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Abstract: With the increase in disasters due to climate change, there has been a growing interest in
green infrastructures that utilize nature for disaster risk reduction (DRR). However, green infras-
tructures cannot completely protect against hazards. Therefore, this study investigates the public
preference in Japan for DRR and its uncertainty using a survey-based choice experiment. The re-
sults showed that benefits were obtained from the increase in “success probability”, “reduction in
human damage”, “reduction in property damage”, and “reduction in indirect damage”; however, the
benefits obtained from additional improvements diminished. Moreover, the results of our analyses
revealed that preferences for DRR and its uncertainty were heterogeneous among respondents, and
the population segment that includes more women, older people, and more people who live in areas
that may be directly affected by floods had higher ratings for “success probability” and relatively
slightly lower ratings for “reduction in indirect damage”.

Keywords: green infrastructures; disaster risk reduction; uncertainty; preference; choice experiment

1. Introduction
1.1. Background

Due to climate change, the occurrence of disasters has increased significantly, thus
making the development of infrastructure for disaster prevention and mitigation extremely
important [1,2]. In particular, green infrastructures, which are sometimes referred to as
nature-based solutions and utilize the functions of nature to cope with disasters, have been
attracting considerable attention [3,4]. Green infrastructures not only have a smaller impact
on ecosystems and landscapes than artificial infrastructures (hereafter, gray infrastructures),
such as dams and seawalls, but are often less expensive to build and maintain [5–7]. In
countries with aging populations, including Japan, it is expected that the infrastructure
maintenance costs will become a major burden in many areas owing to the worsening
financial situation caused by a declining population, highlighting the need to control these
costs. For disaster risk reduction (DRR), ecosystem-based disaster risk reduction (Eco-
DRR), which utilizes green infrastructures, can be a cost-effective method and is expected
to expand [8–13].

Nevertheless, green infrastructures cannot completely protect against hazards [14].
Thus, not always achieving the targeted DRR, that is, uncertainty in DRR, is one of the
characteristics of green infrastructures as opposed to gray infrastructures, which are de-
signed based on accumulated knowledge that achieves targeted effects with a high degree
of certainty [15]. If citizens tend to not tolerate this uncertainty in DRR, it will be difficult
for green infrastructures to proliferate. Therefore, understanding public preferences with
respect to uncertainty in DRR is important for the diffusion of green infrastructures.
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1.2. Green Infrastructures in the United States (U.S.), Europe, and Japan

As “green infrastructures” is a relatively new concept, it has no worldwide consensus
definition [16].

In the U.S., green infrastructures are being used for stormwater management. The U.S.
Environmental Protection Agency (2008) states that “Green infrastructure is an approach to
wet weather management that uses soils and vegetation to utilize, enhance and/or mimic
the natural hydrological cycle processes of infiltration, evapotranspiration, and reuse.” [17]
Today, a variety of green infrastructures are used, including green roofs, rain gardens,
and permeable pavements. Portland, Oregon, is a world-renowned green infrastructure-
advanced city. In Portland, heavy rains often caused internal flooding; therefore, green
infrastructures were installed in residential neighborhoods as countermeasures. As a
result, green infrastructures have not only achieved their original purpose but have also
brought about diverse benefits, such as improved air quality, improved health through the
promotion of physical activity, and increased mental health through stress reduction [18].

Europe emphasizes the conservation and utilization of broader ecological networks.
In Europe, the European Commission adopted a strategy in 2013 to promote the use of
green infrastructures. Green infrastructure is defined as a strategically planned network of
natural and semi-natural areas with other environmental features designed and managed
to deliver a wide range of ecosystem services [19]. Since then, European countries have
been promoting green infrastructures.

In Japan, green infrastructures have recently been incorporated into various adminis-
trative plans, such as the National Spatial Strategy (National Plan) and are being promoted.
This plan describes green infrastructure as a way to utilize the diverse functions of the
natural environment, in both hard and soft aspects of social capital development and land
utilization, to create sustainable and attractive national lands and regions [20]. There are
also examples of local governments undertaking their own green infrastructure initiatives.
For example, Setagaya City, Tokyo, has incorporated “promotion of green infrastructure”
in its action plan for heavy rainfall countermeasures [21]. Numerous initiatives, including
those that are not called green infrastructure or Eco-DRR, are underway. For example,
various disaster countermeasures, such as flood mitigation through the water storage
function of rice paddies, mitigation of landslides by planting trees on mountain slopes,
coastal forests to reduce tsunami damage, flood control using retarding basins, and flood
prevention by preserving wetlands, are being implemented [8].

1.3. Literature Review

There has been exponential growth in the number of studies on green infrastruc-
tures [22]. Previous studies that also used the choice experiment (CE), are as follows:

Veronesi et al. (2014) conducted a choice experiment in Switzerland and found that
more than 70% of the respondents were willing to pay a higher tax to reduce the risk of
combined sewer overflows (CSOs) in rivers and lakes, and that climate change perception
affected their willingness to pay (WTP) [23].

Brouwer et al. (2016) conducted an identical choice experiment on river restoration
in Austria, Hungary, and Romania and showed that estimated benefits were transferable
between Hungary and Romania, however, not between Austria and Hungary and Austria
and Romania [24]. They also found distance decay effects for water quality improvements
in Austria and Romania, and for flood risk reduction in Austria.

