–e) Changes in the geographical distribution centroid of the adaptive regions
of A. inebrians from present to future (2050 and 2070). The black dot is the geographical distribution
centroid, and the arrow represents the direction of time change. (f–j) Boxplots of elevation of the
adaptive regions of A. inebrians under different climate scenarios.
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The average elevation of the adaptive regions of A. inebrians under the influence of
CO2 emission scenarios has a general downward trend. Low CO2 emission scenarios
continually decrease the average altitude, but the medium and high CO2 emissions only
reveal a trend of lowering the average elevation after 2050 (Figure 6f–i). The average results
show that the average elevation of the adaptive regions’ decline slows with the increase in
CO2 emission scenarios (Figure 6j).

4. Discussions

Carbon dioxide (CO2) is the most important greenhouse gas released as a result of
anthropogenic activity. This study has modelled the effect of three different CO2 emission
scenarios (RCP 2.6, 4.5, and 8.5) on the potential future distributions of A. inebrians. The
response of the Maxent results to the environmental variables indicates that in the coldest
month/quarter, which is also the dormant period of seeds of A. inebrians, the potential
distribution probability of A. inebrians is higher when the minimum temperature and pre-
cipitation are lower. This is likely because the seed germination rate of weeds is higher
after dormancy in lower temperatures [51–53]. Moreover, light drought stress is more
conducive to the embryonic root growth of A. inebrians [54]. During the growing season,
moderate temperature and rainfall are clearly beneficial to the growth of weeds; hence
the ecological niche model also includes two other important factors: the mean temper-
ature of the warmest quarter and the precipitation of the wettest quarter. The increase
in CO2 emission concentration has had a significant impact on increasing temperatures
in most areas of China, especially in the northwest [55]. In addition, it has influenced
the precipitation patterns, with Northwest China becoming even drier and the coastal
areas more humid [56]. Furthermore, with increases in CO2 emission concentration, sea-
sonal fluctuations of extreme climates are likely to occur more frequently and with larger
amplitudes [15,57].

It is predicted that the suitable regions for A. inebrians in 2050 will greatly expand,
extending to the Inner Mongolia grassland and the Qinghai–Tibet Plateau, while the expan-
sion range is relatively smaller from 2050 to 2070. Our research supports the conclusions
of Saebø and Mortensen (1998) and Singh et al. (2011) that increasing CO2 emission sce-
narios are beneficial to the growth of perennial herbs [23,24]. However, the reason for
the expansion of suitable habitats for A. inebrians after 2050 is not clear. It is possible that
after 2050, in addition to RCP 8.5, the CO2 emission concentration of other scenarios may
be alleviated, especially with the CO2 emission concentration of RCP 2.6 beginning to
decline. Additionally, the two time periods we studied were different in length, 50 years
and 20 years, respectively. Our research also identified that various intensities of CO2
emissions induce extremely different effects on the expansion of A. inebrians. Most GCM
(except HD) simulations show that the high CO2 emission scenarios model increase range
expansion before 2050; while after 2050, the low CO2 emissions scenarios model results in
range expansion. The average results not only draw the same conclusions, but also reveal
that the scope of expansion increases with the increase in CO2 emission scenarios before
2050. Our findings are different compared to Dyderski et al. (2018) and Wróblewska &
Mirski (2018), as different species have different niches and naturally respond differently
to climate change [16,17]. Unlike tree species and circumboreal plants, CO2 may have a
positive effect on the growth and reproduction of A. inebrians.

Under anthropogenically induced climate change, migration and diffusion have be-
come a significant response mechanism for plants. Many species will disperse to areas
with the most suitable climate for their growth to maintain homeostasis. Some studies
have found that global warming led to a poleward and upward shift in the range of many
plants [13,58,59], but not all plants, as some engaged in southerly migration [60]. The
geographical distribution centroids of A. inebrians were generally projected to move south-
east under different CO2 emission scenarios. However, the direction of the geographical
distribution centroids will likely be diversified after 2050, especially under low CO2 emis-
sion scenarios with a latitudinal recovery of the geographical distribution centroids. With
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the increase in CO2 concentration, there was a predicted decline in the average elevation
of the potential distributions. In all GCM models, we identified that the changes in the
geographical distribution centroids and average elevation predicted by the HD model were
significantly different from the other three. The HD results show that the latitude of the
geographical distribution centroids under the low emission scenarios in 2070 was higher
than that of the current latitude, and even that under the high CO2 emission scenarios in
2050. This result seems to support the conclusion that plants migrate to higher altitudes
and higher latitudes in future climate change scenarios [13,58,59]. Therefore, the impact of
CO2 emission scenarios on the potential distribution of A. inebrians is strongly influenced
by the choice of GCMs.

The uncertainty of future climates is one of the critical issues in accurately predicting
the effects of climate change. It is therefore one of the core issues that needs to be addressed
for conservation planning of livestock management [10,61]. In this study, four GCMs were
used to explore the effect of climate uncertainty caused by different GCMs on the potential
distribution areas of A. inebrians, respectively. We did not directly adopt the ensembles of
the GCMs as in previous studies [48] but used the average of the results predicted under
four GCMs. The average results not only mitigate the effects of future climate uncertainties
by GCMs, but also preserve the impact of the spatial pattern of each GCM on the final
results. Furthermore, three RCPs were also used to explore the impact of climate uncertainty
caused by different CO2 emissions on the potential distribution areas of A. inebrians. It has
been reported that the maximum possibility of CO2 emission scenarios in China is RCP4.5
in the future [62]. Our average results under RCP4.5 indicate that the adaptive regions of
A. inebrians in 2050 are significantly greater than currently observed, mainly distributed in
central Inner Mongolia, southern Gansu, Ningxia, eastern Inner Mongolia, Yunnan, most
parts of Qinghai, Shaanxi, and Sichuan. However, the changes in the adaptive regions are
not significantly different in 2070, with only small plaque growth in Southeast China and
sporadic reductions in Shaanxi.

Samples and environmental variables are two important factors in ecological niche
modeling, while sample bias and different strategies for selecting environmental variables
can also seriously influence the results of ecological niche modeling [63–65]. In our study,
the sample bias was reduced by utilizing the nearest neighbor method (i.e., randomly
removing one of the two points below the minimum neighbor distance) [66]. At the
same time, principal component analysis and correlation analysis were used to select the
environmental variables used. Based on the processing of samples and rational selection
of environmental variables, the ecological niche model obtained good prediction results,
which reinforces the reliability of our results. Moreover, it is important to note that the above
estimation of the potential distribution regions of A. inebrians was only based on Maxent.
However, the ENM alone is not successful at predicting the eventual spread of a species [67],
many factors other than climate, such as population processes, biotic interactions, dispersal
ability, interactions between demographic, and landscape dynamics, also play an important
part in determining species distributions [68,69]. Furthermore, land use patterns may play
an important role in predicting the potential distributions [70]. Therefore, a comprehensive
model combined with all the above mentioned factors is necessary for the prediction of
species-specific responses to climate change and useful agricultural suggestions to the
managers and administrators.
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