Brent et al. (2017) estimated the willingness of the residential homeowners in Mel-
bourne and Sydney, Australia, to pay for the ecosystem services provided by green in-
frastructures for stormwater management and showed that respondents were willing to
pay for the prevention of flash flooding [25]. This study also showed that benefits from
stormwater management via green infrastructures were transferable to different locations.

Valasiuk et al. (2018) employed a choice experiment to investigate citizens’ preferences
for forest landscape restoration in a transboundary region in Sweden and Norway and
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showed that just over half of the sample were willing to pay for forest landscape restoration
in both countries [26].

Meng and Hsu (2019) conducted a choice experiment with officials in water utilities
and agencies in the U.S. and showed that respondents were willing to invest more in smart
green infrastructures if the long-term costs associated with construction, maintenance, and
labor could be reduced [27]. They also revealed that agencies with large service areas or
those that utilized green infrastructures in the past, were more likely to utilize the smart
green infrastructures.

Shr et al. (2019) conducted a choice experiment using a split sample methodology on
the landscape attributes of green infrastructures in the U.S. and revealed the influence of
images on preferences [28].

Pienaar et al. (2019) implemented a choice experiment on the conservation program
and ecosystem services provided for residents of Palm Beach County, Florida, U.S., and
showed that residents were willing to pay for flood risk reduction, and there was hetero-
geneity in preference for habitat conservation and ecosystem services [29].

Ando et al. (2020) conducted a choice experiment to estimate the benefits from
stormwater management utilizing green infrastructures in Chicago, Illinois, and Portland
in the U.S. [30]. In addition to WTP, this study assessed the benefit through time spent
volunteering and found that volunteering produces positive utility.

Deely and Hynes (2020) carried out a split-sample choice experiment for the residents
of the Carlingford Lough catchment in Ireland to clarify whether gray or green infras-
tructures are preferred by them and showed that the average respondent prefers green
infrastructures to gray infrastructures [31].

Wieczerak et al. (2022) used a choice experiment to examine public preferences
for green infrastructure improvements in Northern New Jersey, U.S., and revealed that
residents have a relatively large WTP for improved air quality, increased water supply, and
closer proximity [32].

Thus, economic valuation research on green infrastructures is increasing; however,
because it is a relatively new topic, some aspects are yet to be fully studied. One of
these concerns the citizens’ preferences for uncertainty in the DRR. In addition, although
green infrastructures are characterized by their multifunctionality and can be used for
purposes other than disaster prevention, little research has been conducted on the citizens’
preferences regarding other uses of green infrastructures. Moreover, preferences for DRR
and its uncertainty may vary depending on individual socioeconomic characteristics and
the likelihood of being affected by a disaster. The heterogeneity of such preferences has not
been sufficiently studied.

1.4. Purpose of the Study

To fill these gaps in the extant literature, using flood control as a case study, we
conducted a questionnaire survey in Japan, to investigate the public preferences for DRR
and its uncertainty as well as the utilization of DRR infrastructures for other purposes. The
specific research questions for this study are as follows:

• How do citizens evaluate the uncertainty in DRR?
• How much importance do citizens attach to the reduction in human, property, and

indirect damage?
• When there is no flooding, for what other purposes do citizens want retarding basins

and dams to be used, other than for flood control?
• How much is the citizens’ marginal willingness to pay (MWTP) for each of the fol-

lowing: reduction in the DRR uncertainty, reduction in human damage, reduction in
property damage, reduction in indirect damage, and use of DRR infrastructure for
purposes other than disaster reduction?

• Are preferences for flood control homogeneous or heterogeneous among citizens?
• If preferences for flood control are heterogeneous among citizens, what are the distinct

preferences?



Sustainability 2022, 14, 4753 4 of 17

This study explores the answers to these research questions using a CE, one of the
typical environmental valuation methods [33]. CE is a method of evaluating the value
of each of the attributes that make up an alternative based on people’s choice. Using
CE, it is possible to economically assess the value of the reduction in uncertainty and the
improvement of various disaster mitigation effects. This facilitates evaluating the benefits
of developing green infrastructures, which, in turn, enable the conduct of a cost-benefit
analysis of green infrastructure development. In addition, by conducting a cost-benefit
analysis of green and gray infrastructures, we can compare the two in terms of cost-
effectiveness. Such results can be an important factor in deciding which approach to adopt
(Ganderton (2005), Mechler (2005), and Benson and Twigg (2007) provide comprehensive
explanations of the cost-benefit analysis for DRR infrastructures in their studies [34–36].
There are also numerous cost-benefit analysis studies and reviews for DRR infrastructures
worldwide (e.g., [37–42])). In addition, in the analysis, we use estimation methods, such as
the random parameter logit (RPL) model and latent class model (LCM), which allow us to
understand the heterogeneity in preferences. This establishes the proportions of people
with specific preferences. Such information is also useful when considering consensus
building over green infrastructures [43].

2. Materials and Methods
2.1. Outline of the Survey

In March 2019, we conducted a web-based public survey throughout Japan. The
survey participants were men and women—aged between 20 and 69 years—registered as
monitors with a research company. Further, we divided the whole country into six blocks
(Hokkaido and Tohoku, Kanto, Chubu, Kinki, Chugoku and Shikoku, and Kyushu and
Okinawa) considering the geographical divisions of Japan. The sample collection was
coordinated to reflect the population compositions of the six blocks as closely as possible in
terms of gender and age. We received responses from 5224 people.

In total, the respondents comprised 50.2% men and 49.8% women. In terms of age,
15.2% of the respondents were in their 20s, 19.4% in their 30s, 23.8% in their 40s, 19.1% in
their 50s, and 22.5% in their 60s. In terms of flood risk around the residence, 18.1% of the
respondents lived in a place that might be directly affected by floods, 64.3% did not live
in a place that might be directly affected by floods, and 17.7% did not know the flood risk
around their residence. The descriptive statistics of the respondents are shown in Table 1.

Table 1. Descriptive statistics of respondents (N = 5224).

Number of People Ratio

Gender

Male 2623 50.2%

Female 2601 49.8%

Age

20s 794 15.2%

30s 1011 19.4%

40s 1245 23.8%

50s 997 19.1%

60s 1177 22.5%

Flood risk around the residence

Live in a place that may be directly affected by floods 943 18.1%

Do not live in a place that may be directly affected
by floods 3358 64.3%

Do not know 923 17.7%
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The data used in this study are responses to a subset of the survey consisting of
47–58 multiple-choice questions that inquired about a wide range of disaster-related topics
(the number of questions varied by the respondent as follow-up questions or additional
questions might be asked depending on the respondent’s answers. The questionnaire
(in Japanese) is available upon request to the authors). The average response time was
10.1 min.

2.2. Survey Design

Prior to the CE questions, it was explained to the respondents that the number of
floods is expected to increase and that their magnitude is likely to get larger because of
climate change. Then, for the CE questions, a hypothetical scenario was explained to the
respondents, in which a plan was proposed to implement flood control projects, such as
building dams or retarding basins upstream, to reduce the damage of floods in the area
where they live.

In this CE, it was assumed that the implementation of flood control projects could
reduce the three types of damages caused by floods: human, property, and indirect damage.
Human damage refers to the total number of people dead, missing, or injured; property
damage is defined as the total number of houses that are totally destroyed, partially
destroyed, partially damaged, flooded above floor level, or flooded below floor level;
indirect damage refers to the damage caused to a wide range of areas due to power outages,
water shutdowns, sewage treatment facility shutdowns, and disruption of bridges and
roads. To ensure that respondents understood the types of damages before answering the
CE questions, we provided an explanation for all three types of damages.

It was also assumed that flood control projects would not always work as planned.
Respondents were told that the effectiveness of flood control projects is uncertain, and that
in some cases, projects might be successful and reduce damage, whereas in other cases,
projects might fail and be ineffective. The “success probability” represents the probability
that the project would be successful and reduce the damage.

Areas in which flood control projects are implemented may be used for other purposes
when there is no flooding. For example, it may be possible to use the area as a sports
park, since people can enjoy boating and fishing at the dam or retarding basin, or play
baseball, tennis, or jog in the vicinity. Using retarding basins for purposes other than
disaster prevention when no floods are occurring are taking place in Japan. For example,
the Watarase retarding basin spanning four prefectures (Tochigi, Gunma, Saitama, and
Ibaraki Prefectures), is used for recreation and as a habitat for wildlife during normal times
without flooding. There are also many cases where dams have been designated as bird and
animal sanctuaries, such as the Kurose Dam in Ehime Prefecture and the Kitayama Dam in
Saga Prefecture. “Utilization other than DRR” indicates other uses for sites where the flood
control projects will be implemented.

Further, it was assumed that taxes would rise only once to secure the financial re-
sources to implement the flood control projects. The “amount of payment (one-time tax
increase)” represents the amount of money the respondent would have to pay to implement
the project.

In the CE, “utilization other than DRR,” “success probability,” “reduction in human
damage (total number of dead, missing, and injured humans),” “reduction in property
damage (total of totally destroyed, partially destroyed, partially damaged of dwelling,
flooded above floor level, and flooded below floor level),” “reduction in indirect damage
(the number of days when daily life is disrupted due to flooding),” and “amount of payment
(one-time tax increase)” were used as the attributes. Table 2 summarizes the attributes and
levels used in the CE. In the case of “utilization other than DRR,” three levels were set,
while for other attributes, five levels were set.
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Table 2. Attributes and levels.

Level 1 Level 2 Level 3 Level 4 Level 5

Utilization other than DRR None Use as a sports
park

Use as a bird
sanctuary

Success probability 20%
(2/10)

40%
(4/10)

60%
(6/10)

80%
(8/10)

100%
(certainly)

Reduction in human
damage (total number of
dead, missing, and
injured humans)

20 fewer human
losses

40 fewer human
losses

60 fewer human
losses

80 fewer human
losses

100 fewer human
losses

Reduction in property
damage (total of totally
destroyed, partially
destroyed, partially
damaged of dwelling,
flooded above floor level,
and flooded below
floor level)

50 fewer
property losses

100 fewer
property losses

150 fewer
property losses

200 fewer
property losses

250 fewer
property losses

Reduction in indirect
damage (the number of
days when daily life is
disrupted due to flooding)

1 day shorter 3 days shorter 5 days shorter 7 days shorter 10 days
reduction

Amount of payment
(one-time tax increase) JPY 1000 JPY 3000 JPY 5000 JPY 10,000 JPY 30,000

Note: 1 JPY= 0.0087 USD (as of 30 January 2021).

In addition to the reduction in damage and cost, which are generally important
characteristics of flood control projects, we aimed to examine respondents’ preferences
for uncertainty in DRR and use for purposes other than DRR. Uncertainty in DRR exists
for both green and gray infrastructures, as well as their use for purposes other than DRR,
but as mentioned earlier, uncertainty in DRR tends to be greater for green infrastructures,
and they are often used for purposes other than DRR. From this CE, we can understand
preferences for these features that are particularly important in green infrastructures. While
green infrastructure has other characteristics, such as less negative impact on the landscape,
we focused on these two characteristics. This helped to make the CE questions simpler and
less burdensome for respondents.

A pilot survey was conducted with 217 participants. The choice set was created by
combining the levels of each attribute using an orthogonal main effect design. In the actual
survey, we used D-efficiency to create a choice set [44]. The estimated values with the pilot
survey data were used as prior values. For the design of the choice sets, version 1.2.1 of
Ngene (ChoiceMetrics, Sydney, Australia) was used.

An example of a CE question is shown in Figure 1. In this example, Projects 1 and 2
represent two different flood control projects. If Project 1 is implemented, there is a 40%
(4/10) probability that there will be 60 fewer human losses, 100 fewer property losses, and
the number of days that daily life is disrupted due to flooding will be reduced by 3 days.
However, there is a 60% (6/10) probability that the project will be ineffective, and that the
amount of human, property, and indirect damage will remain unchanged. In addition, in
Project 1, the site where the project will be implemented will be used as a bird sanctuary.
To implement this project, each household must bear a cost of JPY 3000.
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Figure 1. An example of a CE question.

If Project 2 is implemented, there is an 80% (8/10) probability that 20 fewer people
will be negatively impacted (e.g., injury and death), 200 fewer houses will be damaged,
and the number of days in which daily life will be interrupted by flooding will be reduced
by 7 days. In addition, under Project 2, the area in which the project will be implemented
will be used as a sports park. To implement this project, each household must bear a cost of
JPY 5000.

No project means that no measures are taken. Thus, the cost will not be borne because
no measures will be implemented; however, the human, property, and indirect damage
caused by the flood will not be reduced, and the area will not be used as a bird sanctuary
or sports park. For all CE questions, the third alternative represents “no project”.

These questions were repeated six times per respondent, and different alternatives
were presented to the respondents.

2.3. Model and Estimation Methods

In the CE, a random utility model was assumed as the utility function of the respon-
dents. In a random utility model, the utility Uni obtained by individual n from alternative i
is composed of the deterministic term Vni and the error term εni as follows:

Uni = Vni + εni. (1)

Assuming a linear function, Vni can be described by Equation (2):

Vni = β1 ASC3 + β2birdni + β3 parkni + β4 probni
+β5humanni + β6 propni + β7indni + β8taxni

. (2)

Here, birdni, parkni, probni, humanni, propni, indni, and taxni are variables that repre-
sent “use as a bird sanctuary,” “use as a sports park,” “success probability,” “reduction
in human damage,” “reduction in property damage,” “reduction in indirect damage,”
and “amount of payment (one-time tax increase)” of alternative i, respectively. βs repre-
sents their respective parameters and ASC3 represents the alternative specific constant for
alternative 3 (No project).

We assume that an individual considers the payment amount and other attributes
of each alternative and chooses the alternative under which the maximum utility can be
obtained. The probability Pni that an individual n chooses alternative i from the choice
set C = {1, 2, · · · , J}, where J is 3 in this case, is equal to the probability that the utility
of alternative i, Uni is larger than the utility from the other alternatives j( j 6= i), Unj,
as follows:

Pni = Pr
(
Uni > Unj ∀j ∈ C, j 6= i

)
= Pr

(
Vni −Vnj > εnj − εni ∀j ∈ C, j 6= i

)
.

(3)
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Assuming that the error term follows a Type I extreme value distribution (Gumbel
distribution), the probability Pni, indicating that an individual n will choose alternative i, is
expressed by the following conditional logit (CL) model [45]:

Pni =
exp(µVni)

∑j∈C exp
(
µVnj

) . (4)

The parameters can be estimated using the maximum likelihood method. µ is a scale
parameter standardized to 1.

We can calculate the MWTP for each attribute or attribute-level by employing the
estimated parameters. For example, in the linear model shown in equation (2), the MWTP
for the success probability, MWTPprob can be calculated as the ratio of the parameters
representing marginal utility of the success probability, β4, and the marginal utility of
income, −β8, as follows:

MWTPprob = − β4

β8
. (5)

In the CL, it is assumed that all respondents have homogeneous preferences. In recent
years, models that relax this strict assumption and capture heterogeneity in preferences
have often been used, such as the RPL model, which allows parameters to vary among
individuals according to a probability distribution [46,47].

If each individual has a different preference, then the parameter for each individual
can be expressed as βn.

Unj = β′nxnj + εnj. (6)

Since the parameter βn for each respondent is unobservable, we consider the integral
of the CL model for its density. In RPL, following Train (2009), the probability that an
individual n chooses an alternative i is expressed as follows [47]:

Pni(Ω) =
∫ exp(Vni(βn))

∑j∈C exp
(
Vnj(βn)

) f ( β|Ω)dβ. (7)

However, f (β |Ω ) and Ω represent the probability density function of β and the vector
of parameters for this probability density function, respectively. In the estimation, it was
necessary to assume a probability distribution for β. Among the various distributions that
could be assumed, a normal distribution was assumed in this study [46,47]. In addition,
since the integral could not be solved algebraically, the maximum simulated likelihood was
used to approximate the integral using a simulation [47].

Another representative model used to understand heterogeneity in preferences is the
LCM, which classifies individuals into several groups and estimates the parameters of
the utility function for each group [48,49]. The membership function, which explains the
probability of belonging to each class by individual characteristics such as age and gender,
is estimated to investigate the factors related to heterogeneity in preferences. Therefore, it
is particularly useful to understand the factors related to preference heterogeneity.

Suppose that there are S classes in the sample and that an individual n belongs to class
s = {1, 2, · · · , S}. In this case, the probability Pns(i) that an individual n belongs to class s
and chooses an alternative i is expressed as follows:

Pns(i) = ∑S
s=1

[
exp(ζγ′szn)

∑S
s∗=1 exp

(
ζγ′s∗zn

)][ exp(µsβ′sxni)

∑j∈C exp
(
µsβ′sxnj

)]. (8)

The first logit model equation on the right-hand side represents the membership
function that expresses the probability that an individual will be assigned to class s, where
zn is a vector of individual characteristics, γs is a vector of the estimated parameters, and ξ
represents the scale parameter of the membership function, standardized to 1. The second
logit model equation on the right-hand side represents the probability that an individual
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n belonging to class s will choose an alternative i, where xni and xnj are the vectors of the
attributes of alternatives i and j, respectively; βs is the vector of parameters specific to class
s; and µs represents a scale parameter for class s, standardized to 1. In the derivation of
any logit model, the Type I extreme value distribution is assumed to the error term. The
parameters are estimated by the maximum likelihood method.

The estimation methodology described above can be summarized as follows: we
interpret the behavior of respondents who, in the framework of a random utility model,
chose the alternative with the highest utility among alternatives as utility-maximization.
We then estimate the parameters of the utility function using econometric models derived
from the assumption. This allows us to understand how each attribute or attribute-level
that makes up the alternatives affects a respondent’s choice. Furthermore, the economic
value of each attribute or attribute-level is calculated based on the estimated parameters.
We also analyze the heterogeneity in preferences across individuals by estimating with
more general econometric models that do not assume homogeneity in the preferences
among individuals.

3. Results and Discussion
3.1. Estimation Using the CL and the RPL Models

For estimation, we used the CL and RPL models. In the RPL, variables other than
the payment amount were assumed to be random parameters, and a normal distribution
was assumed for the distribution of the random parameters. Additionally, six responses
from one respondent were treated as panel data, and the estimation was performed using
Halton draws with 100 iterations [47]. Nlogit6 (Econometric Software Inc, New York, U.S.)
was used for the estimation.

Considering the possibility that the effects of success probability and each damage
reduction on utility are nonlinear, we estimated a quadratic model that included the squared
terms of success probability and each damage reduction, in addition to a linear model that
assumed linearity in the deterministic term of the utility function.

The estimation results for RPL showed that the standard deviation (SD) parameters
were statistically significant for most variables. In addition, McFadden’s pseudo-R-squared
was larger for RPL than for CL in both linear and nonlinear models. Therefore, we discuss
the results of the RPL.

The results for RPL showed that the coefficients of all squared terms were significant.
Moreover, McFadden’s pseudo-R-squared value was larger in the quadratic model (0.2565)
than in the linear model (0.2524). Therefore, we discuss the results of the quadratic model
estimated using the RPL.

The estimation results for the quadratic model with CL and RPL models are shown
in Table 3. First, with respect to the mean parameters, ASC3 is a constant term specific to
alternative 3 (No project), which was found to be negative and significant. This indicates
that the respondents favored implementing flood control projects regardless of the content.

The two other utilization possibilities of “use as a bird sanctuary” and “use as a sports
park” were coded with effect codes, and “none” was excluded from the estimation [50]. Our
findings show that the coefficient for “use as a sports park” was positive and significant,
while the coefficient for “use as a bird sanctuary” was not significant. The coefficient of
“none” was calculated as −0.21166−0.0252 = −0.23686 from the coefficients [50]. Therefore,
the difference between the coefficients of “none” and “use as a sports park” was calculated
to be 0.44852, and the difference between the coefficients of “none” and “use as a bird
sanctuary” was calculated to be 0.26206.
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Table 3. Estimation results of the quadratic model using the conditional logit (CL) and random
parameter logit (RPL) models.

CL RPL

Mean Parameter SD Parameter SD Parameter
/Mean Parameter MWTP (JPY)

Variables Coefficient (Standard error) Coefficient (Standard error)

ASC3
−0.12663 *
(0.06679)

−1.20972 ***
(0.11111)

4.03230 ***
(0.09574) −3.33 −24,041.5

Sports park 0.14690 ***
(0.01266)

0.21166 ***
(0.01672)

0.37644 ***
(0.02802) 1.78 4206.4

Bird sanctuary 0.02201 *
(0.01206)

0.02520
(0.01759)

0.50373 ***
(0.02580) - 500.8

Success probability 0.01632 ***
(0.00164)

0.02941***
(0.00242)

0.00877 ***
(0.00217) 0.30 584.5

Reduction in human damage 0.913 × 10−4

(0.00184)
0.00846 ***
(0.00252)

0.01252 ***
(0.00080) 1.48 168.1

Reduction in property damage 0.00363 ***
(0.00065)

0.00582 ***
(0.00085)

0.00218 ***
(0.00073) 0.37 115.7

Reduction in indirect damage 0.09913 ***
(0.01340)

0.16533 ***
(0.01747)

0.02716
(0.01954) - 3285.7

Success probability squared −0.00010 ***
(0.131 × 10−4)

−0.00016 ***
(0.179 × 10−4)

0.829 × 10−4 ***
(0.157 × 10−4) −0.52 −3.2

Reduction in human damage squared 0.685 × 10−5

(0.152 × 10−4)
−0.574 × 10−4 ***

(0.208 × 10−4)
0.561 × 10−5

(0.150 × 10−4) - −1.1

Reduction in property damage squared −0.127 × 10−4 ***
(0.218 × 10−5)

−0.164 × 10−4 ***
(0.282 × 10−5)

0.498 × 10−5 **
(0.203 × 10−5) −0.30 −0.3

Reduction in indirect damage squared −0.00956 ***
(0.00115)

−0.01529 ***
(0.00153)

0.00324 **
(0.00129) −0.21 −303.9

Amount of payment (one-time tax increase) −0.394 × 10−4 ***
(0.841 × 10−6)

−0.503 × 10−4 ***
(0.112 × 10−5) -

Number of individuals
(Number of choice data)

5224
(31,344)

5224
(31,344)

Log-likelihood −32,589.68 −25,601.252

McFadden’s pseudo-R-squared 0.0496 0.2565

Note 1: ***, **, and * indicate significance at the 1, 5, and 10% levels, respectively. Note 2: 1 JPY = 0.0087 USD (as
of 30 January 2021).

The terms “success probability,” “reduction in human damage,” “reduction in property
damage,” and “reduction in indirect damage” were all positive and significant, with their
quadratic terms being negative and significant. This indicates that the marginal utility of
these attributes is nonlinear and depends on the level of each attribute, that is, as each
attribute is improved, the utility increases; however, the amount of increase in utility
diminishes and eventually reaches a peak. The point at which utility peaks, that is, when
the marginal utility reaches zero, is 91.9% for the “success probability,” 73.7 people for
“reduction in human damage,” 177.5 houses for “reduction in property damage,” and
5.4 days for “reduction in indirect damage.” The peak of the “success probability” is
approximately 92%, which is close to 100%; the higher the success probability, the more
desirable it is.

As expected, the “amount of payment” was negative and significant. This means that
an increase in payments leads to a decrease in utility. The absolute value of this estimate
represents the marginal utility of income. Using this estimate, we calculated the MWTP for
each variable.

Next, we consider the SD parameters. The significance of the SD parameters indicates
that the preferences for the variable are heterogeneous among respondents. In our study,
except for the “reduction in indirect damage” and the quadratic term for “reduction in
human damage,” the SD parameters were significant. Therefore, we can conclude that
preferences are heterogeneous for most variables.

To understand the magnitude of the heterogeneity in preferences, the ratios of the SD
parameters to the mean parameters were calculated for variables where both the mean
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and SD parameters were significant. ASC3 had a relatively high ratio, indicating the
heterogeneous preferences among respondents for not implementing any project. Further,
of the three types of damage reduction, “reduction in human damage” had a relatively
large heterogeneity in preferences. The ratio for “bird sanctuary” was not calculated as the
mean parameter was not significant; however, since the coefficient of the SD parameter
was a large value while the mean parameter was not significant, we can assume that the
preference for “bird sanctuary” is very heterogeneous.

The MWTPs calculated based on the estimates of the mean parameters are shown in
the rightmost column of Table 3. MWTPs for “use as a sports park” and “use as a bird
sanctuary” were JPY 4206.45 and JPY 500.81, respectively. Since the coefficient of “none”
was calculated to be −0.23686, as explained earlier, MWTP for “none” was JPY −4707.3.
Therefore, the difference in WTP between “use as a sports park” and “none” was calculated
to be JPY 8913.7, and the difference in WTP between “use as a bird sanctuary” and “none”
was calculated to be JPY 5208.1.

Since the preferences for “success probability” and each damage reduction are quadratic,
the MWTP depends on the value of each variable. This means that there are benefits from
improvements in these variables; however, benefits from additional improvements are
diminishing. Since it is easier to understand the MWTP for these improvements if we access
them visually, the WTPs for success probability and each damage reduction are illustrated
in Figure 2.

Figure 2. WTPs calculated based on RPL estimation results. Note: 1 JPY = 0.0087 USD (as of 30
January 2021).

Using these MWTPs, we could estimate the benefits of various flood control projects.
As an example, let us estimate the benefits of “Project 2” (benefit from the change from “No
project” to “Project 2”) in Figure 1. Using the MWTP estimates in Table 3, the benefit of
changing from “none” to “use as a sports park” is calculated to be JPY 8913.7, the benefit
of changing the probability from 100% to 80% is JPY −242.46, the benefit of 20 fewer
people suffering damage is JPY 2906.2, the benefit of 200 fewer houses suffering property
damage is JPY 10,097.4, and the benefit of reducing indirect damage by 7 days is JPY 8110.4.
Therefore, the benefit of “Project 2” is JPY 29,785 per household.

3.2. Estimation Using the LCM

The estimation result of the RPL verified the existence of heterogeneity in the prefer-
ences for most attributes. To deepen our understanding of heterogeneity in preferences,
we performed an estimation using an LCM. The membership function estimated in the
LCM can reveal factors related to heterogeneity in preferences. Stata16 (StataCorp LLC,
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Texas, U.S.) and lclogit2, a Stata command for fitting LCM via the expectation-maximization
algorithm [51] was used for the estimation.

The variables used in the membership function included a male dummy (male), in-
dicating that the respondent is male, a continuous variable representing the respondents’
age (age), and a direct damage dummy (direct) that takes a value of 1, when the respondent
lives in an area that may be directly affected by the flood.

The number of classes in an LCM should be determined based on an overall assess-
ment, considering the ease of interpretation and information criteria, such as Bayesian infor-
mation criterion (BIC) [52,53]. In this study, models with two to five classes were estimated.

As the number of classes increases, the information criteria (BIC, Akaike information
criterion (AIC), and corrected AIC (cAIC)) become smaller; however, the classes become
more fragmented and harder to interpret. Therefore, we focused on the ease of interpreta-
tion and adopted the results of the 2-class model. Table 4 presents the estimation results
and the MWTPs calculated based on the parameter estimates.

Table 4. Estimation results of the quadratic model using the LCM.

Class 1 Class 2

Variables Coefficient
(Standard Error)

MWTP
(JPY)

Coefficient
(Standard Error)

MWTP
(JPY)

Utility function

ASC3
−1.71160 ***

(0.07995) −42261.8 1.74039 ***
(0.24276) 14,625.2

Sports park 0.20235 ***
(0.01430) 4996.4 −0.06055

(0.05731) −508.9

Bird sanctuary 0.02270 *
(0.01358) 560.4 0.08847 *

(0.05319) 743.5

Success probability 0.02912 ***
(0.00213) 718.9 0.02808 ***

(0.00729) 236.0

Reduction in human damage −0.00239
(0.00223) -59.0 0.03151 ***

(0.00721) 264.7

Reduction in property damage 0.00630 ***
(0.00077) 155.6 −0.00821 ***

(0.00267) −69.0

Reduction in indirect damage 0.09802 ***
(0.01594) 2420.3 0.35126 ***

(0.05490) 2951.7

Success probability squared −0.00017 ***
(0.155 × 10−4) -4.3 −0.00011 **

(0.572 × 10−4) −1.0

Reduction in human damage squared 0.436 × 10−4 **
(0.183 × 10−4) 1.1 −0.00031 ***

(0.605 × 10−4) −2.6

Reduction in property damage squared −0.168 × 10−4 ***
(0.251 × 10−5) -0.4 0.217 × 10−4 **

(0.940 × 10−5) 0.2

Reduction in indirect damage squared −0.00913 ***
(0.00138) -225.5 −0.03359 ***

(0.00479) −282.2

Amount of payment (one-time tax increase) −0.00004 ***
(0.911 × 10−6)

−0.00012 ***
(0.976 × 10−5)

Membership function

Constant 0.51631 ***
(0.12035)

0
-

Male −0.12161 *
(0.06491)

0
-

Age 0.01049 ***
(0.00236)

0
-

Live in a place that may be directly affected by floods 0.33041 ***
(0.08837)

0
-

Class probabilities 0.73 0.27

Number of individuals
(Number of choice data)

5224
(31,344)

Log-likelihood −26,183.152

McFadden’s pseudo-R-squared 0.2396

Note 1: ***, **, and * indicate significance at the 1, 5, and 10% levels, respectively. Note 2: 1 JPY = 0.0087 USD (as
of 30 January 2021).
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First, we consider the estimation result of the membership function. The coefficients
of class 1 are estimated as the relative coefficients when the coefficients of each variable in
the membership function of class 2 are set to 0.

In Class 1, the constant, age, and direct damage dummy were positive and significant
at the 1% level. In addition, the male dummy was negative and significant at the 10% level.
These results indicate that females, older people, and people living in areas that may be
directly affected by floods, have a relatively higher probability of belonging to Class 1.

Next, we examine the estimation results for the deterministic term of the utility
function. For utilization purposes other than DRR, in Class 1, both the sports park and
bird sanctuary were positive and significant at the 1% and 10% levels, respectively. The
coefficient was larger for the sports park, indicating that it is more preferred. In contrast,
in Class 2, the sports park was not significant, while the bird sanctuary was positive and
significant at the 10% level, indicating that the bird sanctuary is more preferred. These
variables were coded with effect codes and “none” was excluded from the estimation;
therefore, the difference in WTP between “use as a sports park” and “none” and the
difference in WTP between “use as a bird sanctuary” and “none” were calculated in the
same way, as in the case of RPL.

The quadratic terms for “success probability” and each damage reduction were signif-
icant. WTPs depends on the value of each variable and are illustrated in Figure 3. Note
that we used the coefficient for “reduction in human damage” in Class 1, which is not
significant in this calculation.

Figure 3. WTPs for success probability and each damage reduction by class. Note: 1 JPY = 0.0087 USD
(as of 30 January 2021).

From the figure, we can see that there are significant differences in preferences among
classes. Class 1, in which people who live in an area that may be directly affected by floods,
tends to have a higher MWTP for the “success probability” than Class 2.

As for the “reduction in human damage,” Class 2 has a relatively high MWTP for
small improvements, peaking at approximately 50 people, whereas Class 1 has a negative
MWTP for small improvements, a positive MWTP after 50 people, and an accelerating
magnitude as improvements are made. Class 1, which is likely to include people living in
areas that may be directly affected by floods, is expected to highly appreciate improvement
above a certain level.
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As for the “reduction in property damage,” the MWTP is larger for Class 1 than for
Class 2. In contrast, for “reduction in indirect damage,” the MWTP is greater for Class 2
than for Class 1. This may be because people who live in areas that are not directly affected
by floods still suffer indirect damage.

These results indicate that people in Class 1 highly value the “success probability” and
reduction in direct damage (human and property damage), whereas people in Class 2 have
a higher preference for “reduction in indirect damage.” This difference in preference may
reflect the differences in damage that people in each class are likely to suffer.

At the 1% level, ASC3 was negative and significant for Class 1, whereas it was positive
and significant for Class 2. This indicates that people in Class 1 prefer to implement a
project regardless of the content, whereas people in Class 2 prefer not to implement any
project regardless of the content. This can be attributed to the fact that Class 1, which is
more likely to suffer direct damage, is proactive in implementing flood control projects,
whereas Class 2, which is less likely to suffer direct damage, is reluctant to implement flood
control projects that would incur a financial burden.

4. Conclusions

In this study, we conducted a questionnaire survey to investigate public preferences
with respect to DRR and its uncertainty. Using the CE, we obtained the following results: (1)
when there are no floods, the use of the area of the flood control project as a sports park was
highly evaluated; (2) benefits were obtained from the increase in “success probability,” and
the reduction in “human damage,” “property damage,” and “indirect damage;” however,
benefits obtained from additional improvements diminished; (3) preferences for DRR and
its uncertainty were heterogeneous among respondents; (4) the segment that includes more
women, older people, and more people who live in the areas that may be directly affected
by floods had higher ratings for “success probability” and relatively slightly lower ratings
for “reduction in indirect damage.”

Using our results, we were able to explain the public preferences for DRR and its
uncertainty and assess the benefits of various DRR measures with uncertainty.

Our results have several important implications for policymakers. First, this study
revealed that flood control, including Eco-DRR, provides significant benefits to citizens.
The cost-effectiveness of such flood control may be sufficiently high to ensure that its
implementation deserves consideration.

Second, the results indicate that the use of the area as a sports park or bird sanctuary
provides significant benefits compared to when the area is just used for flood control.
Therefore, it is suggested that when planning flood control measures, the area is utilized
for purposes other than flood control. It is important to maximize the benefits derived from
flood control facilities during normal times to maximize the net benefits derived from flood
control projects.

This is also important in terms of the acceptability of the project and consensus
building in the community. The project will be more acceptable to local residents if it is
implemented the way they desire because it will increase the benefits they derive from
it. This may be especially important in green infrastructures that are characterized by
multifunctionality.

Third, while it was expectedly found that uncertainty in DRR was negatively evaluated,
it was also found that uncertainty in the effects does not mean that such projects will never
be accepted. Our analysis shows that even projects with uncertain effects are acceptable
to individuals if the effects of flood control measures are sufficiently large, or if their use
for non-disaster prevention purposes is sufficiently attractive. This suggests that when
considering the implementation of DRR measures with uncertain effects, it is important
not to give up implementation because of the element of uncertainty, but to increase the
effectiveness of disaster prevention or make other uses more attractive. This indicates that
green infrastructures, which are characterized by the presence of uncertainty in DRR, have
the potential to become widespread.
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Fourth, the LCM results revealed that people had different preferences for flood control.
This result suggests that sufficient discussion is required to reach a consensus. Even if cost-
benefit analysis shows that the project is efficient, consensus building in the community
is necessary for its actual implementation. Our results demonstrated the importance of
this process.

Additionally, this study adds valuable contributions to the scarce research on economic
valuation of DRR with green infrastructures, demonstrating the usefulness of CE as an
analytical method. Thus, our research not only provides implications for policymakers but
also contributes to the development of academic research on green infrastructures.

Nevertheless, this study has some limitations that need to be addressed. First, in
this research, human damage is defined as the total number of dead, missing, or injured
people; property damage is defined as the total number of houses that are totally destroyed,
partially destroyed, partially damaged, or flooded above or below floor level; and indirect
damage is defined as damage that occurs in a wide range of areas due to power and
water outages, sewage treatment facility shutdowns, and disruptions of bridges and roads.
However, it is highly likely that people evaluate the reduction in the number of deaths
differently from the reduction in the number of injuries. Thus, future research should
conduct surveys that categorize human, property, and indirect damage in greater detail.

Second, we focus on flood control, and its results may not be generalizable to green
infrastructures against other disasters. For example, a rise in sea level due to climate change
may increase the damage caused by tsunamis and storm surges. Therefore, the use of
green infrastructure in coastal areas, including coastal forests, is an important issue to be
addressed in the future. In addition to disasters, urban greening is becoming increasingly
important as a countermeasure to rising temperatures in urban areas. Therefore, future
research on green infrastructure in fields other than flood control is required.

Third, this study used an LCM to show that people who live in areas that may be
directly affected by floods and those who do not live in such area have different preferences,
but a more detailed analysis is needed on this point. An analysis of how preferences change
as one moves away from the center of damage, that is, an analysis of the distance decay of
the MWTP for each attribute, would be useful to improve the accuracy of the assessment of
the benefits of flood control projects.
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